The nuclear-deformation surface $\beta(Z,N)$ for nuclei with Z=2-102

A. V. Yushkov

Institute of Nuclear Physics, Kazakh Academy of Sciences, Alma-Ata

Fiz. Elem. Chastits At. Yadra 24, 348-408 (March-April 1993)

Absolute values and signs of the equilibrium quadrupole nuclear deformation have been extracted from experimental data on the scattering of α particles of intermediate energies (20-140 MeV) by means of the coupled-channel method (CCM) and the Blair phaseshift method (BPSM). Comparison of the experimental data with theoretical results calculated in a superfluid model revealed good agreement not only in absolute magnitude but also functional similarity in the coordinates (Z,N). In such calculations, the main role in the isotopic and isotonic dependences $\beta(Z,N)$ is played by the excitation energy of the first 2^+ level in the form $\beta \sim 1/E_{2+}^{*1/2}$; this excitation energy can be measured with very good accuracy in nuclear spectroscopy. The relationship is used in the present paper to obtain the complete experimental $\beta(Z,N)$ surface from experimental data on E_{2+}^* , which are known not only for all stable nuclei but also for a large number of radioactive even-even nuclei. Investigation of the deformation surface has revealed some interesting properties, both in the absolute magnitudes of the nuclear deformation and in shape phase transitions of the nuclei. From these properties, conclusions are drawn concerning the possible reasons for the finiteness of the periodic table for stable nuclei and the restricted stability lines for isotopic chains.

1. INTRODUCTION

The shape, composition, and deformation of nuclei are central problems of modern nuclear physics. The theoretical solution of these problems requires the solution of a many-body problem involving questions relating to the choice of the residual interaction and other matters that in principle cannot be solved exactly. 1,2 The resulting difficulties can be eliminated only by comparing the predictions of a theoretical model with the results of an adequate experiment. Therefore, in the framework of the formulated problems we have new problems, and experimental investigations of the equilibrium deformation of nuclei or their deformation in excited states are topical. For individual nuclei that have been studied, it is important to raise the accuracy of the measurements, and for other nuclei or regions of them the systematic accumulation and analysis of new facts are important. However, for the solution of modern problems of nuclear physics, the most important thing is to obtain systematic experimental data, not for individual nuclei, but, for example, for nuclear isotopic chains or for fairly large regions in N and Z.

Practically from the time of discovery of the nucleus³ spatial and geometrical arguments, initially classical as a rule, were at the forefront in the development of nuclear models. Using geometrical terminology, one can say that the model of a "point nucleus" was the first spatial model of the nucleus,³ and it indicated unique nuclear properties: large mass, high density, charge, and spatial localization. The experiments of Hofstadter et al.⁴ finally confirmed the ideas, already existing at that time, of the "ball nucleus" model, and the problem of nuclear geometry entered nuclear physics. Two parameters made their first appearance: the radius R of a nucleus and the thickness ΔR of its surface layer. The problem of nuclear shape, in particular nonsphericity, arose with the creation of the generalized nuclear model of Bohr and Mottelson, 5,6 which can be called the "spheroid nucleus" model. A further spatial nuclear parameter was introduced: the nuclear quadrupole deformation parameter β_2 , which by definition is^{5,6}

$$\beta_2 = \left(\frac{16\pi}{45}\right)^{1/2} \frac{a-b}{R_0} = 1.06 \frac{a-b}{R_0} \tag{1}$$

and occurs in the expression for the nuclear shape:

$$R(\theta) = R_0 [1 + \beta_2 Y_{20}(\theta, \varphi)],$$
 (2)

where a and b are the semiaxes of the spheroid, $R_0 = 1.2A^{1/3}$ is the rms radius of the nucleus, and $Y_{20}(\theta, \varphi)$ is a spherical function.

No one has vet succeeded in measuring directly in an experiment the nuclear quadrupole deformation parameter β_2 ; it is obtained from the nuclear matrix elements of transitions of the nucleus to excited states: $|C_1(2)|$. In this connection, the most important experiments are the ones sensitive to the spatial details of the nuclear structure. In the first place, there are diffraction experiments, and these include elastic and inelastic scattering of complex particles. The small value of the de Broglie wavelength λ of the incident particle relative to the radius R of the scattering object—a necessary requirement for the realization of nuclear diffraction-not only makes the process highly sensitive to the spatial structure of the nuclear object but also greatly simplifies the determination of the interaction amplitude, even making it possible in a number of cases to find the amplitude in analytic form. This, in its turn, makes it possible to extract β_2 from experiments accurately and

A very important aspect of experimental studies of nuclear reactions aimed at measuring β_2 is the choice of appropriate conditions such as the species of incident particles, their energies, the masses of the target nuclei, and the nature of the excited nuclear states. For what one must do is to select a nuclear process in which the interaction is almost entirely due to the wave nature of the interacting nuclear objects and, therefore, their geometry. Thus, among all nuclear reactions the scattering process is distinguished by virtue of the fact that the wave functions in the entrance and exit channels have the same nature and because there exist angle and energy regions of "pure" diffraction interactions. The scattering process became one of the fundamental methods of investigating structure and, in particular, nonsphericity of nuclei.

On the other hand, one of the "eternal" problems of experimental nuclear physics was the desire to relate the results obtained from nuclear reactions to the results of nuclear spectroscopy, since the latter gives record accuracies of measurement of nuclear parameters. In the present paper, it is shown that this could be done with respect to the nuclear quadrupole deformation parameter.

It is true that in both nuclear spectroscopy and nuclear scattering the experimentally obtained parameter β_2 remains essentially a model physical quantity, but the agreement of the absolute values of β_2 obtained by different methods, especially the close similarity of their functional dependences on N and Z, $\beta_2(N)$ and $\beta_2(Z)$, makes these parameters model-independent and adequate descriptions of the physics of nuclear structure.

Given the genuine increase in the accuracy and the reliability of the experimentally determined nuclear quadrupole deformation parameters, one can pose the problem of studying the variation of β_2 in the complete region of existence in Z and N. It is extremely interesting to establish how smoothly the nuclear shape varies with atomic weight, and also to establish the boundaries at which the sign of the deformation changes (oblateness-prolateness effects), i.e., transitions from prolate shape of the nuclear surface $(\operatorname{sign} \beta_2 > 0)$ to oblate shape $(\operatorname{sign} \beta_2 < 0)$. These oblateprolate effects are known in the literature as nuclear shape phase transitions, being, essentially, phase transitions of the second kind. It is interesting to note that, according to the theoretically calculated⁸ minima of the total energy, realization of a shape phase transition, from sign $\beta_2 > 0$ to sign $\beta_2 < 0$, requires the overcoming of only a very low (compared with the total energy) barrier with a height of about 0.5 MeV for intermediate nuclei. In view of the fact that the calculated quantities depend strongly on the choice of the free theoretical parameters, the especial importance of experiments and systematic data establishing the facts of shape phase transitions of nuclei becomes clear.

2. NUCLEAR-REACTION METHODS FOR OBTAINING THE ABSOLUTE MAGNITUDES AND SIGNS OF THE NUCLEAR DEFORMATION

Thus, from experimental data on elastic and inelastic scattering of nuclear particles by nuclei it is necessary to extract the following structure parameters: the nuclear radius R, the thickness ΔR of its surface layer, the nuclear matrix element $|C_1(2)|$ of the collective quadrupole tran-

sition to the first 2^+ state, the absolute magnitude of the nuclear quadrupole deformation parameter, $|\beta_2|$, and sign β_2 , the sign of the nuclear quadrupole deformation parameter. From the experimental data of nuclear spectroscopy on the energies of the first 2^+ state for isotopic chains, it is necessary, after conversion in the framework of the superfluid model and normalization to the data on nuclear scattering, to obtain the absolute magnitudes $|\beta_2|$ of the nuclear quadrupole deformation; then, making a comparison with the results of theoretical calculations of sign β_2 , data on the signs of the electric quadrupole moments, sign Q_2 , and data on sign β_2 from inelastic nuclear scattering, it is necessary to recover sign β_2 for all isotopic chains and thereby create the entire surface with sign $\beta_2(Z,N)$ for all currently known nuclei.

Unfortunately, the practical realization of this mutual consistency problem is impossible in the framework of a single nuclear model, and one cannot avoid being eclectic in the analysis of the experimental data. However, this shortcoming is objectively transformed, given the volume of work and the number of nuclear parameters that are extracted, into the opposite. The advantage of such a global approach, in which one must mix different nuclear models in the analysis of the experimental data, is a certain model independence of the resulting nuclear-structure parameters, which are brought maximally close to the truth.

Choice of the reaction, species of bombarding particles, and the energy and angle ranges

A review of the types of nuclear reaction and of the methods used to obtain, from the angular distributions of the differential cross sections, the nuclear matrix elements $|C_1(2)|$, and then β_2 , is given in our paper of Ref. 9. Since an analytic theory containing the sign of the nuclear deformation, sign β_2 , as a parameter of the theory which can be unambiguously deduced from experiment has been developed only for elastic and inelastic scattering of α particles, ¹⁰ the choice of both the type of reaction and the species of particle is uniquely fixed (diffraction scattering of α particles).

The choice of the energy range E_{α} for the incident α particles is dictated by the requirement of the model of strong absorption, namely, the nucleus is "black" if

$$kR \gg 1,$$
 (3)

where k is the wave number of the incident α particle. This means that the required range of energies is

$$E_{\alpha} = 15-150 \text{ MeV}.$$
 (4)

The choice of the range of angles for measurement of the angular distributions of the differential cross sections of elastically and inelastically scattered α particles is more complicated and uncertain. Theoretical criteria arise here too from the requirements of strong absorption and are analogous to (3):

$$kR\theta \gg 1,$$
 (5)

where θ is the scattering angle of the detected α particle. However, the condition (5) does not take into account Coulomb effects and does not contain upper bounds. To establish a range of angles guaranteeing reliability, accuracy, and uniformity of the extracted nuclear parameters (i.e., their "purity" as regards the absence of nondiffraction scattering mechanisms and, therefore, renormalizations of their values), we made an empirical choice based on high statistics of the sample of angular distributions of differential cross sections:

$$(\theta_c \sim 15-20^\circ) \leqslant \theta \leqslant 75^\circ, \tag{6}$$

where θ_c is the Coulomb angle. The range (6) includes the fourth, fifth, sixth, and seventh Fraunhofer diffraction fringes, since the first, second, and third are strongly distorted by the Rutherford cross section and are not suitable for analysis, while at angles greater than 75° there come into play other, nondiffraction scattering mechanisms, and the number of free theoretical parameters must be increased in order to take them into account.

Extraction from the experimental angular distributions of the differential cross sections of the nuclear radii R and the thicknesses ΔR of the nuclear surface layer

To extract $|\beta_2|$ from an experiment, it is necessary to know, as will be shown below, the nuclear radii R. Therefore, we consider the choice of the optimum method for obtaining the nuclear radii R and the thickness ΔR of the surface layer from elastic scattering of α particles having energies in the range (4). Thus, the extracted values must have the best accuracy and must be maximally free of model approximations and limitations. This task is also worthwhile because R and ΔR are also of great independent interest.

The nuclear radius R can be found from the semiclassical relation between the interaction range $R_{\rm int}$ and the orbital angular momentum l_0 for the trajectory of an incident particle that grazes the nuclear surface:¹¹

$$R_{\rm int} = \frac{1}{k} \left[n + \sqrt{n^2 + l_0(l_0 + 1)} \right],\tag{7}$$

where n is the Coulomb parameter (Sommerfeld parameter). It is usually recommended that the radius R of the nucleus itself should be found by subtracting the α -particle radius R_{α} and the range r_{NN} of the nuclear forces:¹²

$$R = R_{\text{int}} - R_{\alpha} - r_{NN}. \tag{8}$$

For $R_{\alpha} = 1.6$ fm, $r_{NN} = 1.0$ fm, Eq. (8) was particularized in Ref. 14 to

$$R = R_{\text{int}} - 2.6 \text{ fm.} \tag{9}$$

However, numerous measurements have shown¹³ that the interaction range depends on the energy E_{α} (Fig. 1). To eliminate the energy dependence and obtain correctly the radius R of the nucleus itself from α -particle scattering, we introduce the more rigorous formula

$$R = R_{\rm int} - \lambda_{\alpha} - r_{NN}, \tag{10}$$

where $\lambda = 2\pi\lambda$ is the de Broglie wavelength of the α particle, which contains the energy dependence of $R_{\rm int}$. It can

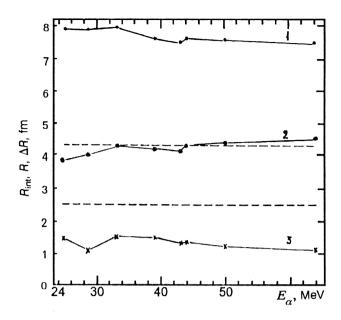


FIG. 1. Model dependence of radial structure parameters $R_{\rm int}$ (1), R (2), and ΔR (3) on the energy of the incident α particles. The broken lines show the values of R and ΔR obtained from electron scattering. ¹⁴

be seen from Fig. 1 that the procedure (10) does indeed give the value of R as a universal constant. At the same time, the data on the nuclear radii R obtained from α -particle scattering agree satisfactorily with the data on electron scattering (Fig. 1). In principle, the thickness parameter ΔR of the surface layer should not exhibit an energy dependence, since for the incident α particle the boundary of the surface layer is weakly smeared. ¹⁴ This is also confirmed by Fig. 1. In absolute magnitude, the thickness ΔR , in contrast to R, differs appreciably from the value obtained in electron scattering (Fig. 1); the reason may be sought in the different radial distributions of the proton and neutron components in the nucleus.

The grazing angular momentum l_0 , in its turn, is determined by computer fitting of the theoretical diffraction angular distribution of the differential cross section to the experimental cross section, and it is then used in the expression (7). The only rigorous formula for the scattering amplitude in quantum mechanics is the expression for the amplitude in the form of an expansion in partial waves: ¹⁵

$$f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) \exp(2i\sigma_l) (S_l - 1) P_l(\cos \theta),$$
(11)

where all the notation is standard. The divergence of the sum over l in (11) due to $P_1(\cos\theta)$ can be eliminated by a special choice of the form of the S matrix with a cutoff of the fraction of the amplitude with large angular momenta. A practically felicitous parametrization, which makes it possible to implement this idea and does not distort the physical essence of the elastic interaction in this range in l, is the parametrization proposed in Ref. 16:

TABLE I. Optimum parameters of the model of parametrized phase-shift analysis obtained by fitting to experimental data.

Nucleus	E_{α} , MeV	I_1	l_2	λ_1	λ_2	b	R_1 , fm	R_2 , fm	ΔR_1 , fm	ΔR_2 , fm	σ_r , mb	σ_{τ} , mb
⁴He	53.4	5.807	6.850	0.526	0.671	0.372	4.042	4.696	1.449	1.481	538.1	1002
⁶ Li	23.8	5.415	6.883	1.231	0.736	0.305	4.915	6.062	4.226	2.025	994.6	1533
⁷ Li	42	7.308	5.700	1.268	0.990	0.316	4.483	3.590	3.089	1.936	799.7	1280
⁹ Be ¹¹ B	23.8	8.157	8.352	0.457	0.603	0.565	6.209	6.341	1.358	1.448	1072	2179
¹² C	28.3 29.3	7.903 8.90(3)	11.775 9.08(35)	1.871 0.50(2)	1.690	0.543 0.349(4)	5.274	7.541	4.809	3.484	873.9	1772
C	38.1	10.270	11.379	0.30(2)	0.34(7) 0.743	0.590	5.72(1) 5.623	5.83(20) 6.170	1.25(5) 2.117	0.67(13) 1.291	969.0 948.8	1796 1826
	39.0	10.34(18)	10.4(2)	0.56(4)	0.53(9)	0.63(5)	5.56(8)	5.57(3)	1.16(8)	0.91(17)	874.5	1754
	40.4	10.52(1)	10.53(2)	0.55(1)	0.55(2)	0.47(10)	5.57(1)	5.58(1)	1.16(1)	0.93(3)	920.6	1769
	45.0	11.07(6)	11.01(4)	0.56(2)	0.62(6)	0.62(2)	5.48(3)	5.46(2)	1.12(3)	0.98(10)	854.9	1731
	50.5	11.68(1)	11.52(1)	0.57(1)	0.68(2)	0.503(1)	5.45(1)	5.38(1)	1.08(1)	1.03(3)	880.1	1727
¹³ C	28.4	8.328	11.058	0.151	0.104	0.609	5.637	6.887	0.371	0.205	7 <u>-</u>	-
¹⁴ N	37.9	10.808	13.666	0.812	1.599	0.385	5.745	7.109	1.700	2.686	934.8	1863
¹⁶ O	27.3	9.347	11.424	0.622	1.088	0.207	5.931	7.063	1.249	2.989	988.7	1840
	28.5	9.378	11.692	0.583	0.934	0.204	5.809	7.044	1.377	1.756	970.2	1777
	40.1	11.79(2)	11.89(3)	0.61(5)	0.61(3)	0.347(2)	5.38(9)	5.92(13)	1.20(10)	0.96(46)	1028	1928
¹⁹ F	42	12.217	12.908	0.734	0.122	1.061	5.955	6.260	1.419	0.289	-	-
²⁰ Ne	37.9 27.3	12.145 10.677	15.185 12.264	0.605 0.760	0.596 1.342	0.257	6.108	7.472	1.191	0.800	1102	2046
INE	28.5	10.577	12.264	0.760	1.342	0.229 0.196	6.528 6.333	7.358 7.131	1.743 1.599	2.471 2.402	1204 1138	2197
	42	13.21	11.09	0.712	0.652	0.196	6.225	5.329	1.399	0.969	1138	2070 2138
	104	20.396	20.708	1.322	0.659	0.467	5.787	5.871	1.561	0.624	1094	2011
²⁴ Mg	22.5	9.836	10.368	0.253	0.192	0.264	6.768	7.065	0.618	0.376	-	-
8	28.4	10.937	12.469	0.568	0.933	0.156	6.471	7.233	1.239	1.635	1128	2076
	39.0	13.27(1)	13.52(1)	0.68(1)	0.68(1)	0.352(1)	6.38(1)	6.49(1)	1.27(1)	1.01(1)	1153	2165
	42	13.888	17.155	0.707	0.145	0.242	6.416	7.757	1.274	0.210	-	-
	44	13.992	16.175	0.830	1.106	0.289	6.299	7.174	1.461	1.562	1159	2156
	50.5	15.13(5)	15.19(3)	0.72(14)	0.86(8)	0.349(1)	6.24(19)	6.26(118)	1.18(23)	1.13(131)	1137	2154
²⁵ Mg	44	14.579	14.990	0.606	0.611	0.520	6.497	6.661	1.061	0.858	1125	2296
²⁶ Mg	44	14.625	15.322	0.670	0.483	0.573	6.480	6.757	1.167	0.675	1179	2288
²⁷ Al	40	13.729	13.850	0.405	0.125	0.732	6.462	6.512	0.735	0.182		-
²⁸ Si	28.3	11.391	12.551	0.573	0.848	0.188	6.704	7.269	1.224	1.455	1167	2159
	39.0 50.5	13.85(1)	14.16(1)	0.71(1)	0.71(1)	0.349(1)	6.58(1)	6.71(1)	1.29(1)	1.04(2)	1202	2256
³¹ P	28.3	15.85(3) 11.911	15.97(2)	0.75(5) 0.924	0.90(2)	0.349(1)	6.44(1)	6.49(6)	1.20(7)	1.16(30)	1192	2259
⁴⁰ Ca	44	16.643	12.825 18.407	0.688	1.398 1.077	0.336 0.324	6.939 7.255	7.378 7.920	1.949 1.138	2.368 1.430	1247 1389	2320 2668
⁴⁴ Ca	42	16.80	17.16	0.847	1.045	0.324	7.443	7.581	1.422	1.407	1459	2806
⁴⁸ Ca	42	16.79	17.09	0.805	0.672	0.363	7.388	7.502	1.342	0.899	1471	2762
⁴⁶ Ti	44	17.213	18.665	0.939	0.977	0.342	7.460	8.001	1.534	1.281	1491	2792
⁴⁸ Ti	41	16.54	16.75	0.727	0.757	0.374	7.477	7.557	1.225	1.023	1443	2745
	44	16.725	19.265	1.859	1.045	0.412	7.254	8.197	3.026	1.366	1548	2698
⁵⁰ Ti	44	17.278	18.763	0.926	0.972	0.355	7.436	7.986	1.503	1.266	1476	2776
⁵² Cr	29.0	13.22(4)	13.94(1)	0.76(2)	0.58(7)	0.318(1)	7.64(2)	7.96(5)	1.49(5)	0.91(11)	1341	2469
	40.4	16.30(1)	16.89(1)	0.83(1)	0.86(1)	0.350(1)	7.49(1)	7.72(1)	1.40(1)	1.17(1)	1425	2678
	44	17.267	18.782	0.960	0.833	0.427	7.490	8.049	1.552	1.081	1459	2753
⁵⁴ Cr	50.0 38.0	18.54(1) 16.260	18.99(1) 16.458	0.88(2)	1.05(7)	0.349(1)	7.37(1)	7.53(2)	1.32(3)	1.27(8)	1451	2750
⁵⁴ Fe	16.53	8.784	9.682	0.798 0.402	0.738 0.0396	0.378 0.250	7.720 8.536	7.798 9.037	1.381 0.979	1.024 0.078	1496 -	2821
10	29.3	13.22(3)	13.95(6)	0.77(2)	0.59(5)	0.250	7.70(12)	8.02(29)	1.49(44)	0.078	1314	2430
	38.0	15.993	17.034	0.940	0.871	0.353(3)	7.70(12)	8.118	1.623	1.208	1472	2741
	44	17.172	18.475	0.757	1.001	0.367	7.515	7.993	1.219	1.294	1409	2705
⁵⁶ Fe	29.3	13.30(2)	14.06(5)	0.78(2)	0.59(3)	0.327(1)	7.77(10)	8.10(23)	1.51(46)	0.92(46)	1322	2473
	41	16.80	17.69	0.841	1.369	0.254	7.664	8.001	1.397	1.824	1481	2773
	44	17.738	18.841	0.954	1.200	0.360	7.704	8.108	1.533	1.547	1518	2875
⁵⁸ Fe	21	10.647	11.243	0.682	0.447	0.219	8.141	8.445	1.522	0.803	1248	2248
	44	18.056	19.743	1.598	0.895	0.359	7.802	8.419	2.562	1.152	1704	3008
	45.0	17.92(3)	18.51(17)	0.88(5)	0.99(18)	0.307(77)	7.62(1)	7.82(6)	1.39(8)	1.25(23)	1504	2819
	50.5	19.15(3)	19.65(2)	0.90(2)	1.08(7)	0.349(3)	7.55(1)	7.72(2)	1.34(3)	1.30(8)	1505	2855
58× T*	64	22.17	22.28	0.979	1.09	0.341	7.576	7.609	1.308	1.167	1601	3031
⁵⁸ Ni	24.7	11.437	12.310	0.777	0.426	0.245	7.862	8.275	1.609	0.711	-	-
	28.5	13.121	13.542	0.595	0.856	0.285	7.923	8.110	1.163	1.343	1302	2458
	33 40	14.95 15.94	15.41 16.85	0.87 0.991	0.51 0.808	0.41 0.371	7.96 7.516	8.15 7.863	1.58	0.74	1466	2566
	43	16.65	17.60	0.834	0.808	0.371	7.316 7.468	7.863 7.818	1.658 1.348	1.085 1.269	1387 1373	2566 2586
			17.31	0.834	0.378	0.524	7.468 7.766	7.818 7.570	1.430	0.499	1573	2386 2868
	44.4	17.85	17.31	0.897								

TABLE I. (Continued.)

Nucleus	E_{α} , MeV	l_1	l_2	λ_1	λ_2	b	R_1 , fm	R_2 , fm	ΔR_1 , fm	ΔR_2 , fm	σ_r , mb	$\sigma_{ au}$, mb
⁵⁸ Ni	50.5	18.95(4)	19.45(11)	0.90(3)	1.09(13)	0.339(6)	7.55(1)	7.72(4)	1.34(5)	1.30(14)	1479	2798
	64.3	21.80	21.90	0.861	0.991	0.380	7.496	7.527	1.146	1.058	1520	2916
⁶⁰ Ni	38.0	15.959	16.723	1.037	0.822	0.308	7.736	8.034	1.775	1.129	1482	2698
	43	18.304	18.960	1.101	0.628	0.625	8.060	8.302	1.780	0.814	1622	3107
	44	17.890	19.150	1.183	0.778	0.319	7.804	8.263	1.890	0.998	1605	2911
⁶² Ni	38.0	16.153	16.980	1.066	0.781	0.273	7.796	8.118	1.821	1.071	1523	2752
	43	13.039	12.216	1.080	1.118	0.949	6.117	5.817	1.727	1.430	640.9	1620
	44	18.536	18.692	0.933	0.837	0.376	8.023	8.080	1.488	1.071	1643	3088
	50.5	19.27(2)	19.82(14)	0.91(4)	1.09(14)	0.327(6)	7.67(1)	7.86(5)	1.36(6)	1.31(16)	1536	2899
⁶⁴ Ni	21.3	10.332	11.439	0.849	0.166	0.471	8.049	8.602	1.851	0.293		-
	40	16.31	17.19	0.891	0.856	0.222	7.611	7.945	1.482	1.143	1442	2643
⁶³ Cu	44	18.805	19.634	1.073	1.547	0.335	8.153	8.454	1.709	1.978	1685	3177
⁶⁵ Cu	44	18.924	19.686	0.999	1.290	0.299	8.181	8.457	1.589	1.646	1711	3200
⁶⁴ Zn	29.0	13.38(1)	14.21(1)	0.80(3)	0.62(2)	0.251(2)	7.99(1)	8.36(1)	1.53(5)	0.95(3)	1323	2463
	38.0	16.25(1)	16.98(1)	0.86(1)	0.87(1)	0.267(1)	7.87(1)	8.16(1)	1.46(1)	1.18(1)	1477	2730
	40	16.48	17.86	0.912	0.928	0.282	7.765	8.288	1.515	1.238	1459	2697
	41	17.254	18.025	1.006	1.004	0.274	7.943	8.232	1.653	1.324	1568	2880
	43	17.636	18.386	0.990	0.931	0.283	7.866	8.140	1.590	1.200	1564	2863
	44	18.032	18.456	0.977	1.135	0.274	7.905	8.059	1.553	1.447	1576	2920
	50.5	19.39(3)	19.95(11)	0.92(4)	1.11(13)	0.350(1)	7.72(1)	7.91(4)	1.36(6)	1.32(15)	1525	2891
⁶⁶ Zn	29.0	13.54(5)	14.38(3)	0.81(4)	0.63(8)	0.256(1)	8.05(2)	8.42(1)	1.64(8)	0.96(11)	1378	2511
	38.0	16.43(1)	17.18(1)	0.87(1)	0.875(1)	0.36(1)	7.93(1)	8.22(1)	1.47(1)	1.19(1)	1482	2778
	50.5	19.47(4)	20.05(8)	0.92(4)	1.11(1)	0.384(5)	7.78(1)	7.97(3)	1.37(6)	1.32(12)	1539	2940
⁶⁸ Zn	29.0	13.70(5)	14.55(2)	0.81(3)	0.63(6)	0.225(1)	8.11(2)	8.48(1)	1.55(6)	0.97(10)	1407	2557
	38.0	16.60(1)	17.37(1)	0.87(1)	0.88(1)	0.249(1)	7.98(1)	8.28(1)	1.48(1)	1.19(1)	1531	2826
	40	16.66	17.47	1.025	0.808	0.242	7.806	8.112	1.697	1.074	1512	2742
	43	17.90	18.67	1.017	0.787	0.266	-	-	-	-	-	
	50.5	19.79(2)	20.39(4)	0.93(2)	1.13(5)	0.300(8)	7.83(1)	8.03(1)	1.38(2)	1.33(6)	1585	2988
⁷⁰ Zn	29.0	13.85(6)	14.72(3)	0.82(3)	0.64(8)	0.229(1)	8.16(2)	8.54(1)	1.56(7)	0.97(12)	1434	2603
211	38.0	16.77(1)	17.56(1)	0.82(3)	0.89(1)	0.319(1)	8.03(1)	8.34(1)	1.48(1)	1.20(1)	1540	2873
	50.5	19.99(4)	20.60(1)	0.94(5)	1.13(10)	0.347(1)	7.88(1)	8.09(4)	1.38(7)	1.34(12)	1601	3036
⁷⁴ Ge	39.0	17.53	19.38	0.99	1.23	0.26	8.26	8.96	1.65	1.63	1641	3030
84Kr	38.4	18.60	17.84	0.976	0.504	0.266	8.926	8.638	1.627	0.673	1885	3453
88Sr	42	18.66	18.81	0.868	0.681	0.311	8.554	8.609	1.380	0.868	1692	3157
89Y	42	18.777	18.887	0.811	0.813	0.366	8.635	8.675	1.288	1.035	1681	3190
90 Z r	50.1	20.98(3)	21.60(7)	0.99(5)	1.10(11)	0.366(11)	8.54(1)	8.75(2)	1.45(6)	1.29(10)	1751	3322
⁹² Zr	65	27.32	28.80	1.80	1.70	0.250	9.205	9.640	2.323	1.761	2387	4315
⁹⁴ Zr	50.1	21.47(3)	22.12(6)	1.12(4)	0.99(10)	0.305(7)	8.69(1)	8.90(2)	1.63(6)	1.16(12)	1868	3466
⁹² Mo	31	14.854	15.423	0.682	0.742	0.339	8.917	9.150	1.226	1.073	1447	2737
1410	38.0	17.031	17.633	0.927	0.546	0.301	8.641	8.868	1.530	0.724	1590	2918
	49.2	21.36(5)	22.11(6)	1.30(5)	0.99(10)		8.82(2)	9.07(2)	1.91(7)	1.16(12)	1944	3513
⁹⁴ Mo	50.5	21.46(11)	22.35(16)	0.99(12)	1.12(32)	0.361(32)	8.71(3)	9.01(6)	1.44(18)	1.30(37)	1805	3429
⁹⁶ Mo	45.0	19.90(8)	20.76(14)		1.31(32)			9.07(5)		1.60(39)	1692	3311
98 M o	40	17.443	18.392	1.079	0.222	0.403(33)	8.501	8.849	1.736	0.287	1072	3311
NIO	45.0	20.37(7)	21.20(12)	1.07(9)	1.15(19)	0.333(17)	8.93(2)	9.22(4)	1.64(14)	1.41(24)	1855	3472
¹⁰⁰ Mo	38.0	17.407	18.06	1.109	0.743	0.335(17)	8.753	8.998	1.826	0.983	1696	3035
¹⁰⁶ Pd	38.0	17.59	18.37	1.03	1.12	0.205	8.998	9.289	1.685	1.472	1690	3078
¹⁰⁷ Ag	40	17.07	20.54	1.969	1.069	0.151	8.569	9.834	3.133	1.377	1713	2840
¹¹² Sn	44	20.37	20.98	0.907	1.56	0.440	9.331	9.544	1.386	1.914	1767	3508
511	50.1	21.26(11)	22.62(7)	1.40(11)	0.88(11)	0.325(16)	8.92(3)	9.36(2)	2.01(15)	1.02(12)	1862	3375
¹¹⁴ Sn	44	20.51	21.02	0.883	1.66		9.374	9.552	1.349	2.036	1793	3550
311	50.1	21.68(12)	23.03(10)	1.71(13)	0.95(15)	0.290(20)	9.05(4)	9.49(3)	2.45(19)	1.09(17)	1992	3522
¹¹⁶ Sn	40.4	17.96(28)	19.87(16)	1.43(18)	0.76(24)	0.315(45)	8.95(10)	9.64(6)	2.25(29)	0.97(31)	1705	3023
511	44	20.010	20.54	1.032	1.443	0.315(43)	9.195	9.379	1.574	1.767	1776	3387
	65.7	26.42	26.80	1.032	1.445	0.280	9.067	9.176	1.407	1.474	2064	3897
¹¹⁸ Sn		19.486		0.964			9.007	9.170	1.467	1.747	1681	3211
120Sn	44 44	19.486	19.839	1.108	1.43 1.49	0.354 0.288	9.008 8.953	9.130 9.047	1.685	1.747	1707	3169
SII	50.5		19.613			0.288	8.953 9.15(2)	9.047	1.685	1.818	1902	3502
¹²² Sn		22.17(6)	22.8(1)	1.04(6)	1.27(15)							
124Sn	44	19.889	20.153	1.084	1.289	0.300	9.138	9.229	1.650	1.574	1795	3340
Sn	40.4	18.9(4)	20.8(4)	1.41(25)	1.08(51)	0.24(6)	9.26(14)	9.96(14)	2.23(38)	1.37(65)	1860	3308
¹²² Te	50.5	22.36(5)	22.8(2)	1.04(5)	1.29(3)	0.298(13)	9.20(2)	9.33(7)	1.49(7)	1.48(15)	1939	3646
	42	19.056	19.339	0.961	1.008	0.257	9.196	9.296	1.488	1.253	1734	3214
¹²⁴ Te ¹²⁶ Te	42	18.717	18.872	0.944	1.082	0.249	9.072	9.127	1.460	1.342	1673	3101
¹²⁸ Te	42	19.517	19.807	0.986	1.087	0.254	9.349	9.452	1.528	1.351	1813	3361
¹²⁰ Te	42	19.335	19.720	0.992	1.051	0.251	9.281	9.417	1.535	1.306	1783	3298
	42	19.474	19.777	0.990	1.078	0.261	9.325	9.432	1.532	1.339	1801	3341

TABLE I. (Continued.)

Nucleus	E_{α} , MeV	l_1	<i>l</i> ₂	λ_1	λ_2	ь	<i>R</i> ₁ , fm	R_2 , fm	ΔR_1 , fm	ΔR_2 , fm	σ_r , mb	$\sigma_{ au}$, mb
148Sm	50	23.300	23.172	1.180	1.202	0.246	9.943	9.902	1.676	1.368	2140	3955
¹⁵⁰ Sm	50	22.706	23.097	1.120	1.376	0.278	9.748	9.874	1.588	1.565	2011	3756
¹⁵² Sm	50	22.777	22.966	1.208	1.379	0.281	9.767	9.838	1.712	1.568	2038	3781
¹⁶⁶ Er	50	24.789	24.018	1.474	1.608	0.144	10.612	10.364	2.084	1.819	2468	4453
¹⁷⁶ Yb	50	23.278	23.225	1.257	1.408	0.243	10.186	10.169	1.765	1.585	2129	3919
²⁰⁶ Pb	39.0	17.47	17.97	1.24	3.36	0.47	10.42	•	1.84	-	-	-
²⁰⁷ Pb	39.0	17.07	19.41	1.42	1.09	0.38	10.28	-	2.09	-	-	-
²⁰⁸ Pb	39.0	17.71	18.99	0.92	0.86	0.34	10.50	10.93	1.36	1.03	1490	

Notes:

- 1) Data on the optimum parameters of the parametrized phase-shift analysis are taken in part from Refs. 19 and 21-24; most were obtained by the author.
- 2) For references to the literature sources, see Ref. 20.
- 3) The errors in the parameters of the parametrized phase-shift analysis and other quantities given in brackets were obtained either by averaging from series of fits or on the basis of the errors of the original experimental data.
- 4) The parameters R_1 and R_2 were calculated in accordance with Eq. (7), ΔR_1 and ΔR_2 in accordance with (13), and σ_r and σ_τ were calculated in accordance with the formulas in Ref. 15.

$$S_{l} = U + iV,$$

$$U = \left[1 + \exp\left(\frac{l_{1} - l}{\lambda_{1}}\right)\right]^{-1}, \quad V = b \cosh^{-2}\left(\frac{l - l_{2}}{2\lambda_{2}}\right), \quad (12)$$

where the real part of the S matrix is parametrized in the form of a smeared Fermi step, and the imaginary part in the form of a bell-shaped function localized on the nuclear surface; l_1 , l_2 , λ_1 , λ_2 , b are five free parameters of the theory, of which we identify the parameter l_1 with the angular momentum l_0 , while the smearing ΔR of the nuclear edge is determined from the parameter λ_1 (corresponding formulas and the text of a FORTRAN program can be found in Ref. 17). It can be seen from (12) that the shape of the real part of the S matrix (in the form of a smeared Fermi step) matches the shape of the radial distribution of the nuclear density, 14,18 and, therefore, this parametrization of the S matrix is adequate and satisfies the necessary requirements for the practical extraction of the nuclear radius by comparing the theoretical [(11) and (12)] with the experimental angular distributions of the differential cross sections.

The analytical realizations of the theoretical angular distributions of the differential cross sections from (11), for example, in Ref. 12, in the sense of extraction of the radial parameters R and ΔR do not satisfy the practical requirements of accuracy¹⁹ and deviate systematically from the values obtained in the framework of the exact parametrized phase-shift analysis (11)–(12) made above. The value of ΔR in this analysis is

$$\Delta R = \frac{2.2(2l_1+1)\lambda_1}{k\sqrt{n^2+l_1(l_1+1)}}.$$
 (13)

Table I gives systematized²⁰ data on the optimal parameters of the analysis from Eqs. (11) and (12) obtained by fitting the theory to the experimental data. Table II contains data on the nuclear radii R and the thicknesses ΔR of the surface layer obtained from the interaction ranges

 $R_{\text{int}} = R_1$ in accordance with the procedure (10), which therefore do not depend on the α -particle energy; in brackets, we give for comparison individual data on electron scattering.14 For the nuclei for which in the world literature there were experimental data on the angular distributions of the differential cross sections for different α -particle energies, we formed, after the procedure (10), a sample (by rejecting the least and greatest values) with subsequent averaging and calculation of the rms errors. Table III gives the optimum parameters of the model of the method of complex angular momenta, and also the de Broglie wavelength parameters $\lambda = 1/k$. The completeness and systematization of the values given in Table II enable us to hope that the data on R and ΔR in it are the most accurate of all known data in the literature obtained from α -particle scattering.

We should like to emphasize once more that the values of R and ΔR , obtained, not from the rigorous formula (11), but from analytic realizations of it of the type in Ref. 12, are not suitable for comparisons with data on electron scattering, μ -mesic atoms, proton scattering, and other independent methods because of the uncontrollable approximations made in analytic models and the systematic deformations from rigorous theory, for which in the given case we have the expansion (11) of the scattering amplitude with respect to partial waves.

Extraction of the absolute values of the nuclear quadrupole deformation parameters from the angular distributions of the differential cross sections

The parameter $|\beta_2|$ is related to the nuclear matrix element $|C_1(2)|$ by 10,12,16

$$|\beta_2| = \frac{2.24 |C_1(2)|}{l_0/k - 2.6}.$$
 (14)

TABLE II. Nuclear radii R and thickness ΔR of the surface layer obtained from α -particle scattering.

Nucleus	Radius of n	ucleus R, fm	Thickness of su	rface layer ΔR , fm	Nucleus	Radius of 1	nucleus R, fm	Thickness of sur	face layer ΔR , fm
⁴He	1.02	(1.10)	1.45	(1.4)	⁵⁸ Ni	4.27	(4.28)	1.44	(2.5)
⁶ Li	1.46	(1.56)	4.23	(2.3)	⁶⁰ Ni	4.51		1.78	
⁷ Li	1.24		3.09		⁶² Ni	4.53		1.52	
⁹ Be	0.981	(1.80)	1.36	(2.0)	⁶⁴ Ni	4.21		1.48	
11 B	0.614	(2.00)	4.81	(2.0)	⁶³ Cu	4.86		1.71	
^{12}C	1.56	(2.30)	1.17	(1.85)	65Cu	4.90		1.59	
¹³ C	1.13		0.371	•	⁶⁴ Zn	4.52		1.66	
¹⁴ N	1.76	(2.40)	1.70	(1.85)	⁶⁶ Zn	4.45		1.49	
¹⁶ O	1.52	(2.60)	1.28	(1.8)	⁶⁸ Zn	4.49		1.53	
¹⁹ F	2.30		1.19	, , ,	⁷⁰ Zn	4.57		1.47	
²⁰ Ne	2.32		1.58		⁷⁴ Ge	4.85		1.65	
²⁴ Mg	2.67	(2.93)	1.26	(2.6)	⁸⁴ Kr	5.51		1.63	
25 Mg	3.0		1.06		⁸⁸ Sr	5.25	(4.80)	1.38	(2.3)
²⁶ Mg	3.0		1.17		89 Y	5.33	(,	1.29	, ,
²⁷ Al	2.87		0.735		⁹⁰ Zr	5.43		1.45	
²⁸ Si	2.92	(2.95)	1.24	(2.8)	⁹² Zr	6.36		2.32	
31 P	2.91		1.95	•	⁹⁴ Zr	5.59		1.63	
³² S	-	(3.26)	-	(2.6)	⁹² Mo	5.39		1.55	
⁴⁰ Ca	3.89	(3.64)	1.14	(2.5)	⁹⁴ Mo	5.62		1.44	
44Ca	4.04		1.42		⁹⁶ Mo	5.55		1.29	
⁴⁸ Ca	4.00		1.34		⁹⁸ Mo	5.43		1.69	
⁴⁶ Ti	4.12		1.53		¹⁰⁰ Mo	5.34		1.83	
⁴⁸ Ti	3.99		1.23		¹⁰⁶ Pd	5.59		1.69	
⁵⁰ Ti	4.11		1.50		107 Ag	5.23		3.13	
^{51}V	-	(3.98)	-	(2.2)	¹¹⁵ In		(5.24)	-	(2.3)
⁵² Cr	4.06	, ,	1.44	, , ,	112 Sn	5.96		1.70	•
⁵⁴ Cr	4.23		1.38		114 S n	6.03		1.90	
⁵⁴ Fe	4.09		1.45		¹¹⁶ Sn	5.95		1.75	
⁵⁶ Fe	4.21		1.48		¹¹⁸ Sn	5.78		1.47	
⁵⁸ Fe	4.48		1.35		¹²⁰ Sn	5.90		1.59	
⁵⁹ Co	-	(4.09)	-	(2.5)	122 Sn	5.92		1.65	
¹²⁴ Sn	6.04		1.86		¹⁵² Sm	6.69		1.71	
¹²² Sb	-	(5.32)	-	(2.5)	¹⁶⁶ Er	7.54		2.08	
¹²² Te	5.92		1.49	,	176Yb	7.12		1.77	
¹²⁴ Te	5.80		1.46		¹⁸¹ Ta	-	(6.45)	· -	(2.8)
¹²⁶ Te	6.08		1.53		¹⁹⁷ Au	-	(6.38)	i -	(2.32)
¹²⁸ Te	6.01		1.54		²⁰⁶ Pb	7.09	*****	1.84	•
¹³⁰ Te	6.05		1.53		²⁰⁷ P b	6.95		2.09	
148Sm	6.87		1.68		²⁰⁸ Pb	7.17	(6.5)	1.36	(2.3)
¹⁵⁰ Sm	6.68		1.59		²⁰⁹ Bi	-	(6.47)	•	(2.7)

Notes.

Rigorous expressions for the amplitudes of the inelastic interaction of α particles with nuclei, such as for the elastic interaction in the form (11), do not exist, but there are analytic realizations of the expression (11). The most internally consistent theory of inelastic scattering has been given by Inopin *et al.* ^{10,12,16} In the framework of this theory, the cross sections of elastic and inelastic (with excitation of collective states) scattering have the form

$$\sigma_{0} = \frac{8\pi}{k^{2}} |a|^{2} l_{0} \sin^{-1}\theta \exp(-2\beta\theta)$$

$$\times \{b^{2} + \cos^{2}[(l_{0} + 0.5)\theta + \gamma]\},$$

$$\sigma_{I} = 2(2I + 1) |a|^{2} |C_{n}(I)|^{2} l_{0}\theta^{2} \sin^{-1}\theta \exp(-2\beta\theta) \left\{b^{2}\right\}$$
(15)

$$+\cos^2\left[\left(l_0+\frac{1}{2}\right)\theta+\gamma+\frac{\pi}{2}\left(I+1\right)\right]\right],$$

where l_0 , $|\alpha|$, β , b, γ are five free parameters of the theory, and the remaining notation is standard. Leaving on one side the problem of obtaining the free parameters of the theory (the procedures can be found in Refs. 9, 13, and 25), we concentrate solely on the extraction from experiment of the nuclear matrix element $|C_1(2)|$. It was shown in Ref. 26, and in our studies of Refs. 9, 13, 19, and 25 we verified on numerous experimental data of our own as well as data given in the literature, that a correct and fairly rigorous expression for $|C_1(2)|$ is the following:

¹⁾The values of R and ΔR obtained from electron scattering ¹⁴ are given in brackets.

²⁾The errors in R and ΔR are 1-3 (rarely 5-6) units in the last significant figure.

³⁾The parameters of nuclei for which measurements at different energies of the incident α particles were made were obtained by estimating the reliability of the primary experimental data and subsequent averaging of the parameters R and ΔR for the different energies.

⁴⁾In the ⁴He (α,α) ⁴He case of scattering of identical particles the operation for determining the radius was different in accordance with the physical meaning $R = R_{\text{int}}/2 - r_{NN}$; the radii for ⁶Li and ⁷Li were found similarly in connection with the large contribution of the ⁴He cluster component.

TABLE III. Optimum parameters of the model of the method of complex angular momenta.

Nucleus	E_{α} , MeV	k, fm ⁻¹	θ_c , deg	l_0	β	b	<i>a</i>	γ	$ C_1(2) $, fm	$ oldsymbol{eta}_2 $
¹² C	18	1.40	16.4	6.22(5)	0.29(1)	0.70(1)	0.53(1)	2.04(1)	0.59(1)	0.36(3)
	20.16	1.48	15.3	6.29(5)	0.59(1)	0.34(1)	0.72(1)	1.84(1)	0.58(1)	0.38(3)
	22.75	1.57	13.3	6.82(6)	0.60(1)	0.14(1)	1.07(2)	1.76(1)	0.84(1)	0.56(4)
	24 26.1	1.62 1.68	13.2 11.8	6.70(6) 7.19(7)	1.28(1) 1.57(2)	0.37(1) 0.60(1)	3.32(5) 2.18(4)	1.86(1) 2.12(1)	0.59(1) 0.75(1)	0.42(3) 0.52(4)
	29.3	1.79	9.9	8.07(8)	2.16(2)	0.76(1)	4.1(1)	1.64(1)	0.48(1)	0.32(2)
	31.5	1.85	8.5	9.1(1)	1.63(2)	0.68(1)	2.42(5)	1.54(1)	0.65(1)	0.39(2)
	33.4	1.91	8.6	8.73(9)	2.20(3)	0.42(1)	4.2(1)	1.45(1)	0.50(1)	0.33(2)
	36	1.98	9.4	7.68(7)	1.86(2)	0.14(1)	3.68(7)	2.40(1)	0.46(1)	0.39(3)
	39.0	2.06	8.3	8.41(9)	0.88(3)	0.70(1)	0.80(3)	2.15(1)	0.64(1)	0.50(4)
	40.4	2.09	7.3	9.3(1)	2.20(3)	0.48(1)	2.68(8)	1.70(1)	0.69(1)	0.48(3)
	40.5	2.10	7.3	9.3(1)	2.42(3)	0.12(1)	3.8(1)	1.82(1)	0.73(1)	0.52(3)
	41	2.11	7.4	9.2(1)	2.27(3)	0.20(1)	3.25(8)	1.94(1)	0.71(1)	0.52(3)
	45.0	2.21	6.6	9.9(1)	0.57(2)	0.84(1)	0.64(2)	1.52(1)	0.57(1)	0.41(2)
	50.5 60	2.35 2.56	6.1 5.1	10.1(1) 11.0(2)	1.80(3) 1.54(3)	0.32(1) 0.51(1)	2.41(6) 1.80(4)	1.85(1) 1.85(1)	0.52(1) 0.52(1)	0.40(3) 0.40(3)
	65	2.66	4.4	12.4(2)	2.51(5)	0.31(1)	2.14(7)	0.67(1)	0.32(1)	0.40(3)
	104	3.36	2.9	14.5(3)	2.86(6)	0.64(1)	3.0(1)	1.99(1)	0.60(1)	0.49(3)
	139	3.89	2.0	18.3(4)	3.10(9)	0.79(1)	2.8(1)	1.11(1)	0.48(1)	0.35(2)
	1370	12.21	0.36	32.8(2)	19.6(8)	0.26(1)	12(2)	2.09(1)	0.65(1)	1.55(29)
$^{16}_{8}$ O	18.3	1.51	19.2	7.00(6)	0.13(1)	0.27(1)	1.22(1)	1.96(1)	0.29(1)	0.16(1)
· ·	21.8	1.64	16.1	7.68(3)	2.12(3)	0.24(1)	3.0(2)	2.57(1)	0.60(1)	0.35(3)
	23.7	1.71	13.1	9.07(5)	0.67(1)	0.27(1)	1.23(2)	0.97(1)	0.34(1)	0.17(1)
	27.3	1.84	13.1	8.4(4)	1.40(9)	0.36(2)	1.7(2)	1.93(2)	0.46(3)	0.28(3)
	40.1	2.23	7.9	11.5(2)	2.0(1)	1.09(8)	2.2(5)	3.7(2)	0.24(3)	0.18(3)
	40.5	2.24	8.2	11.11(7)	3.21(3)	0.18(1)	4.69(8)	1.67(1)	0.36(1)	0.22(1)
243.6-	104	3.59	3.2	17.9(3) 6.4(3)	4.75(6) 1.05(5)	0.56(1) 0.10(1)	5.3(2) 1.9(1)	4.62(1) 1.45(2)	0.35(1) 0.57(39)	0.23(1) 0.25(19)
²⁴ ₁₂ Mg	12.7 31.5	1.34 2.12	36.7 13.9	11.11(7)	2.45(2)	0.30(1)	3.54(5)	1.43(2)	0.59(1)	0.23(13)
	39.0	2.35	10.9	12.7(3)	2.88(8)	0.31(1)	3.9(3)	4.5(1)	0.72(2)	0.46(5)
	42	2.44	10.5	12.7(1)	3.49(4)	0.10(1)	4.9(1)	1.75(1)	0.68(1)	0.37(2)
	50.5	2.68	7.6	16.1(5)	2.3(1)	0.51(2)	2.3(2)	3.5(2)	0.88(1)	0.50(4)
²⁸ Si	16.2	1.55	33.4	7.3(3)	3.5(2)	0.97(1)	11(2)	2.18(2)	0.60(1)	0.27(4)
	19.5	1.70	27.9	8.1(4)	3.3(2)	0.83(2)	9(1)	2.09(2)	0.59(4)	0.29(2)
	21.6	1.79	24.2	8.9(5)	1.33(9)	0.59(2)	1.8(2)	1.57(2)	0.63(4)	0.31(4)
	23.3	1.86	23.3	8.9(5)	3.6(2)	0.39(1)	12(2)	1.57(2)	0.45(11)	0.23(7)
	25.1	1.93	25.9	7.7(4)	1.01(6) 1.45(2)	0.13(4) 0.35(1)	1.9(2) 1.83(5)	0.43(2) 1.66(2)	0.55(5) 0.82(1)	0.36(6) 0.42(4)
	27 39.0	2.00 2.40	19.2 13.7	10.09(6) 11.8(3)	1.43(2)	0.33(1)	1.83(3)	2.4(2)	0.72(5)	0.42(4)
	41	2.46	12.8	12.4(9)	1.3(1)	0.78(1)	2.1(3)	2.24(2)	0.50(5)	0.10(1)
	50.5	2.74	9.2	15.5(4)	2.7(1)	0.39(2)	2.8(2)	4.3(2)	0.25(4)	0.15(3)
	104	3.93	4.8	21(3)	5.4(8)	0.29(1)	7(2)	1.57(2)	0.60(11)	0.34(8)
48 ₂₂ Ti	27.2	2.12	25.1	12.0(9)	5.0(4)	0.25(1)	17(6)	0.92(2)	0.45(5)	0.18(3)
	28.4	2.16	24.7	11.9(9)	2.5(2)	0.23(1)	3.7(8)	2.17(2)	0.40(3)	0.17(2)
	31	2.26	22.0	12.8(10)	2.9(3)	0.30(3)	4.4(9)	2.09(2)	0.59(9)	0.25(5)
	50.5	2.89	12.5	17.9(6)	3.3(1)	0.29(1)	3.9(5)	1.1(3)	0.29(5)	0.15(3)
	104 140	4.14 4.81	5.9 4.9	26.7(8) 27.5(9)	4.8(2) 7.4(3)	0.29(1) 0.21(1)	4.8(4) 10.2(8)	1.51(1) 1.94(3)	0.43(2) 0.37(5)	0.19(1) 0.19(3)
⁵² Cr	29.0	2.20	25.1	12.7(3)	3.07(8)	0.46(1)	6.0(4)	1.54(14)	0.43(5)	0.20(5)
2401	40.4	2.60	14.9	18.3(4)	3.72(9)	0.16(1)	8.4(5)	3.08(1)	0.20(1)	0.07(1)
	50.0	2.90	13.9	17.5(5)	2.65(10)	0.25(1)	2.6(2)	1.41(24)	0.22(5)	0.11(3)
⁵⁴ ₂₆ Fe	16.05	1.64	51.5	8.5(5)	2.64(15)	1.47(4)	7.8(18)	2.36(2)	0.22(1)	0.07(1)
	29.3	2.22	27.1	12.6(3)	3.92(10)	0.51(1)	12.4(11)	1.6(1)	0.21(3)	0.10(1)
⁵⁶ Fe	29.3	2.22	24.1	14.2(4)	3.43(11)	0.64(1)	6.4(6)	3.8(2)	0.38(6)	0.16(4)
•	104	4.19	7.3	25(4)	4.9(9)	0.195(1)	5.6(4)	2.24(2)	0.33(13)	0.16(7)
⁵⁸ Fe	45.0	2.76	16.5	16.9(3)	3.57(9)	0.18(1)	5.6(4)	1.89(1)	0.39(10)	0.16(1)
	50.5	2.92	14.8	17.9(6)	3.3(6)	0.47(11)	4.1(2)	1.7(3)	0.36(8)	0.18(5)
58 n t:	64.3 32.3	3.30 2.34	10.6 31.3	· 22(3) 11.1(8)	4.4(6) 3.0(2)	0.27(1) 0.27(1)	7.7(6) 6.0(13)	1.18(1) 3.65(8)	0.25(1) 0.36(8)	0.10(1) 0.17(5)
⁵⁸ Ni	32.3 34.4	2.34	25.5	13.4(11)	3.2(3)	0.27(1)	6.1(13)	2.66(2)	0.33(44)	0.17(3)
	42	2.67	26.0	11.8(8)	3.5(3)	0.84(1)	5.2(11)	0.90(2)	0.32(1)	0.10(4)
	43	2.70	18.4	16.6(16)	3.9(5)	0.40(1)	7.5(24)	1.05(2)	0.33(9)	0.13(4)
	50.2	2.92	15.4	18.5(4)	3.82(9)	0.10(1)	6.0(4)	1.65(2)	0.26(1)	0.104(10)
	50.5	2.93	16.2	17.5(5)	3.0(7)	0.38(13)	2.9(19)	1.9(3)	0.31(17)	0.15(1)
	64.3	3.30	12.3	20.4(5)	4.1(2)	0.26(1)	2.5(3)	1.97(2)	0.29(5)	0.12(2)
	152	5.07	6.5	25.2(7)	6.6(3)	0.37(1)	8.5(7)	2.92(1)	0.47(6)	0.30(3)
623 **	1370	15.23	0.74	74.5(63)	28.6(26)	0.66(1)	15.3(74)	2.36(1)	0.58(1)	0.41(4)
⁶² ₂₈ Ni	32.3	2.35	26.1	13.5(11)	3.0(3)	0.41(1)	4.7(12)	2.48(2)	0.44(5)	0.17(3)
	33	2.37	25.0	13.9(11)	1.1(1)	0.42(1)	0.84(10)	1.57(2)	0.67(8)	0.26(15)

TABLE III. (Continued.)

Nucleus	E_{α} , MeV	k, fm ⁻¹	θ_c , deg	l _o	β	b	<i>a</i>	γ	$ C_1(2) $, fm	$ \beta_2 $
⁶² ₂₈ Ni	50	2.94	14.2	20.1(24)	3.3(5)	0.25(1)	6.0(17)	2.69(2)	0.33(7)	0.12(3)
	50.5	2.94	14.6	19.5(4)	3.9(1)	0.11(1)	6.0(5)	0.70(1)	0.42(1)	0.12(3)
64~	100	4.13	6.4	32(6)	7.4(15)	0.28(1)	14(9)	2.80(2)	0.44(8)	0.15(3)
⁶⁴ Zn	22	1.95	50.4	9.20	1.79	0.45	0.82	0.56	0.24	0.110
	29.0	2.23	30.5	12.8(3)	2.7(6)	0.38(1)	4.6(36)	2.1(2)	0.31(20)	0.14(10)
	38.0 40	2.55 2.62	22.4 20.6	15.6(4)	3.2(2)	0.27(3)	4.7(10)	1.7(3)	0.32(15)	0.14(8)
	43	2.02	20.0	16.2	3.6	0.36	6.9	1.38	0.42	0.19
	50.5	2.72	16.3	16.3	4.3 3.96(20)	0.38	9.8 5.8(9)	2.11 1.9(3)	0.48	0.23 0.12(3)
66 30 Z n	29.0	2.93	29.4	18.7(8)		0.40(1)	6.0(10)		0.27(6)	
30 Z 11	38.0	2.23	22.2	13.4(3)	2.9(1)	0.39(1)		1.7(2)	0.42(16)	0.18(9)
	43	2.72	19.2	15.7(4) 17.1	3.6(2) 4.0	0.23(1) 0.54	7.0(1) 6.9	1.9(3) 1.77	0.37(16) 0.34	0.17(8)
	50.5	2.72	14.7	20.7(8)	3.8(2)	0.34	6.9 4.9(9)	0.37(37)	0.34	0.149 0.14(5)
⁶⁸ 30Zn	29.0	2.24	30.3	12.9(3)	2.8(1)	0.21(1)	5.1(8)	2.3(2)	0.41(18)	0.14(3)
30211	38.0	2.56	21.5	16.7(5)	4.0(1)	0.35(1)	8.7(10)	1.1(2)	0.32(2)	0.13(3)
	40	2.63	20.4	15.7	3.52	0.36	6.08	2.10	0.46	0.13(3)
	43	2.73	20.0	16.4	4.08	0.30	8.16	2.16	0.39	0.23
	50.5	2.94	17.7	17.2(4)	4.22(9)	0.24(1)	8.1(6)	3.08(1)	0.36(1)	0.12(5)
⁷⁰ Zn	29.0	2.24	28.3	13.9(3)	3.98(11)	0.64(1)	14.0(2)	4.5(2)	0.45(1)	0.12(5)
302211	38.0	2.56	20.8	16.8(5)	3.48(12)	0.48(1)	5.2(6)	1.1(2)	0.35(7)	0.14(4)
	50.5	2.94	16.3	18.7(6)	4.21(15)	0.27(4)	7.8(9)	2.0(3)	0.24(5)	0.11(3)
88Sr	42	2.73	25.5	16.6	3.18	0.37	5.34	2.86	0.20	0.086
⁸⁸ ₃₈ Sr ⁹⁰ ₄₀ Zr	42	2.74	22.6	19.5	-	-	-	2.00	0.25	0.082
40-	43	2.73	22.7	19.5	3.85	0.66	8.35	0.314	0.14	0.050
	50.1(5)	2.98	20.6	19.7(7)	4.0(2)	0.271(4)	7.3(10)	1.730(5)	0.144(8)	0.051(5)
$^{92}_{40}$ Zr	43	2.76	22.2	20.0	4.46	0.53	13.6	0.189	0.183	0.065
⁹² Zr ⁹⁴ Zr ⁹⁴ Zr	43	2.76	23.8	18.5	4.48	0.60	11.7	1.88	0.168	0.071
40	50.1(5)	2.99	20.3	19.9(7)	4.3(2)	0.389(6)	8.3(12)	2.071(5)	0.230(9)	0.081(7)
92 42 Mo	38.0	2.60	31.4	15.3(4)	3.1(6)	0.42(11)	6.5(15)	2.9(2)	0.12(1)	0.048(6)
-	31	2.35	40.6	12.9	3.00	0.677	6.28	0.372	0.129	0.058
	49.2	2.96	21.2	20.2(7)	4.2(2)	0.371(9)	7.5(11)	1.228(5)	0.24(4)	0.087
94 42 Mo	50.5	3.00	21.2	20.0(7)	4.3(2)	0.41(1)	8.7(15)	1.142(5)	0.27(5)	0.095
%Mo	45.0	2.83	25.0	17.9(6)	3.0(2)	0.34(1)	4.0(7)	0.90(29)		-
98 42 Mo	40	2.68	29.0	16.2	3.30	0.702	7.25	0.068	-	-
	45.0	2.84	23.2	19.3(7)	4.4(3)	0.43(2)	10.4(24)	1.6(3)	0.30(10)	0.099
¹⁰⁰ Mo ¹⁰⁶ Pd ¹¹² Sn	38.0	2.61	29.1	16.6(6)	4.1(5)	0.54(11)	15.7(27)	2.2(2)	0.36(2)	0.14(1)
106Pd	38.0	2.60	31.1	17.4(9)	4.0(6)	1.04(25)	10.5(23)	1.7(3)	0.45(7)	0.16(4)
¹¹² Sn	44	2.82	29.6	18.1	4.57	0.88	9.9	2.2	0.21	0.069
	50.1	3.01	24.7	20.4(7)	4.5(2)	0.41(1)	14(3)	1.3(4)	0.22(13)	0.073
¹¹⁴ Sn	44	2.82	26.5	20.3	4.8	1.05	9.4	1.21	0.17	0.055
114-	50.1	3.01	24.4	20.7(8)	4.1(2)	0.313(9)	9.1(20)	1.294(5)	0.20(5)	0.064
¹¹⁶ Sn	40	2.68	33.8	17.0	3.75	0.49	8.9	0.334	0.26	0.0975
	40.4	2.70	30.2	18.5(6)	4.8(3)	0.90(5)	20(5)	1.488(5)	0.18(8)	0.055
1180	44	2.82	24.0	17.6	3.7	0.45	6.12	2.88	0.202	0.0944
¹¹⁸ Sn	40	2.68	35.3	16.3	3.5	0.54	6.8	1.07	0.24	0.094
¹²⁰ Sn	44 40	2.82 2.68	26.8 34.6	20.0 16.6	3.8 3.6	0.77 0.56	5.3	0.65	0.205	0.0699 0.099
₅₀ SII	44	2.82	27.7	19.3	4.0	0.68	6.1 7.4	1.14 1.07	0.26 0.203	0.0719
	50.5	3.02	25.1	20.0(7)	3.9(2)	0.450(9)	6.5(11)	0.500(5)	0.22(11)	0.0719
¹²² Sn	40	2.68	35.8	16.1	3.7	0.430())	7.2	2.04	0.26	0.102
20 211	44	2.82	30.5	17.5	3.9	0.52	6.5	0.515	0.192	0.0754
¹²⁴ Sn	44	2.83	30.4	17.6	4.18	0.813	7.21	3.34	0.178	0.070
30 311	50.5	3.03	22.9	22.0(8)	4.6(2)	0.48(1)	11(2)	2.042(5)	0.15(8)	0.043
122Te	42	2.76	33.4	16.9	4.2	0.67	13.5	0.376	0.321	0.11
¹²² Te ¹²⁴ Te	42	2.76	33.1	17.1	4.2	0.60	13.9	0.195	0.283	0.099
126Te	42	2.76	-	7 · · · · ·	-	-		-	0.22	•
128To	42	2.77	32.9	17.2	4.1	0.78	12.1	0.425	0.195	0.066
52 Te 130 Te	42	2.77	33.0	17.1	4.2	0.68	12.1	0.765	0.186	0.062
¹⁴⁰ Ce	42	2.77	30.8	20.6	·	-	-	-	0.30	0.14
148 62 Sm	50	3.03	26.9	23.2	5.57	0.555	37.0	1.07	0.141	0.043
152 62 Sm	50	3.03	27.2	22.9	6.05	0.811	39.5	1.51	0.290	0.091
154Sm	50	3.03	27.6	22.6	5.90	0.784	33.3	0.43	0.358	0.113
166 68 176 70 Yb	50	3.04	29.7	22.9	6.13	0.959	48.9	1.63	0.294	0.083
~0	50	3.04	30.2	23.2	5.98	0.863	49.3	1.82	0.285	0.085

157

Notes:

1) For references to the literature data, see the review of Ref. 20.

²⁾See the notes to Table II.

$$|C_n(I)|^2 = \frac{4\pi (n!)^2}{k^{2n} (2I+1)(\theta^2 - \theta_c^2)^n} \frac{[\sigma_I^{(n)}(\theta)]_{\text{max}}}{[\sigma_0^{(0)}(\theta)]_{\text{max}}}, \quad (16)$$

where $|\sigma_0^{(0)}(\theta)|_{\max}$ and $|\sigma_I^{(n)}(\theta)|_{\max}$ are the envelopes through the peaks of the elastic and inelastic scattering cross sections, and $\theta_c = 2 \tan^{-1} n/l_0$ is the Coulomb anglecorresponding to the trajectory that grazes the nuclear surface. On the basis of a systematization of the experimental data, it was shown in Ref. 13 that the nuclear matrix elements $|C_1(2)|$ are independent of the scattering angle θ and the energy E_{α} of the incident particles, i.e., it was shown that this quantity is indeed a nuclear constant. Table III gives the experimentally found parameters of the method of complex angular momenta, the nuclear matrix elements, and the absolute values of the quadrupole deformation parameters.

Use of anomalies in diffraction angular distributions to obtain the signs of the nuclear quadrupole deformation from experiments

A method widely used to find the signs of the nuclear quadrupole deformation from the angular distributions of the differential cross sections is the coupled-channel method (CCM),²⁷ which has been realized practically, for example, in the form of the well-known program ECIS.²⁸ In the coupled-channel method, the sign of the deformation is one of numerous adjustable parameters, and therefore the extraction of it from experiments is an ambiguous and unreliable procedure. In our study of Ref. 29, in which fitting using the ECIS program was employed, it was shown, nevertheless, that the sign of the nuclear deformation affects the shape of the angular distributions mainly by shifting the extrema to larger or smaller angles.

However, this shift of the extrema was predicted theoretically much earlier—in 1966 by Inopin and Shebeko and it was found experimentally in experiments using the cyclotron of the Institute of Nuclear Physics of the Kazakh Academy of Sciences in 1971 (Ref. 30) and is now known in the literature as the "Blair phase-shift effect." The strong interest in this effect is due to the fact that theoretically the magnitude and sign of the Blair phase shift β_2 were uniquely related to the magnitude and sign of the nuclear quadrupole deformation β_2 (Ref. 10) and also to the deformations of higher multipolarity in excitations of corresponding collective levels and measurement of their angular distributions of the differential cross sections in α -particle scattering. A complete review of investigations of the Blair phase shift was given in Ref. 9.

In the framework of the theory of inelastic diffraction scattering with excitation of collective nuclear levels, ³³ the Blair phase-shift effect is interpreted as a contribution of higher orders in the nuclear deformation to the scattering amplitude. ¹⁰ To study this effect, Inopin and Shebeko ¹⁰ obtained scattering amplitudes without expanding the S matrix in powers of the nuclear deformation:

$$f_{I,M}(\theta) = i^I D_{M0}^{(I)} \left(\frac{\pi + \theta}{2}\right) f_I(\theta), \tag{17}$$

where

$$f_{I}(\theta) = \frac{1}{ik} \sum_{\bar{l}} \sqrt{\pi(2\bar{l}+1)} T \frac{I}{l} Y_{\bar{l}l}(\theta,0), \qquad (18)$$

I and M are the spin and its projection in the final state of the nucleus, \overline{I} is the mean angular momentum over the width of the packet of partial waves, $D_{M0}^{(I)}$ is a function of the irreducible representation of the rotation group, T_{I}^{I} are the matrix elements corresponding to excitation of levels with spin I, and $Y_{\overline{I}I}(\theta,0)$ are spherical functions. The amplitude (17) together with the amplitude for elastic scattering can be reduced to the form

$$f_0(\theta) = F(\theta)\cos[kR_0\theta + \gamma],$$

$$f_2(\theta) = -k\Delta_2\theta F(\theta)\sin[(kR_0 + \delta_2)\theta + \gamma],$$
(19)

where

$$F^{2}(\theta) = 8\pi k^{-2} |a|^{2} l_{0} \sin^{-1} \theta e^{-2\beta \theta}, \tag{20}$$

$$kR_0 = l_0 + \frac{1}{2},\tag{21}$$

$$\Delta_2 = \frac{R_0}{3} \frac{3}{\sqrt{4\pi}} \beta_2, \tag{22}$$

$$\delta_2 = \frac{\sqrt{5}}{7\sqrt{4\pi}} kR_0 \beta_2,\tag{23}$$

and l_0 , β , b, |a|, γ are free parameters of the theory.

Since, as can be seen from Eq. (23), the quantity δ_2 , being measured in an experiment, gives direct information about the sign of the nuclear quadrupole deformation,

$$sign \beta_2 = -sign \delta_2, \tag{24}$$

we used the Blair phase shift for this purpose.

Thus, for practical calculations it is necessary to determine from experimental data the six free parameters of the theory: l_0 , β , b, |a|, γ , δ_2 , which occur in the expressions (17)–(23). We emphasize especially that the parameter δ_2 must be extracted together with its sign: sign δ_2 . The first five parameters can be determined, as noted above, by the method proposed in Refs. 13 and 25. Without going into detailed descriptions of the method, we merely mention one remarkable feature of the method of complex angular momenta—the parameters of this theory can be determined uniquely from experiment, a considerable advantage of the method over the coupled-channel method. Systematized values of the parameters are given in Table III.

Methods of extracting the Blair phase shifts from experimental data are described in detail in Ref. 24. The most universal and reliable method is as follows. The value of δ_2 can be obtained not only from an extremum of the diffraction angular distribution of the differential cross sections but also from any point by using the expression (19) for the amplitude:

$$\delta_2 = \left[\arcsin\left(\sqrt{\sigma(\theta)}/k\Delta_2\theta F(\theta)\right) - \gamma\right]/\theta - kR_0,$$
 (25)

$$\sigma(\theta) = |f_{IM}(\theta)|^2. \tag{26}$$

To eliminate from the calculations "spurious" theoretical free parameters, it is best to use in the expression (25), not the inelastic scattering cross section, but the ratio of it to the elastic cross section, since the same parameters are used in both amplitudes.

In the practical use of the Blair phase-shift method, one of the rigorous methodological conclusions was the following. When the Blair phase shift is used, the important thing is to choose correctly the region of angles in which the method of complex angular momenta works (Fraunhofer region). In practical calculations, it was found that this range of angles is very narrow: On the side of small angles it is limited by the Coulomb interaction, and also by Coulomb-nuclear interference, and on the side of large angles it is restricted by the region of change of the phase shifts by $\pi/2$. Thus, with few exceptions we are in practice restricted to the region of the fourth and fifth diffraction peaks.

The results of measurements of the signs of the nuclear deformation by the coupled-channel method and the Blair phase-shift method are given in Table IV¹⁰¹¹¹²¹³ in a comparison with literature data and a systematization. The parameter δ_2 and other intermediate quantities obtained from the experimental angular distributions of the differential cross sections are described in detail in our studies of Refs. 9 and 24.

3. THE NUCLEAR DEFORMATION SURFACE $\beta(Z,N)$ OF THE GROUND STATE OF NUCLEI WITH Z=2-102

The systematic study of the isotopic variations of nuclear shapes is one of the effective ways of recovering the surface $\beta(Z,N)$ as a whole in the complete Z, N region of existence of nuclei, from which one can then establish the fundamental trends of these variations. Since there are few stable nuclei in the complete region of existence of nuclei with any Z (short isotopic chains), the surface $\beta(Z,N)$ can be constructed in two ways: 1) experimentally, by means of data obtained by various experimental methods (Blair phase-shift, coupled-channel, conversion from Q, B(E2), etc.); 2) by calculation if some model gives a reliable analytical relation between the nuclear deformation parameter and one of the quantities that can be measured accurately in nuclear spectroscopy, mainly the energies of the lowest, especially collective levels. Here, we shall not consider the numerous purely theoretical calculations of $\beta(Z,N)$, for example, those in Refs. 1 and 8, for the reasons indicated above (the uncontrollable variations of the results when there are small variations of the free parameters and the uncontrollable accouracy of the assumptions and approximations that are made), although the data in the literature do undoubtedly exhibit a correlation between the purely theoretical and experimental functions $\beta(Z,N)$.

Numerous attempts to construct $\beta(Z,N)$ by the first method, for example, in Refs. 9 and 34, did not lead to success for two main reasons—the restricted number of experimental data and the discrepancy, sometimes contradiction, of the experimental data obtained from different reactions or by different methods. As an example, we give

Table V, which compares the nuclear matrix elements (16) if one has in mind their connection with the nuclear deformation in the form (14), $|C_1(I)|$, obtained from different nuclear processes in which 2^+ and 3^- collective states are excited. It can be seen from Table V that the probabilities of the same transitions measured in different nuclear reactions agree satisfactorily on the whole, although there are significant differences. The establishment of the nature of these discrepancies is a task for the future, possibly the very distant future.

It is appropriate to give one further example. Let us consider the electric quadrupole moment Q and the quadrupole deformation parameter β_2 . The first of them is related to the deformation of the charge component of the nucleus, and the second to the deformation of the mass component. There is a well known⁴³ relation between the intrinsic quadrupole moment Q_0 and the quadrupole deformation parameter:

$$Q_0 = \frac{1}{132} Z R^2 \beta_2. \tag{27}$$

However, it is difficult to establish the correspondence between the experimental values of Q_0 and β_2 . First, Q_0 is not measured in an experiment, and the mean quadrupole moment Q for nuclei with I=0 or 1/2 is zero. Second, the collective and single-particle excitations of nuclei are coupled and are separated only in even-even nuclei, in which the minimum energy of the single-particle levels is, owing to the pairing effect, ~2 MeV, while the energy of the collective excitations is somewhat less.⁴⁴ In odd and oddodd nuclei, these excitations have comparable energies and the adiabatic conditions are not well satisfied. For this reason, the overwhelming bulk of the experimental data on elastic scattering of α particles relates to even-even nuclei. In addition, shell effects have a large influence on the values of Q_0 and β_2 , 45 and therefore a correlation can be traced only within shells.

Let $\beta_z(A,S)$ and $\beta_m(A,S)$ be the deformations of the charge and mass components of the nuclei, respectively; they are functions of the mass number A and S, which is a measure of the filling of a shell. It is interesting to trace two types of correlation—the functional one between $\beta_z(A,S)$ and $\beta_m(A,S)$ and the correlation in the absolute magnitude $\beta_z(\beta_m)|_{\substack{A=\text{const}\\ S=\text{const}}}$. To this end, we ascribe to nuclei with measured values of Q and β_2 a definite configuration, and, using the experimental values of Q, we calculate the parameter $\beta_z(A,S)$. These data for the shell $f_{7/2}$ are given in Table VI, and the functions $\beta_z(A,S)$ and $\beta_m(A,S)$ are represented in Fig. 2 by the points and crosses, respectively, for the shells $p_{3/2}$, $d_{5/2}$, $d_{3/2}$, $2p_{3/2}$, $f_{5/2}$, $g_{9/2}$, $g_{7/2}$.

It can be seen from Fig. 2 that there is an obvious functional correlation of $\beta_z(A,S)$ and $\beta_m(A,S)$ in the shells $f_{7/2}, p_{3/2}, d_{5/2}, 2p_{3/2}$, and $f_{5/2}$. For the shells $d_{3/2}, g_{9/2}$, and $g_{7/2}$ there were too few experimental data for such a conclusion. One can also give two examples of numerical correlation: The ⁷Li nucleus in the shell $p_{3/2}$ has $\beta_z(7;1) = -1.29$, which should be compared with $\beta_m(7;1) = 1.47$; the ²⁷Al nucleus in the shell $d_{5/2}$ has $\beta_z(27;5) = +0.23$, which should be compared with $\beta_m(27;5) = 0.13$. The elucidation of this correlation ap-

TABLE IV. The nuclear deformation surface $\beta(Z,N)$.

	E_{2+}^{ullet} , MeV	В	β	exp 2				
Nucleus	(Refs. 53-55)	β_2 (Ref. 60)	Value	Method	$oldsymbol{eta}_2^{ ext{theor}}$	$oldsymbol{eta_2^{ ext{ref}}}$	Surface $\beta(Z,N)$	Number of neutrons N
⁴ ₂ He	33.0						+0.172	2
⁶ He	1.80					+0.736	+0.736	4
0						(From ⁸ Be)		
⁸ He	4 6-							6
⁶ Be	1.67						+0.770	2
⁸ Be	2.94					+0.58	+0.580	4
⁹ Be					. 0.50	(From ⁹ Be)		_
¹⁰ Be	3.3680	1 22	0.74		+0.58		+0.580	5
¹² Be	0.8	1.22	0.74				+0.542	6
	3.353		+0.4	Extrapol.			+1.11 +0.334	8
¹⁰ C ¹² C	4.4391	0.60	-0.29(2)	BPSM		-0.29	+0.334 -0.290	4 6
¹³ C	4.4371	0.00	-0.19(2)	BPSM		-0.29	-0.290 -0.190	7
¹⁴ C	7.012		0.15(1)	DI SIVI	-0.44		-0.130 -0.231	8
¹⁶ C	1.75				+0.37		+0.462	10
18 C					+0.39		+0.390	12
20 C					-0.55		-0.550	14
²² C					+0.37		+0.370	16
²⁴ C					-0.62		-0.620	18
¹⁴ O	6.59						+0.0861	6
¹⁶ O	6.919	0.084	+0.18(3)	BPSM		+0.084	+0.0840	8
¹⁸ O	1.9822	0.30					+0.157	10
²⁰ O	1.6737						+0.171	12
¹⁸ Ne	1.8873						+0.325	8
²⁰ Ne	1.6338	0.87	+0.35(1)	CCM	+0.349	+0.35	+0.350	10
²² Ne	1.27458	0.64	+0.37(1)	CCM			+0.397	12
²⁴ Ne	1.981						+0.318	14
²⁰ Mg ²² Mg	1 2470		+0.4	Extrapol.			0.400	8
²⁴ Mg	1.2470 1.36859	0.65	+0.6	Extrapol.	. 0 26 0 47	. 0.61	+0.639	10
²⁶ Mg	1.8087	0.65	+0.61(5)	BPSM	+0.26:0.47	+0.61	+0.610	12
²⁸ Mg	1.4735		+0.28(1) +0.2	CCM Extrapol.	+0.19		+0.531	14
26Si	1.7959		+0.2	Extrapol.			+0.589 -0.358	16 12
²⁶ Si ²⁸ Si	1.7789	0.40	-0.36(3)	BPSM	$-oldsymbol{eta}$	-0.36	-0.360	12
³⁰ Si	2.2355	0.10	0.50(5)	DI 5.11	P	-0.50	-0.321	16
³² Si	1.9414						-0.345	18
³⁰ S ³² S	2.2107						-0.211	14
³² S	2.2302	0.37	-0.30	CCM	-0.20	-0.21	-0.210	16
³⁴ S	2.1274		0.27	DWM*			-0.215	18
³⁶ S	3.291						-0.173	20
³⁴ ₁₈ Ar	2.0911						-0.167	16
³⁶ Ar	1.97039		-0.36	CCM	$-oldsymbol{eta}$		-0.172	18
³⁸ Ar ⁴⁰ Ar	2.16760		0.17	DWM		0.00	-0.164	20
⁴² Ar	1.46081 1.2082		0.20	DWM		-0.20	-0.200	22
38 20 Ca	2.206						-0.220 + 0.106	24
⁴⁰ Ca	3.9041		0.08	DWM	$\beta=0$	+0.08	+0.106 +0.0800	18 20
⁴² Ca	1.5246		0.19	DWM	$\beta=0$ $\beta=0$	₩0.00	+0.128	20
⁴⁴ Ca	1.15702	0.22	+0.17	BPSM	$\beta = 0$		+0.123	24
⁴⁶ Ca	1.347		0.28	DWM	$\beta = 0$		+0.136	26
⁴⁸ Ca	3.8323		+0.11	BPSM	$\beta=0$		+0.0807	28
⁵⁰ Ca	1.03				•		+0.156	30
⁴² Ti ⁴⁴ Ti	1.555						+0.151	20
	1.0830				$+\beta$		+0.181	22
⁴⁶ Ti	0.88925	0.29	+0.19(1)	CCM	$+\beta$		+0.200	24
⁴⁸ Ti	0.983512	0.265	+0.19(1)	CCM	$+\beta$	+0.19	+0.190	26
⁵⁰ Ti	1.5537	0.175	+0.13(1)	CCM	$\beta = 0$		+0.151	28
⁵² Ti	1.0471						+0.184	30
⁴⁸ Cr	0.7524	6.51			$+\beta$		+0.242	24
⁵⁰ Cr ⁵² Cr	0.7833	0.31			$+\beta$		+0.238	26
⁵² Cr ⁵⁴ Cr	1.43408	0.23	1022(2)	DDC14	$\beta=0$. 0.22	+0.176	28
⁵⁶ Cr	0.83483 1.008	0.27	+0.23(2)	BPSM	$+\beta$	+0.23	+0.230	30
							+0.209	32
⁵² ₂₆ Fe	0.84		-		+β		+0.211	26

TABLE IV. (Continued.)

	<i>E</i> [♣] ₂₊ , MeV	$oldsymbol{eta_2}$	$\boldsymbol{\beta}_2^{\mathrm{exp}}$					
Nucleus	(Refs. 53–55)	(Ref. 60)	Value	Method	$oldsymbol{eta_2^{ ext{theor}}}$	$oldsymbol{eta}_2^{ m ref}$	Surface $\beta(Z,N)$	Number of neutrons A
⁶⁴ Fe	1.4084	0.18	+0.12(3)	BPSM	$\beta=0$		+0.163	28
⁶ Fe	0.84676	0.23	+0.21	BPSM	$+\beta$	+0.21	+0.210	30
ⁱ⁸ Fe	0.81076	0.27	+0.14	BPSM	$+oldsymbol{eta}$		+0.215	32
⁰ Fe	0.84						+0.211	34
⁶² Fe	1.63						+0.151	36
56Ni	2.701				$\beta = 0$		+0.125	28
58 N i	1.4544	0.187	+0.17(2)	BPSM	_0.171	+0.17	+0.170	30
⁶⁰ Ni	1.33250	0.211	-0.21(3)	BPSM	-0.170	,	-0.178	32
⁶² Ni	1.1730	0.193	+0.20(2)	BPSM	+0.190		+0.189	34
⁶⁴ Ni		0.193	-0.14(2)	BPSM	-0.189		-0.176	36
	1.3461	0.192	-0.1 4 (2)	DI SIVI	-0.107		-0.172	38
⁶⁶ Ni	1.42						-0.172 -0.189	30
⁶⁰ Zn	1.0042						-0.194	32
⁶² Zn	0.9539		0.40(0)	DDC) (0.100	0.10	-0.194 -0.190	34
⁶⁴ Zn	0.9915	0.250	-0.19(2)	BPSM	-0.108	-0.19		36
⁶⁶ Zn	1.0394	0.227	-0.12(2)	BPSM	-0.0980		-0.186	
⁶⁸ Zn	1.0774	0.205	-0.23(2)	BPSM	-0.0900		-0.183	38
⁷⁰ Zn	0.8848	0.229	-0.15(3)	BPSM	0.123		-0.201	40
72 Zn	0.65						-0.235	42
64 32Ge					$-\boldsymbol{\beta}$			32
⁶⁶ Ge	0.9574				$\beta = 0$		-0.189	34
⁶⁸ Ge	1.0165				$-oldsymbol{eta}$		-0.183	36
⁷⁰ Ge	1.0396	0.224			0.201		-0.182	38
⁷² Ge	0.83395	0.247			-0.218		-0.203	40
⁷⁴ Ge	0.59588	0.290	+0.24(3)	BPSM	0.226	+0.24	+0.240	42
⁷⁶ Ge	0.56293	0.271	1 3.2 . (5)		0.204	•	+0.247	44
⁷⁸ Ge	0.30273	0.271			0.195			46
72 34 Se	0.8620				0.170		+0.211	38
³⁴ Se		0.337			+0.32		+0.246	40
	0.6348				0.228		+0.262	42
⁷⁶ Se	0.5591	0.326					+0.250	44
⁷⁸ Se	0.6136	0.287			0.190	. 0.24	+0.240	46
⁸⁰ Se	0.6662	0.240			0.166	+0.24		48
82Se	0.6544	0.205			0.0713		+0.242	50
⁸⁴ Se	1.4551						+0.162	
⁸⁶ Se	0.704						+0.233	52
⁷⁴ Kr	0.4557						+0.291	38
⁷⁶ Kr	0.4238						+0.301	40
⁷⁸ Kr	0.4550				0.267		+0.291	42
⁸⁰ Kr	0.6162				0.188		+0.250	44
⁸² Kr	0.77649				0.149		+0.223	46
⁸⁴ Kr	0.88160				0.0700	+0.209	+0.209	48
						(From 80Se)		
⁸⁶ Kr	0.5649						+0.261	50
⁸⁸ Kr	0.7753						+0.223	52
90 K r	0.7071						+0.233	54
	0.505						+0.164	40
⁷⁸ Sr ⁸⁰ Sr	0.3854						+0.188	42
82Sr	0.5734						+0.154	44
84Sr							+0.131	46
86Sr	0.7931				0.0500		+0.112	48
	1.0766	0.140	. 0.006	DDCM		1.0.086	+0.0860	50
⁸⁸ Sr	1.83603	0.140	+0.086	BPSM	0.0707	+0.086		52
⁹⁰ Sr	0.83169						+0.128	
⁹² Sr	0.8147						+0.129	54
⁹⁴ Sr	0.8374						+0.128	56
⁹⁶ Sr							+0.129	58
$^{88}_{40}$ Zr	1.0569						+0.106	48
⁹⁰ Zr	2.18622	0.074			0.0782	+0.074	+0.0740	50
⁹² Zr	0.9345	0.11			0.00504		+0.113	52
⁹⁴ Zr	0.9188				0.110		+0.114	54
96Zr	1.751	0.081					+0.0828	56
98Zr	0.8530	0.001					+0.119	58
100 Zr							+0.237	60
102 c	0.2125						+0.237	62
¹⁰² Zr	0.1519						-0.0606	48
90 M o	0.948		0.040(6)	DDC1.6	0.0705	0.049		50
⁹² M o	1.50947	0.116	-0.048(6)	BPSM	0.0795	-0.048	-0.0480	30

161

94Mo 0.87110 0.169 0.00975 96Mo 0.77822 0.175 0.117 98Mo 0.78737 0.168 0.131 100Mo 0.5352 0.253 +0.14(1) BPSM 0.175 102Mo 0.2960 0.1920 0.1717	+0.0632 +0.0869 +0.0665 +0.0806 +0.108 +0.135 +0.142 +0.152 +0.199 +0.225 +0.248 +0.264 +0.304 +0.350	52 54 56 58 60 62 64 50 52 54 56 58
96Mo 0.77822 0.175 0.117 98Mo 0.78737 0.168 0.131 100Mo 0.5352 0.253 +0.14(1) BPSM 0.175 102Mo 0.2960 0.1920 0.1717 0.117 0.117 0.117 0.117 0.110 0.0126 0.0126 0.0126 0.0126 0.0110 0.0100 0.0147 0.0147 0.0127 0.0147 0.0127 0.0147 0.0102 0.0147 0.0102 0.0147 0.0102 0.0165 +0.264 0.165 +0.264 0.165 +0.264 0.165 +0.264 0.165 +0.264 0.165 -0.264 0.165	+0.0869 +0.0665 +0.0806 +0.108 +0.135 +0.142 +0.152 +0.199 +0.225 +0.248 +0.264 +0.304	54 56 58 60 62 64 50 52 54 56
98Mo 0.78737 0.168 0.131 100Mo 0.5352 0.253 +0.14(1) BPSM 0.175 102Mo 0.2960 104Mo 0.1920 106Mo 0.1717 94Ru 1.428 96Ru 0.8326 0.159 0.0126 98Ru 0.65241 0.215 0.110 100Ru 0.53959 0.232 0.147 100Ru 0.47506 0.264 0.165 +0.264	+0.0665 +0.0806 +0.108 +0.135 +0.142 +0.152 +0.199 +0.225 +0.248 +0.264 +0.304	56 58 60 62 64 50 52 54 56
100 Mo 0.5352 0.253 +0.14(1) BPSM 0.175 102 Mo 0.2960 104 Mo 0.1920 106 Mo 0.1717 24 Ru 1.428 26 Ru 0.8326 0.159 0.0126 28 Ru 0.65241 0.215 0.110 100 Ru 0.53959 0.232 0.147 102 Ru 0.47506 0.264 0.165 +0.264	+0.0806 +0.108 +0.135 +0.142 +0.152 +0.199 +0.225 +0.248 +0.264 +0.304	58 60 62 64 50 52 54 56
102Mo 0.2960 104Mo 0.1920 106Mo 0.1717 44Ru 1.428 106Ru 0.8326 0.159 0.0126 106Ru 0.53959 0.232 0.147 1002Ru 0.47506 0.264 0.165 +0.264	+0.108 +0.135 +0.142 +0.152 +0.199 +0.225 +0.248 +0.264 +0.304	60 62 64 50 52 54 56
104Mo 0.1920 106Mo 0.1717 14Ru 1.428 16Ru 0.8326 0.159 18Ru 0.65241 0.215 1000Ru 0.53959 0.232 1010 0.165 +0.264	+0.135 +0.142 +0.152 +0.199 +0.225 +0.248 +0.264 +0.304	62 64 50 52 54 56
106Mo 0.1717 24Ru 1.428 108Ru 0.8326 0.159 0.0126 108Ru 0.65241 0.215 0.110 100Ru 0.53959 0.232 0.147 102Ru 0.47506 0.264 0.165 +0.264	+0.142 +0.152 +0.199 +0.225 +0.248 +0.264 +0.304	64 50 52 54 56
HRu 1.428 HRu 0.8326 0.159 0.0126 HRu 0.65241 0.215 0.110 HRu 0.53959 0.232 0.147 HRu 0.47506 0.264 0.165 +0.264	+0.152 +0.199 +0.225 +0.248 +0.264 +0.304	50 52 54 56
96Ru 0.8326 0.159 0.0126 98Ru 0.65241 0.215 0.110 100Ru 0.53959 0.232 0.147 102Ru 0.47506 0.264 0.165 +0.264	+0.199 +0.225 +0.248 +0.264 +0.304	52 54 56
98Ru 0.65241 0.215 0.110 100Ru 0.53959 0.232 0.147 102Ru 0.47506 0.264 0.165 +0.264	+0.225 +0.248 +0.264 +0.304	54 56
100Ru 0.53959 0.232 0.147 102Ru 0.47506 0.264 0.165 +0.264	+0.225 +0.248 +0.264 +0.304	54 56
102Ru 0.47506 0.264 0.165 +0.264	+0.264 +0.304	
104	+0.304	58
U+D ₁₁ Ω 25700 Ω 200 Ω 200		
100	+0.350	60
⁰⁶ Ru 0.2703		62
¹⁰⁸ Ru 0.2424	+0.370	64
¹¹⁰ Ru 0.24067	+0.371	66
112Ru 0.2368	+0.374	68
²⁸ Pd 0.8413	+0.125	52
¹⁰⁰ Pd 0.6658	+0.140	54
¹⁰² Pd 0.55660	+0.153	56
¹⁰⁴ Pd 0.55581 0.212 0.141	+0.154	58
¹⁰⁶ Pd 0.51186 0.224 +0.16(4) BPSM 0.149 +0.160	+0.160	60
108Pd 0.43393 0.243 0.189	+0.174	62
¹¹⁰ Pd 0.3738 0.252 0.194	+0.187	64
¹¹² Pd 0.3489	+0.194	66
¹¹⁴ Pd 0.3329	+0.198	68
¹¹⁶ Pd 0.3406	+0.196	70
⁰² Cd 0.719	+0.170	54
^{lo4} Cd 0.6581	+0.178	56
¹⁰⁶ Cd 0.6327 0.186 0.133	+0.181	58
¹⁰⁸ Cd 0.63298 0.195 0.131	+0.181	60
¹⁰ Cd 0.65775 0.183 0.0940	+0.178	62
¹¹² Cd 0.6174 0.186 0.0966	+0.184	64
¹⁴ Cd 0.55829 0.193 0.101 +0.193	+0.193	66
¹¹⁶ Cd 0.51355 0.201 0.104	+0.201	68
¹¹⁸ Cd 0.4878	+0.206	70
²⁰ Cd 0.5059	+0.206	72
²² Cd 0.570	+0.191	74
⁰² Sn 1.354	-0.112	52
⁰² Sn 1.354 ⁰⁴ Sn 1.2162	-0.118	54
⁰⁶ Sn 1.2104	-0.118	56
⁰⁸ Sn 1.2067	-0.118	58
¹⁰ Sn 1.2117	-0.118	60
¹² Sn 1.2572 0.130 -0.069 BPSM 0.113	-0.116	62
¹⁴ Sn 1.3000 0.118 -0.055 BPSM 0.115	-0.114	64
¹⁶ Sn 1.29354 0.113 -0.13 BPSM 0.115	-0.114	66
¹⁸ Sn 1.2296 0.116 —0.10 RPSM 0.111	-0.117	68
²⁰ Sn 1.1716 0.112 -0.12 BPSM 0.102 -0.120	-0.120	70
²² Sn 1.1411 0.118 -0.13 BPSM 0.0948	-0.122	72
²⁴ Sn 1.132 0.108 0.0891	-0.122	74
²⁶ Sn 1.145	-0.121	76
²⁸ Sn	U.121	78 78
³⁰ Sn 1.217	-0.118	80
$_{2}^{12}$ Te 0.720	+0.130	60
¹⁴ Te 0.7090	+0.131	62
¹⁶ Te 0.6791	+0.133	64
¹⁸ Te 0.6052	+0.141	66
²⁰ Te 0.5604 0.170	+0.141 +0.147	68
12 Te 0.5640 0.183 +0.20 BPSM	+0.146	70
24 Te 0.60272 0.174 +0.18 BPSM		
$\frac{16}{26}$ Te 0.66633 0.163 +0.17 BPSM	+0.142 +0.135	72 74
18 0.00033 0.103 +0.17 BPSM 18 0.7432 0.141 +0.15 BPSM	+0.135 +0.138	74 76
30 Te 0.8394 0.127 +0.12 BPSM +0.120	+0.128	76 78
	+0.120	78
¹³² Te 0.9739	+0.111	80

162

	E_{2+}^{ullet} , MeV	$oldsymbol{eta_2}$.	β	exp 2				
Nucleus	(Refs. 53–55)	(Ref. 60)	Value	Method	$oldsymbol{eta_2^{ ext{theor}}}$	$oldsymbol{eta}_2^{ ext{ref}}$	Surface $\beta(Z,N)$	Number of neutrons
³⁴ Te	1.2791						+0.0972	82
⁶ Xe	0.337						+0.163	62
⁸ Xe	0.337						+0.163	64
⁰ Xe	0.3218						+0.167	66
² Xe	0.3315						+0.165	. 68
⁴ Xe	0.3543						+0.159	70
⁶ Xe	0.38863	0.190					+0.152	72
⁸ Xe	0.44288	0.171					+0.142	74
⁰ Xe	0.53609						+0.129	76
³² Xe	0.6677	0.116				+0.116	+0.116	78
³⁴ Xe	0.84702						+0.103	80
³⁶ Xe	1.3131						+0.0828	82
³⁸ Xe	0.5895						+6.123	84
[₩] Xe	0.3768						+0.154	86
²⁰ Ba	0.183						-0.337	64
²² Ba	0.197						-0.324	66
²⁴ Ba	0.2296						-0.300	68
²⁶ Ba	0.256				$-\boldsymbol{\beta}$		-0.285	70
²⁸ Ba	0.283	0.175					-0.271	72
³⁰ Ba	0.3573	0.170			$-oldsymbol{eta}$		-0.241	74
³² Ba	0.46455						-0.211	76
³⁴ Ba	0.60470				$-\beta$		-0.185	78
³⁶ Ba	0.81850				$-oldsymbol{eta}$		-0.159	80
³⁸ Ba	1.4359	0.120			$-\boldsymbol{\beta}$	-0.120	-0.120	82
¹⁰ Ba	0.60232						-0.186	84
¹² Ba	0.35952						-0.240	86
¹⁴ Ba	0.1994						-0.323	88
¹⁶ Ba	0.1810						-0.338	90
28Ce	0.2073						-0.289	70
³⁰ Ce	0.2539						-0.261	72
³² Ce	0.3250						-0.231	74
³⁴ Ce	0.4092						-0.206	76
³⁶ Ce	0.5522						-0.177	78
³⁸ Ce	0.7887						-0.148	80
⁴⁰ Ce	1.59617	0.104				-0.104	-0.104	82
⁴² Ce	0.6412	0.118					-0.164	84
⁴⁴ Ce	0.3973						-0.209	86
⁴⁶ Ce	0.2586						-0.258	88
⁴⁸ Ce	0.1587						-0.330	90
⁵⁰ Ce	0.098						-0.420	92
28Nd	0.144						-0.244	68
²⁸ Nd ³⁰ Nd								70
32Nd								72
34Nd	0.2942						-0.171	74
³⁶ Nd	0.3735						-0.151	76
³⁸ Nd	0.5202						-0.128	78
⁴⁰ Nd	0.7738						-0.105	80
⁴² Nd	1.5758	0.104					-0.0737	82
44Nd	0.69649	0.111			$\beta=0$	-0.111	-0.111	84
46Nd	0.4538	0.161			•		-0.137	86
⁴⁸ Nd	0.3017	0.197			$\beta=0$		-0.169	88
⁵⁰ Nd	0.1301	0.268			• · · · · · · · · · · · · · · · · · · ·		-0.257	90
52Nd	0.0759						-0.336	92
⁵⁴ Nd	0.0728						-0.343	94
⁴⁰ Sm	0.5310						+0.120	78
⁴⁰ Sm ⁴² Sm	0.7680						+0.0996	80
144Sm	1.6601						+0.0678	82
146Sm	0.7471						+0.101	84
¹⁴⁸ Sm	0.7471	0.158	+0.11	BPSM			+0.118	86
150Sm	0.33395	0.138	70.11	DI SIVI	$\beta=0$		+0.110	88
152Sm		0.187	+0.25	BPSM	ρ_0	+0.250	+0.250	90
154Sm	0.12178			BPSM			+0.305	92
156Sm	0.08199	0.326	+0.27	DF 3IVI			+0.317	94
158Sm 158Sm	0.0760 0.0728						+0.324	96

TABLE IV. (Continued.)

	E_{2+}^{ullet} , MeV	$oldsymbol{eta}_2$	£	exp 2	_			
Nucleus	(Refs. 53–55)	(Ref. 60)	Value	Method	$oldsymbol{eta}_2^{ ext{theor}}$	$oldsymbol{eta}_2^{ ext{ref}}$	Surface $\beta(Z,N)$	Number of neutrons A
¹⁴² Gd ¹⁴⁴ Gd	0.5260						+0.130	78
¹⁴⁴ Gd	0.7426						+0.110	80
¹⁴⁶ Gd								82
¹⁴⁸ Gd	0.7845						+0.107	84
¹⁵⁰ Gd	0.6381						+0.118	86
¹⁵² Gd	0.3443	0.184					+0.161	88
154Gd	0.12307	0.293					+0.269	90
¹⁵⁶ Gd	0.088964	0.325					+0.317	92
¹⁵⁸ Gd	0.07951	0.335				+0.335	+0.335	94
¹⁶⁰ Gd	0.07526	0.343					+0.344	96
¹⁵⁰ Dy ¹⁵² Dy	0.8044						+0.0981	84
	0.6140						+0.112	86
¹⁵⁴ Dy	0.3345						+0.152	88
¹⁵⁶ Dy	0.1379	0.282					+0.237	90
¹⁵⁸ Dy	0.09892	0.307					+0.280	92
¹⁶⁰ Dy	0.080660	0.320					+0.299	94
¹⁶² Dy	0.080660	0.320					+0.310	96
¹⁶⁴ Dy	0.073392	0.325			$+\beta$	+0.325	+0.325	98
¹⁵⁶ Er ¹⁵⁸ Er	0.3446						+0.135	88
158Er	0.1921	0.234					+0.181	90
¹⁶⁰ Er	0.1257	0.286					+0.224	92
¹⁶² Er	0.10200	0.304					+0.249	94
¹⁶⁴ Er	0.09139	0.318					+0.263	96
¹⁶⁶ Er	0.08057	0.322	+0.28	BPSM		+0.280	+0.280	98
¹⁶⁸ Er	0.079800	0.321					+0.281	100
¹⁷⁰ Er	0.07859	0.317					+0.284	102
¹⁵⁸ Yb	0.358						+0.134	88
¹⁶⁰ Yb	0.2430						+0.163	90
¹⁶² Yb	0.1663						+0.197	92
¹⁶⁴ Yb	0.1233						+0.299	94
¹⁶⁶ Yb	0.10238						+0.251	96
¹⁶⁸ Yb	0.08773	0.304					+0.271	98
¹⁷⁰ Yb	0.084262	0.308					+0.276	100
¹⁷² Yb	0.078746	0.315					+0.286	102
¹⁷⁴ Yb	0.07647	0.305					+0.290	104
¹⁷⁶ Yb	0.08213	0.292	+0.28	BPSM		+0.280	+0.280	106
¹⁶⁶ ₇₂ Hf	0.1587						+0.201	94
¹⁶⁸ Hf	0.1239						+0.227	96
¹⁷⁰ Hf	0.1008						+0.252	98
¹⁷² Hf	0.09526	0.263					+0.259	100
¹⁷⁴ Hf	0.09100	0.273					+0.265	102
¹⁷⁶ Hf	0.08835	0.286					+0.269	104
¹⁷⁸ Hf	0.09318	0.263					+0.262	106
¹⁸⁰ Hf	0.093324	0.262				+0.262	+0.262	108
¹⁸² Hf	0.0978						+0.256	110
¹⁷⁰ W ¹⁷² W	0.1560						+0.189	96
	0.1229						+0.214	98
¹⁷⁴ W	0.1119						+0.224	100
¹⁷⁶ W	0.1089						+0.227	102
¹⁷⁸ W	0.1059	0.00					+0.230	104
¹⁸⁰ W	0.10365	0.243					+0.232	106
¹⁸² W	0.100106	0.238					+0.237	108
¹⁸⁴ W	0.11121	0.225				+0.225	+0.225	110
¹⁸⁶ W	0.12261	0.217					+0.214	112
¹⁸⁸ W	0.143						+0.198	114
¹⁷² Os	0.2277						+0.159	96
¹⁷⁴ Os	0.152						+0.194	98
¹⁷⁶ Os	0.1352						+0.206	100
¹⁷⁸ Os	0.1317						+0.209	102
¹⁸⁰ Os	0.1318						+0.209	104
¹⁸² Os	0.1271						+0.213	106
¹⁸⁴ Os	0.1198						+0.219	108
¹⁸⁶ Os	0.13715	0.199					+0.205	110
¹⁸⁸ Os	0.15504	0.186			0.199		+0.193	112

	<i>E</i> [♣] ₂₊ , MeV	$oldsymbol{eta_2}$		3 ^{exp}					
Nucleus	(Refs. $53-55$)	(Ref. 60)	Value	Method	$oldsymbol{eta_2^{ ext{theor}}}$		$oldsymbol{eta_2^{\mathrm{ref}}}$	Surface $\beta(Z,N)$	Number of neutrons I
⁹⁰ Os	0.18668	0.176			0.172			+0.175	114
⁹² Os	0.2057955	0.167			0.133		+0.167	+0.167	116
⁷⁸ Pt ⁸⁰ Pt	0.17							+0.211	100
⁸⁰ Pt	0.16							+0.218	102
³² Pt	0.1549							+0.221	104
³⁴ Pt	0.1630							+0.216	106
³⁶ Pt	0.19153							+0.199	108
⁸⁸ Pt	0.2656							+0.169	110
⁹⁰ Pt	0.29582	0.158						+0.160	112
Pt Pt	0.3165079	0.170			0.113			+0.155	114
P ⁴ Pt	0.32845	0.152			0.0869		+0.152	+0.152	116
⁹⁶ Pt	0.3557	0.125			0.0580		,	+0.146	118
⁹⁸ Pt	0.4072	0.134			0.0417			+0.136	120
84 LJ a	0.3667	0.154			0.0117			+0.0942	104
⁸⁴ Hg ⁸⁶ Hg	0.4053							+0.0896	106
ng ⁸⁸ Hg								+0.0888	108
	0.4128							+0.0884	110
⁹⁰ Hg	0.4164								112
⁹² Hg	0.4228							+0.0877	114
⁹⁴ Hg	0.4282	0.400						+0.0872	116
⁹⁶ Hg	0.4261	0.129						+0.0874	
⁹⁸ Hg	0.4118044	0.109						+0.0889	118
⁰⁰ Hg	0.36794	0.098						+0.0940	120
⁰² Hg	0.43956	0.086					+0.086	+0.0860	122
⁰⁴ Hg	0.4366	0.047						+0.0863	124
⁰⁶ Hg	1.068							+0.0552	126
⁹⁴ Pb	0.9642							+0.0338	112
⁹⁶ Pb	1.0486							+0.0324	114
⁹⁸ P b	1.0634							+0.0322	116
⁰⁰ Pb	1.0262						+	+0.0327	118
^{:02} Pb	0.96067							+0.0338	120
²⁰⁴ Pb	0.8992	0.048						+0.0350	122
²⁰⁶ Pb	0.8031	0.037					+0.037	+0.0370	124
²⁰⁸ Pb									126
¹⁰ Pb	0.7997							+0.0371	128
¹¹² Pb	0.8049							+0.0370	130
²¹⁴ Pb	0.837							+0.0362	132
200Po	0.668							+0.0405	116
⁰² Po	0.6753							+0.0403	118
⁰⁴ Po	0.6833							+0.0400	120
²⁰⁶ Po	0.70066							+0.0395	122
²⁰⁸ Po	0.6865							+0.0399	124
²¹⁰ P o	1.1814							+0.0305	126
²¹² Po	0.7273							+0.0388	128
²¹⁴ Po	0.60931						+0.0424	+0.0424	130
PO	0.00931					Œ	rom ²¹⁴ Pb)	10.0424	• • • • • • • • • • • • • • • • • • • •
²¹⁶ Po	0.54973					(1	10)	+0.0446	132
²¹⁸ Po	0.54973							+0.0462	134
206 p n	0.632							+0.0760	120
²⁰⁶ Rn ²⁰⁸ Rn	0.032							1 3.0700	122
²¹⁰ Rn	0.644							+0.0752	124
***Kn	0.644								126
²¹² Rn	1.2723							+0.0536	
214Rn								0.0005	128
²¹⁶ Rn	0.465	2						+0.0885	130
²¹⁸ Rn	0.32422	0.088					. 0	+0.106	132
²²⁰ Rn	0.24098	0.123					+0.123	+0.123	134
²²² Rn	0.18618	0.136						+0.140	136
²¹⁴ Ra ²¹⁶ Ra	1.381							+0.0425	126
²¹⁶ Ra	0.6879							+0.0602	128
²¹⁸ Ra									130
²²⁰ Ra	0.177							+0.119	132
²²² Ra	0.11112	0.183						+0.150	134
²²⁴ Ra	0.08437	0.172					+0.172	+0.172	136
²²⁶ Ra	0.06773	0.197						+0.192	138
²²⁸ Ra	0.059	0.211						+0.206	140

TABLE IV. (Continued.)

Nucleus	E_{2+}^{*} , MeV (Refs. 53–55)	β_2 (Ref. 60)	$oldsymbol{eta_2^{ ext{exp}}}$					
			Value	Method	$oldsymbol{eta_2^{ ext{theor}}}$	$oldsymbol{eta_2^{ ext{ref}}}$	Surface $\beta(Z,N)$	Number of neutrons
²²⁴ Th	0.093						+0.176	134
²²⁶ Th	0.07220	0.219					+0.200	136
²²⁸ Th	0.0578	0.223					+0.224	138
²³⁰ Th	0.05323	0.233				+0.233	+0.233	140
²³² Th	0.04937	0.251					+0.242	142
²³⁴ Th	0.0495	0.232					+0.242	144
²²⁸ U ²³⁰ U	0.059						+0.192	136
^{230}U	0.0517	0.242					+0.205	138
^{232}U	0.0476	0.253					+0.214	140
²³⁴ U	0.04349	0.253					+0.214 +0.224	140
^{236}U	0.04524	0.269					+0.219	
^{238}U	0.04491	0.281	+0.22	CCM		+0.220	+0.220	144
²⁴⁰ U	0.045	0.201	1 0.22	CCM		+0.220		146
	0.0446						+0.220	148
²³⁶ Pu ²³⁸ Pu	0.04408	0.267					+0.268	142
²⁴⁰ Pu	0.04282	0.274				. 0.274	+0.270	144
²⁴² Pu	0.04454	0.274				+0.274	+0.274	146
²⁴⁴ Pu	0.045	0.204					+0.269	148
238Cm	0.045						+0.267	150
²³⁸ Cm ²⁴⁰ Cm	0.04						+0.349	142
²⁴² Cm	0.04212						+0.326	144
²⁴⁴ Cm	0.04212	0.315					+0.318	146
²⁴⁶ Cm	0.0429	0.313				+0.315	+0.315	148
²⁴⁸ Cm							+0.315	150
²⁵⁰ Cm	0.04340						+0.313	152
244 CC	0.043						+0.315	154
²⁴⁴ Cf ²⁴⁶ Cf	0.04						+0.367	146
								148
²⁴⁸ Cf	0.042						+0.358	150
²⁵⁰ Cf	0.042721	0.355				+0.355	+0.355	152
²⁵² Cf	0.04572						+0.343	154
²⁴⁸ Fm ²⁵⁰ Fm	0.044						+0.352	148
252 F								150
²⁵² Fm								152
²⁵⁴ Fm	0.04499					+0.348 (From ²⁵⁰ Cf)	+0.348	154
²⁵⁶ Fm	0.0481					(-1011 01)	+0.337	156
²⁵² ₁₀₂ No							+0.331	
***************************************								150

^{*}DWM: distorted-wave method.

Notes:

pears to be an interesting subject for further experimental investigations in the region of inelastic scattering of α particles of medium energies by even and odd nuclei. Thus, it can be seen from Fig. 2 and Table VI that the deformations of the charge and mass components of nuclei are correlated, and sometimes agree in absolute magnitude and even sign. However, there are too few facts to know that the surface $\beta(Z,N)$ is the same for even and odd nuclei, or the even—odd difference are too large (and in sign may be opposite) to construct for them a single surface.

Thus, using the first method, one can hope to construct only fragments or individual segments of the complete surface $\beta(Z,N)$, and the surface itself over the complete range of existing nuclei must be recovered by the second method. For this there is already a reliable theoretical basis. We used the study of Ref. 47, which proposed an interpretation

of the nuclear matrix elements $C_1(I)$ on the basis of the modern microscopic theory of nuclear structure. In contrast to many interpretations of the reduced probabilities B(E2), which were obtained from experiments on Coulomb excitation, ⁴⁸ the study of Ref. 47 considered nuclear matrix elements $C_1(2)$ corresponding to single-phonon quadrupole excitations of nuclei in inelastic scattering of α particles.

In the theory of inelastic scattering, the main task is to extract from the experimental angular distributions the nuclear structure factors associated with the nuclear deformation or the amplitude of vibrations of the nuclear surface and also with the wave functions of the nuclear states. The values of $|C_n(I)|^2$ occur as factors in the expressions for the cross sections for inelastic diffraction scattering with excitation of n-phonon nuclear states.⁴⁹ The study of

¹⁾In the absence of experimental data, the data from the systematization of Ref. 60 were taken for β_{ref} .

²⁾In the absence of experimental data and data in the systematizations, the results from the nearest isobars were taken for β_{ref} .

³⁾ In view of the large number of references to original studies, they are only given in part in the table; the remaining references can be found in Refs. 9, 14, 30, and 60-64.

^{*}DWM: distorted-wave method.

TABLE V. Nuclear matrix elements $|C_1(I)|$ obtained from different nuclear processes.

Nucleus	I^{π}	(α,α') (Refs. 9,13)	(α,α') (Ref. 35)	(³ He, ³ He') (Refs. 36,37)	(d,d') (Refs. 38,39)	(<i>p,p'</i>) (Refs. 39,40)	(e,e') (Ref. 41)	Coul. exc. (Ref. 42)
²⁴ Mg	2+	0.78	0.62 Ref. (56)	-	- :	-	-	0.77
²⁸ Si	2+	0.57	0.29 Ref. (57)	0.69	0.63	0.67	-	0.58
⁵⁴ Fe	2+	0.22	0.22	-	0.38	0.29	-	_
⁵⁸ Ni	2+	0.35	0.42	0.41	0.48	0.39	0.30	0.37
40	3-	0.21	0.23	0.26	0.22	•	0.18	-
⁶⁰ Ni	2+	0.40	0.48	0.47	0.53	-	0.31	0.42
	3-	0.26	0.21	0.25	0.31	-	0.17	-
⁶² Ni	2+	0.37	0.36	0.52	0.46	-	-	0.38
	3-	0.27	0.21	0.27	0.31	-	-	-
⁶⁴ Ni	2+	0.34	0.40	0.53	0.42	0.45	0.32	-
	3-	0.20	0.27	0.28	0.29	-	0.19	-
⁶⁴ Zn	2+	0.42	0.45	0.43	0.58	0.51	0.45	0.54
	3-	0.26	0.28	-	0.44	0.42	0.21	-
⁶⁸ Zn	2+	0.46	0.39 (Ref. 58)	-	0.50	0.47	- ,	0.46
	3-	0.27	0.27 (Ref. 58)	-	0.37	0.40	-	-
⁷⁴ Ge	2+	0.54	-	-	-	-	-	0.65
⁹² M o	2+	0.12	0.13 (R ef. 59)	-	-	-	-	-
¹⁰⁰ Mo	2+	0.36	-	- '	-	-	_	0.62
¹⁰⁶ Pd	2+	0.45	-	-	-	-	-	0.58

Ref. 47 used a superfluid nuclear model taking into account pairing correlations and the quadrupole-quadrupole interaction of nucleons in open shells.

In Refs. 50 and 51, a comparison was made of the experimental data with the superfluid model in two different calculations: 1) The contribution of the nuclear core to the interaction was taken into account by means of effective mass neutron and proton charges $q_{\rm eff}^n$ and $q_{\rm eff}^p$ (Ref. 50); 2) the parameters q^{ξ} were not introduced, but it was assumed that the quadrupole-quadrupole interaction is effective between p-p and n-n nucleon pairs independently of the charge and the nucleon shell. 51

In the first calculation, the formula for the nuclear matrix element has the form

TABLE VI. Charge and mass components of the nuclear quadrupole deformation parameter for nuclei belonging to the $f_{7/2}$ shell.

S	Even nucleus	Odd nucleus	β_m	$oldsymbol{eta_{Z}}$
1	-	⁴⁵ Sc	1	-0.11
2	⁴² Ca	-	0.15	,
3	-	^{51}V	_	+0.12
4	⁴⁴ Ca	-	0.17	
	⁵⁴ Cr	, , ,	+0.23	
	⁵⁶ Fe	-	0.21	_
5		⁵⁵ Mn		+0.17
6	⁴⁸ Ti		0.22	
7	,	⁵⁹ Co	-	+0.13
8 , , ,	⁴⁸ Ca	-	0.11	-
	⁵⁴ Fe	-	-0.12	-

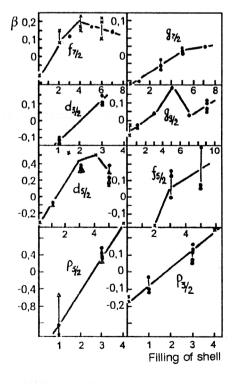


FIG. 2. Functional correlation between deformations of the charge and mass components of nuclei. The black circles give charge data, the crosses give mass data, and the black triangles were calculated in the generalized model of Ref. 46.

TABLE VII. Shape parameters of the nuclear surface of C and Mg isotopes.

Nucleus	I^{π}	$oldsymbol{eta_2^{exp}}$	$oldsymbol{eta_2^{ ext{theor}}}$	Method	Reference
°C	(3/2-)	+0.4		Extrapolation	[65]
¹⁰ C	0+	+0.4		Extrapolation	[65]
¹¹ C	3/2-	+0.41(1)		Calculated from Q	[53]
¹² C	0+	-0.30(2)		BPSM, 39 MeV	[65]
		-0.29(2)		BCSM, 50.5 MeV	[65]
		-0.29(2)		CCM, 104 MeV	[70]
		$(0.3 \div 0.9)$		Var. exp. meth.	[62]
			-0.33 - 0.42	Hartree-Fock	[71–73]
			-0.29	Variational	[74–76]
			-(0.45-0.67)	K harmonics	[77–82]
¹³ C	1/2-	-0.19(4)		BCSM, 33.4 MeV	[65]
¹⁴ C	0+		-0.44	Variational	[76]
¹⁵ C	1/2+	-0.1		Interpolation	[65]
¹⁶ C	0+		+0.37	Variational	[76]
¹⁷ C		+0.4		Interpolation	[65]
¹⁸ C			+0.39	Variational	[76]
¹⁹ C		0		Interpolation	[65]
²⁰ C			-0.55	Variational	[76]
²¹ C		-0.1		Interpolation	[65]
²² C			+0.37	Variational	[76]
²³ C		-0.2		Interpolation	[65]
²⁴ C			-0.62	Variational	[76]
²⁰ Mg	0+	+0.4		Extrapolation	[65]
²¹ Mg	5/2+	+0.5		Extrapolation	[65]
²² Mg	0+	+0.6		Extrapolation	[65]
²³ Mg	3/2+	+0.6		Extrapolation	[65]
²⁴ Mg	0+	+0.61(5)		BCSM, 38 MeV	[65]
		+0.68(4)		BCSM, 50.5 MeV	[65]
		+0.47		(<i>p</i> , <i>p</i> ')	[81]
		+0.45		(<i>c</i> , <i>c</i> ′)	[80]
		$(0.3 \div 0.7)$		Var. exp. meth.	[62]
			+0.46	Hartree-Fock	[71–73]
			+0.26	Variational	[74–76]
			+(0.44-0.47)	K harmonics	[77–82]
²⁵ Mg	5/2+	+0.47		Calculated from Q	[53]
²⁶ Mg	0+		+0.19	Hartree-Fock	[83]
²⁷ Mg	1/2+	+0.22		Calculated from Q	[62]
²⁸ Mg	0+	+0.2		Extrapolation	[65]

$$|C_{1}(2)| = \frac{2}{3} \sqrt{\frac{\pi}{10}} \frac{\alpha^{-2}}{\omega^{1/2} A R_{0}} \left[\sum_{(jj')_{\xi}=n,p} \frac{N_{jj'}}{[(E_{j}+E_{j'})^{2}-\omega^{2}]^{2}} \right]^{-1/2} \times \sum_{(j_{1}j_{2})_{\xi}=n,p} \frac{q_{\text{eff}}^{\xi} N_{j_{1}j_{2}}}{(E_{j_{1}}+E_{j_{2}})^{2}-\omega^{2}},$$
(28)

where

$$\begin{split} N_{j_1j_2} &= (2j_1+1)(2j_2+1)(U_{j_1}V_{j_2}+U_{j_2}V_{j_1})^2 \\ &\times \langle j_1|r^2|j_2\rangle^2(j_1\,j_2^{\frac{1}{2}-\frac{1}{2}}|20)^2(E_{j_1}+E_{j_2}), \end{split}$$

 $E_j = [(\in_j - \lambda)^2 + \Delta^2]^{1/2}$ is the quasiparticle energy, $U_j^2 = \frac{1}{2}[1 + (\in_j - \lambda)/E_j]$, $V_j^2 = \frac{1}{2}[1 - (\in_j - \lambda)/E_j]$ are the functions of a Bogolyubov canonical transformation, and they satisfy $U_j^2 + V_j^2 = 1$; $\langle j_1 | r^2 | j_2 \rangle$ is the radial matrix

element, $(j_1j_2\frac{1}{2}-\frac{1}{2}|20)$ is a Clebsch-Gordan coefficient, $R_0=1.2A^{1/3}$, ω is the energy of the collective 2^+ level, which is important for the further exposition; j is the total angular momentum of a nucleon in the (n,l)th nuclear shell, N is the principal quantum number, l is the orbital angular momentum of the nucleon, $\alpha=(m\omega_0/\hbar)^{1/2}$ is an oscillator parameter with $\hbar\omega_0=41A^{-1/3}$ MeV, m is the nucleon mass, and $(U_{j_1}V_{j_2}+V_{j_1}U_{j_2})^2=U_{j_1}^2V_{j_2}^2+U_{j_2}^2V_{j_1}^2+\frac{1}{2}\Delta^2/E_{j_1}E_{j_2}$. The summation in both sums in (28) is over the states of similar nucleons in the nuclear shell, i.e., over states of proton-proton and neutron-neutron pairs in the outer open shells of the nucleus. The values of the parameters needed for the calculations are given in Tables VII-XVI of Ref. 52, and the single-particle energies within each shell are found in accordance with the formulas of Appendix II of the same study:

$$\epsilon_{j}(A) = \epsilon_{j}^{0}(A_{0}) \left(\frac{A_{0}}{A}\right)^{1/3} + \alpha_{j} \left(\frac{A_{0}}{A}\right)^{2/3} \\
\times \left[1 - \left(\frac{A_{0}}{A}\right)^{1/2}\right] + \Delta \epsilon_{j}(Z,N), \tag{29}$$

where the values of $\in_j^0(A_0)$ for some chosen A_0 are given in the tables. Also given there are the shifts $\Delta \varepsilon_j(Z,N)$. If both levels $j=l\pm 1/2$ are present in the shells, then

$$\alpha_{l\pm 1/2} = \mp \left[\in_{l-1/2}^{0}(A_0) - \in_{l-1/2}^{0}(A_0) \right] \frac{l'}{2l+1}, \quad (30)$$

l'=l for l+1/2 and l'=l+1 for l-1/2. If there is only one level with j=1+1/2 or j=l-1/2 present in the shell, then

$$\alpha_{l\pm 1/2} = \mp 7A_0^{-2/3}l'. \tag{31}$$

The single-particle energy levels of the Nilsson potential were used in the calculation, and the chemical potentials $\lambda_{p,n}$ and the energy gap $\Delta_{p,n}$ were taken from Ref. 52. The radial matrix elements were calculated in accordance

with the formulas of the harmonic-oscillator model given in Ref. 48. As energies ω , we took the experimental energies of 2^+ collective levels. 53-55

Figure 3 gives the results of calculations and a comparison with experiment. Also found were the optimum values of the effective mass proton and neutron charges q_{eff}^p and q_{eff}^n corresponding to the minimum rms deviation of the theoretical $|C_1(2)|$ from their experimental values:

$$q_{\text{opt}}^p = 3.10, \ q_{\text{opt}}^n = 1.38.$$
 (32)

It can be seen from Fig. 3 that on the basis of the superfluid model the experimental data on inelastic scattering of α particles at medium energies can be satisfactorily explained for a large number of nuclei.

In the second calculation, we used expressions that do not contain the effective charges:⁵¹

$$|C_1(2)| = \frac{4\pi}{3\sqrt{5}} \frac{1}{AR_0} \frac{\hbar}{m\omega_0} \frac{S_2^p(\omega) + S_2^n(\omega)}{(S_2'^p(\omega) + S_2'^n(\omega))^{1/2}}, \quad (33)$$

where

$$S_{2}(\omega) = \frac{1}{4\pi} \sum_{jj'} \frac{(2j+1)(2j'+1)(jj'1/2-1/2|20)^{2}(N'l'|r^{2}|Nl)^{2}(U_{j}V_{j'}+U_{j'}V_{j})^{2}(E_{j}+E_{j'})}{(E_{j}+E_{j'})^{2}-\omega^{2}},$$

$$S'_{2}(\omega) = \frac{1}{4\pi} \sum_{jj'} \frac{\omega(2j+1)(2j'+1)(jj'1/2-1/2|20)^{2}(N'l'|r^{2}|Nl)^{2}(U_{j}V_{j'}+U_{j'}V_{j})^{2}(E_{j}+E_{j'})}{[(E_{j}+E_{j'})^{2}-\omega^{2}]^{2}}.$$
(34)

Here, $S_2(\omega)$ and $S_2'(\omega)$ have the form

$$S_{2}(\omega) = S_{2}^{(1)}(\omega) + S_{2}^{(2)}(\omega),$$

$$S_{2}'(\omega) = S_{2}'^{(1)}(\omega) + S_{2}'^{(2)}(\omega),$$
(35)

where $S_2^{(1)}(\omega)$ and $S_2^{\prime(1)}(\omega)$ contain sums over all pairs of nucleons in the nuclear cloud, i.e., they are calculated in exactly the same way as before, when only the nucleons of the outer open shells were taken into account (33). The

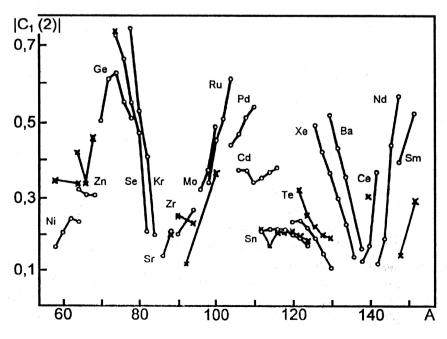


FIG. 3. Comparison of experimental and theoretical values of the nuclear matrix elements $|C_1(2)|$. The crosses represent experiments, and the open circles are for the theory.

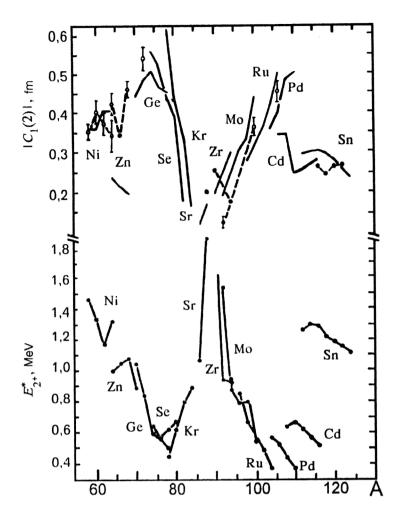


FIG. 4. Calculation of nuclear matrix elements in the superfluid model without introduction of effective mass charges and comparison with energies of 2⁺ levels. The black circles represent experiments, and the broken lines are for the theory.

interaction of quadrupole—quadrupole type in closed shells is taken into account, not by the effective charges q^{ξ} , but by the terms $S_2^{(2)}(\omega)$ and $S_2^{\prime(2)}(\omega)$ in (35).

Using Eq. (33), we calculated $C_1(2)_{theor}$, the results of which are shown in Fig. 4 and compared with experimental data. These results again confirm that the microscopic model correctly describes the matrix elements for a large number of nuclei, and, with them, the nuclear deformation parameters. In addition, from Fig. 4 one can see the functional anticorrelation of $C_1(2) = f(A)$ and $E_{2+}^* = f(A)$, this being observed both in general, over the complete range of mass numbers, as well as from isotope to isotope within a given Z of the nuclei. In particular, in the region of A=75 and 110 one observes maxima in the function $C_1(2) = f(A)$ and minima in the function $E_{2+}^* = f(A)$.

There follows from Eqs. (28)-(35) a remarkable relation between the nuclear matrix elements and, therefore, the nuclear deformation parameters β_2 and the experimentally well-measured energy E_{2+}^{*} of the first 2^{+} level:

$$\beta_2 = 1/(E_{2+}^*)^{1/2}$$
. (36)

This relation suggested the use of this basic energy dependence of the superfluid model to calculate the phenomenlogical parameters $\beta_2(Z,N)$ for all nuclei, including those for which there are no measurements of the deformation parameters but the energy of the 2^+ level is known. Since the values of E_{2+}^{\clubsuit} are known not only for all stable eveneven nuclei but also for a large number of radioactive nuclei, the number of such values of $\beta_2(Z,N)$ is much greater than the reserve of experimental deformation parameters measured experimentally through the nuclear matrix elements, probabilities of electromagnetic transitions, widths, and other primary experimental parameters, which are then converted to nuclear deformation parameters using one of the models.

Therefore, on the basis of our proposed phenomenological calculation of $\beta_2(Z,N)$ in accordance with (36) we can construct and investigate the $\beta_2(Z,N)$ surface and its features. To ensure that such calculations are realistic, and to avoid the use of numerous free parameters of the theory, we considered it necessary in calculating the absolute values of $\beta_2(Z,N)$ to normalize in each of the isotopic chains the theoretical value β_2^{theor} to the experimental value for one of the isotopes best studied in the experiments $(\beta_2^{\text{exp}} = \beta_{\text{ref}})$:

$$\beta_2^{\text{theor}} = \beta_2^{\text{exp}} \equiv \beta_{\text{ref}},\tag{37}$$

calling it the reference value. Then from (36) we readily obtain the final expression for the practical calculations:

$$\beta_2(Z,N) = \beta_{\text{ref}}(Z,N_{\text{ref}}) (E_{\text{ref}}/E_2)^{1/2}.$$
 (38)

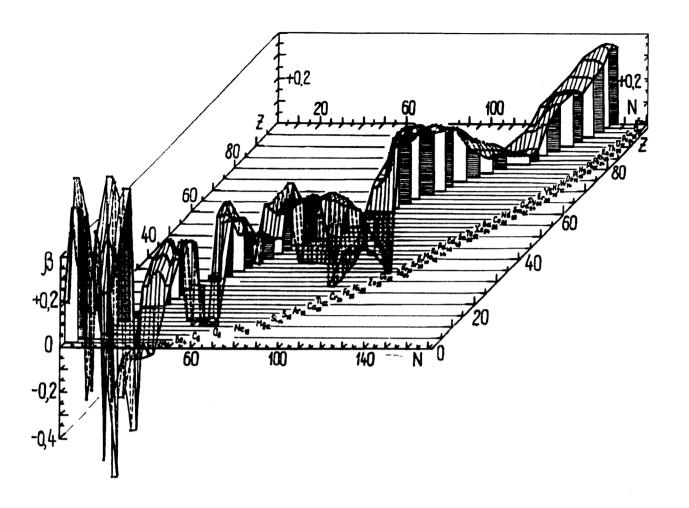


FIG. 5. The nuclear deformation surface $\beta(Z,N)$.

Table IV gives the results of calculations in accordance with Eq. (38) in a comparison with the available systematizations and the experimental data. Moreover, using the coupled-channel method and the Blair phase-shift method, we have reconstructed for the first time the $\beta_2(Z,N)$ surface together with the signs of the nuclear deformation. The signs were chosen on the basis of experimental data and, when they were not available, theoretical calculations.

Figure 5 shows the complete surface $\beta_2(Z,N)$ obtained in the manner described above, together with the signs of the deformation parameters. We now analyze the features of this surface, dividing it nominally into the ranges of light (Z=2-28), medium (Z=28-50), and heavy (Z=50-102) nuclei.

Deformation surface of light nuclei with Z=2-28

The above calculations of the shape of light nuclei with large neutron excess in conjunction with the available experimental data enable us to trace the variations in the shape of the nuclear surface from isotope to isotope, and also for other nuclei as functions of Z [of course, if the surface $\beta(Z,N)$ is available, one can consider any other sections of this surface]. Figure 5 gives a three-dimensional representation of the nuclear deformation surface $\beta(Z,N)$, including the surface for the range of light nuclei.

Figure 5 reveals the following main trends in the behavior of $\beta(Z,N)$ for the region of light nuclei. The first is the sign variability for the section of the surface $\beta(Z,N)$ through the so-called 4n nuclei, where n is the number of α clusters; this property was first noted in our study of Ref. 65. We shall dwell on it below. In connection with the sign alternation of the nuclear deformation in this section for the surface $\beta(Z,N)$ we note the presence of two "valleys" with negative deformations ("valleys" of oblate nuclei): "valley 1" in the region of carbon and "valley 2" in the region of sulfur.

The second property is the presence of deformations of very large absolute magnitude in the form of characteristic "peaks": "peak 1" in the region of the helium-beryllium isotopes, and "peak 2" in the region of magnesium.

The third feature is the fact that the deformation parameter takes characteristic average values with $\beta \sim 0.2$ for all remaining nuclei in the region of the "plateau" from titanium to nickel.

Evidently, the general physical reasons for these features are that, beginning with the lightest nuclei, which have a cluster structure consisting of two-, three-, and fourparticle clusters, we come to the formation of purely

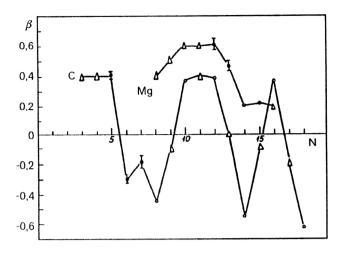


FIG. 6. Change in the shape of the surface of light nuclei as a function of the number of neutrons N (isotopic effects) and the number of protons Z (isotonic effects on the transition from Z=6 to Z=12). The black circles represent the experiments, the open circles are the theoretical calculations of Refs. 67 and 68, and the open triangles are interpolated and extrapolated values.

 α -cluster nuclei, and then, in the region of the "plateau," the formation of a mean field.

We consider the 4n dependence in more detail. The reference nuclei here are 12 C and 24 Mg. From the set of experimental data, partly represented in Table IV, there follows the conclusion that the 12 C nucleus is oblate (sign β <0), while the 24 Mg nucleus is prolate (sign β >0). Comparing these data with the results of theoretical calculations $^{66-68}$ (Table VII), we see that great attention has been devoted in the literature to theoretical studies of the shape of the surface of the carbon and magnesium isotopes. It can be seen from Table VII that the main models used to calculate the shapes of the surfaces of light nuclei were: 1) various modifications of the Hartree–Fock method (Ref. 66); 2) the direct variational method of Filippov (Ref. 67); 3) the method of K-harmonic polynomials. 68

The set of calculated and experimental data make it possible to trace the variation of the nuclear surface on the transition from isotope to isotope (Fig. 6). One can trace the fairly regular, already noted, change in the shape of the nuclei of carbon isotopes as they are enriched with neutrons. Moreover, there are phase transitions of the second kind of nuclei from oblate to prolate shape after the addition of one and then several 4-neutron groups. For the magnesium isotopes, the nuclei have prolate shape, and there are no phase transitions. Nevertheless, for magnesium too one can observe the same tendency for a regular change in the nonsphericity on the addition of 4-neutron groups.

Figure 7 shows the section of the surface $\beta(Z,N)$ through the nuclei with 4n structure when an α cluster and not a 4-neutron group is added to the nucleus. As in the case of carbon and magnesium, the shape of the 4n nuclei as a function of Z passes from oblate to prolate and back with a similar dependence.

The interpretation of these sign-alternating depen-

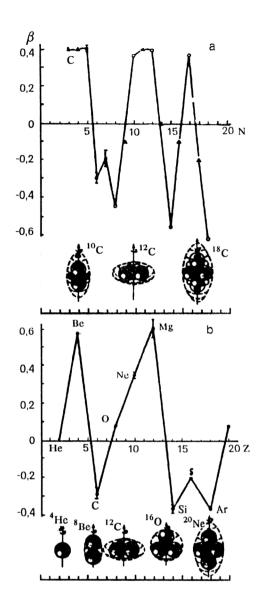


FIG. 7. Cluster effect in the shape of light nuclei: a) change in the shape of nuclei in the isotopic series of carbon on the addition of neutron pairs; b) change in the shape of the α -cluster 4n nuclei. The black circles represent the experiments, the open circles are the calculation of Ref. 89, and the black triangles are interpolated and extrapolated values.

dences is of great interest for nuclear theory. Indeed, the jumps in the shape of light nuclei on the addition of 4n-nucleon structures can be unambiguously interpreted as a direct experimental confirmation of the clustering of light nuclei. There is evidently a simple semiclassical explanation of these new effects in the shapes of light nuclei—they are a manifestation of the individualized existence of intranuclear clusters. The insets in Fig. 7 show a schematic representation of such a 4n-cluster structure, which is close to the well-known α model (Ref. 69): Two α clusters give a prolate surface, three an oblate surface, four a spherical surface, five again a prolate surface, and so forth, in accordance with Figs. 5–7. It is remarkable that this 4n-cluster behavior of the shape is observed both in Z and in N.

Deformation surface of medium nuclei with Z=28-50

In Fig. 5 and Table IV we also give the surface $\beta(Z,N)$ for the region Z=28-50. It can be seen that it possesses a number of features having a global nature: There are two valleys with oblate nuclei, although oblate nuclei are a rare phenomenon in nuclear physics, in the region of Zn-Ge and Sn-Ba; there is one valley of spherical nuclei in the region of molybdenum, which is situated between the valleys of oblate nuclei; finally, between these three valleys there are elevations with typical Bohr-Mottelson nuclei like krypton and palladium.

In the individual shape of the surface of the isotopes of the medium nuclei in the range Z=28-50 one can recognize a trend different from that of the light nuclei, namely, the nuclear shape changes from prolate to oblate only for the semimagic series of nickel isotopes on each addition of a pair of nucleons. In the other isotopic series, the shape of the nuclei either passes smoothly from prolate to oblate, as for the germanium isotopes, or is simply oblate for the entire isotopic series, as for the isotopic series of tin. Thus, the characteristic isotopic effect for the shape of the surface of medium nuclei is a smooth change of only the absolute values of the deformation without a change of its sign. As an example, the zinc isotopes ^{64–70}Zn are a very interesting subject for investigation of nuclear structure, since with changing number of neutrons in the region N=34-40 there is a competitive filling of the $f_{5/2}$ and $p_{1/2}$ levels, and in the 70 Zn nucleus the f and p shells are completely filled; the number N=40, and also 38 and 60 are "magic," in the first case in the harmonic-oscillator model, and in the second for strongly deformed nuclei.84 Therefore, one would expect anomalies in the isotopic variations of the structure and shape of the zinc nuclei analogous to the anomalies in the total cross sections, 85,86 in the radii of strong absorption,⁸⁷ and in the shapes of the surface³⁰ found for the Fe and Ni nuclei on the closing of the $f_{7/2}$ shell. The isotopic dependence of the experimental parameters associated with the radius R and the surface thickness ΔR of the zinc nuclei, and also with the nuclear matrix elements $|C_1(I)|$ and the deformations β_2 can be seen in Tables I-IV. The observed smooth dependence of the parameters does not confirm the theoretical predictions of special structure of the zinc nuclei, in particular the ⁶⁴Zn nucleus.88

Isotopic sections of the surface $\beta(Z,N)$, i.e., the signs and magnitudes of the deformation parameters for Mo, Zn, and Te isotopic series, are shown in Figs. 5 and 8. As in the region of medium nuclei, the shape here does not undergo abrupt jumps: The Mo isotopes pass from a spherical shape (92 Mo) to a strongly deformed prolate shape (100 Mo). The shape of the tin isotopes, in contrast, is slightly oblate, and the deformation merely increases on the addition of nucleon pairs. The nuclei of the Te isotopes have prolate shape.

The smooth changes of the deformation in the isotopic series of iron and zinc, as in the heavier nuclei (Mo,Sn,Te), correspond fully to the conclusions of the generalized model. At the same time, the presence of jumps in the shape of the nuclei of the nickel isotopes can only be

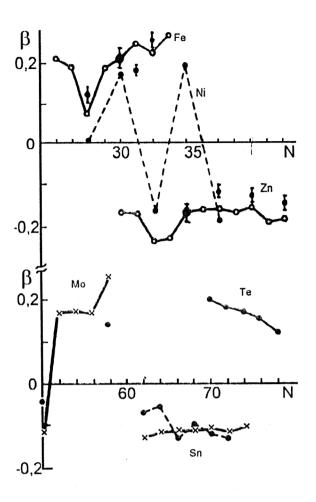


FIG. 8. Changes of the deformation surface $\beta(Z,N)$ in isotopic series for iron, nickel, zinc, molybdenum, tin, and tellurium.

explained under the assumption of a large amplitude of the zero-point vibrations and the magic nature of these nuclei. This corresponds to shell notions, i.e., to a dynamic nature of the equilibrium deformation. The trends found here experimentally are largely confirmed by theoretical calculations in the framework of the variational approach, the method of K harmonics (for light nuclei), and the Hartree-Bogolyubov-Fock method (for medium nuclei) and have a general nature. Similar theoretical predictions for the signs of the deformation of light⁸⁹ and heavy⁹⁰ nuclei are known. Calculations in the region of medium nuclei with Z=20-40 and, in particular, for the even-even isotopes of zinc⁹¹ predict an oblate shape for solution by the Hartree-Bogolyubov-Fock method and a spherical shape for the BCS approximation. Thus, our data agree with the results of solution by the first method.

Deformation surface of heavy nuclei with Z=50-102

Heavy nuclei have anomalously large β , especially in the region of the rare earths, and a reliably established rotational nature of the first 2^+ levels; this is important for the experimental determination of the signs of the deformations by the Blair phase-shift method. The development of effective theoretical methods for calculating nuclear

shapes in the framework of microscopic models^{92–94} stimulates efforts to create experimental approaches to the solution of this problem, but measurement of only the signs of the electric quadrupole moments is not a complete answer to the problem, since they are sensitive only to the charged component of the nuclei.

It follows from our experiments and analysis of the literature that the data on sign β for heavy nuclei obtained by different methods agree satisfactorily. The investigations (see Table IV) reveal the following general trend in the values of sign β : Whereas in few-nucleon systems (the regions of light and medium nuclei with A < 100) the shape of nuclei can change abruptly 30 —the addition of a pair of nucleons may transform a prolate spheroid into an oblate spheroid and vice versa—in many-nucleon heavy nuclei the shape of the surface remains the same within neighboring isotopes. Thus, in the region of heavy nuclei smooth changes in the shape of the surface from nucleus to nucleus are observed.

At the least, our investigation of nuclear shapes by the Blair phase-shift method and by the coupled-channel method enable us to draw the conclusion, valid for the region of heavy nuclei, which has been carefully investigated in experiments, that phase transitions of the second kind are impossible for the shape of the surface of heavy nuclei, especially within the stability valley for isotopic lines.

The $\beta(Z,N)$ surface for heavy nuclei begins with the Sn "valley" of oblate nuclei, which extends up to neodymium. Only at the beginning of this valley is there "cut out" a "crest" of prolate nuclei along two isotopic lines of tellurium and xenon. Then, beginning with the samarium isotopes, there is a rise of the $\beta(Z,N)$ surface to the typical Bohr-Mottelson "plateau" of prolate nuclei with large (up to 0.3–0.4) quadrupole deformation. In the region of lead, this plateau again sinks into the "valley" of the mercury, lead, and polonium isotopic lines, which, however, do not pass through zero and do not acquire prolate shapes. Beginning with radon, there is again formed a plateau of prolate nuclei, which extends with a rise to the boundary of known elements. The new plateau includes very large deformation parameters, and this, in our view, is one of the main physical reasons why there are no stable nuclei in this region. In its turn, the reason for the appearance of large deformation parameters is evidently the competition between the high Coulomb field at large Z and the strong interaction. Thus, it is to be expected that the search for a new stability island will be crowned with success in investigations that find a way of suppressing this competition and, thereby, reducing the deformation parameters of superheavy nuclei.

In the region of heavy nuclei one can clearly trace the general tendency in the isotopic lines of the $\beta(Z,N)$ surface as they move to the edges of the stability tracks. This is, together with the clear regular rise in the deformation at half filling of the subshells and shells, as described by the generalized model, the presence of a general tendency for the deformation to increase with both increasing neutron deficit and neutron excess. Evidently, the nuclear instabil-

ity not only in Z, as noted above for the transuranium nuclei, but also in N can be explained by the growth of the nuclear deformation.

The establishment of the new interesting trends in the surface $\beta(Z,N)$ confirms once more the topicality of measuring the E_{2+}^* energies at the edges of the stability tracks along the Z lines too, and also direct measurements of the parameters β and sign β for the isotopic and isotonic lines. It is also obviously topical to investigate of the ratios of the Coulomb and nuclear fields for large and maximal Z, and also their interference in these regions of nuclear masses and charges.

CONCLUSIONS

From experimental data on the scattering of α particles of medium energies (20–140 MeV), using the coupled-channel method and the Blair phase-shift method, we have extracted experimental values of the nuclear quadrupole deformation parameter $\beta(Z,N)$ and its sign, sign $\beta(Z,N)$, in the region Z=2-102 and compared them with the available experimental and theoretical literature data.

Our comparison with theoretical calculations in the framework of a superfluid model suggested the use of the basic energy dependence $\beta \sim 1/E_{2+}^{*1/2}$, where E_{2+}^{*} is the energy of the first 2^+ level, to calculate semiempirical deformation parameters for the nuclei for which experimental data on β or theoretical calculations of them are not available. Since the values of E_{2+}^{*} are known not only for all stable nuclei but also for a large number of radioactive even—even nuclei, the number of $\beta(Z,N)$ values that we were able to obtain is much greater than the number of direct experimental data. On the basis of this resource of data, we have constructed and investigated the surface $\beta(Z,N)$. We have found numerous new features.

First, we have found that oblate nuclei are a rare phenomenon in nuclear physics, although five "valleys" of oblate nuclei have been established more or less reliably: in the region of carbon, silicon—sulfur, nickel—zinc, tin, and neodymium—barium. It is also interesting to note an incipient sixth "valley" in the region of lead, but the deformation "does not stretch" to oblate shapes, or it has not yet been detected.

Second, in the surface $\beta(Z,N)$ there are fairly high "peaks," large "elevations," and extended "plateaux" of the nuclear deformation. The "peaks" are observed for the Be and Mg isotopes; the "elevations" for the regions Cr–Ti and Ge–Sr; and the Bohr–Mottelson "plateaux" of prolate nuclei in the region of tellurium, from samarium to platinum, and beyond radium.

Third, since the reconstructed surface $\beta(Z,N)$ still does not yet encompass all nuclei discovered up to the present time, simple measurements of the energy of the first 2^+ level for distant and transuranium nuclei become very topical. Finally, the discovered growth of the deformation at the edges of the stability tracks and at large known Z offers hope that the physical reason for the finiteness of the periodic table and instability of nuclei has been understood, and at the edges of the stability track one can

174

expect the occurrence of nuclei with superdeformation or with exotic shape.

- ¹V. G. Soloviev, *Nuclear Theory. Nuclear Models* [in Russian] (Énergoizdat, Moscow, 1981).
- ² Problems of Modern Nuclear Physics, edited by V. M. Kolybasov [in Russian] (Nauka, Moscow, 1971).
- ³E. Rutherford, Philos. Mag. 21, 669 (1911).
- ⁴R. Hofstadter, *Electron Scattering and Nuclear and Nucleon Structure* (Benjamin, New York, 1963).
- ⁵ A. Bohr, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. **26**, No. 14 (1952).
- ⁶ A. Bohr and B. Mottelson, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 27, No. 16 (1953).
- ⁷V. G. Nosov, Zh. Eksp. Teor. Fiz. **53**, 579 (1967) [Sov. Phys. JETP **26**, 375 (1968)].
- ⁸D. A. Arsen'ev, V. V. Pashkevich, V. G. Solov'ev, and U. M. Fainer, Preprint R4-6587 [in Russian], JINR, Dubna (1972).
- ⁹A. V. Yushkov, Izv. Akad. Nauk SSSR, Ser. Fiz. 39, 1584 (1975).
- ¹⁰ E. V. Inoshin and A. V. Shebeko, Zh. Eksp. Teor. Fiz. **51**, 1761 (1966) [Sov. Phys. JETP **24**, 1189 (1967)].
- ¹¹A. I. Akhiezer and I. Ya. Pomeranchuk, Some Problems of Nuclear Theory [in Russian] (Gostekhizdat, Moscow-Leningrad, 1950).
- ¹² E. V. Inopin, Zh. Eksp. Teor. Fiz. **50**, 1592 (1966) [Sov. Phys. JETP **23**, 1061 (1966)].
- ¹³ V. Yu. Gonchar, K. S. Zheltonog, and A. V. Yushkov, Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 6, 3 (1969).
- Kaz. SSR, Ser. Fiz.-Mat. 6, 3 (1969).

 14 L. R. B. Elton, *Nuclear Sizes* (Oxford University Press, London, 1971)

 [Russ. transl., IIL, Moscow, 1962].
- ¹⁵D. I. Blokhintsev, Fundamentals of Quantum Mechanics [in Russian] (Vysshaya Shkolya, Moscow, 1963).
- ¹⁶B. I. Tishchenko and E. V. Inopin, Yad. Fiz. 7, 1029 (1968) [Sov. J. Nucl. Phys. 7, 618 (1968)].
- ¹⁷S. Ya. Aisina, K. A. Kuterbekov, V. N. Tolstikov *et al.*, Preprint 2–87 [in Russian], Institute of Nuclear Physics, Kazakh Academy of Sciences, Alma-Ata (1987).
- ¹⁸R. S. Nataf, Les Modèles en Spectroscopie Nucléaire (Paris, 1963) [Russ. transl., Mir, Moscow, 1968].
- ¹⁹ N. N. Pavlova, S. Ya. Aisina, K. A. Kuterbekov et al., Preprint [in Russian], Institute of Nuclear Physics, Kazazh Academy of Sciences, Alma-Ata (1990).
- ²⁰ S. Ya. Aisina, K. A. Kuterbekov, N. N. Pavlova, and A. V. Yushkov, Preprint 13-84 [in Russian], Institute of Nuclear Physics, Kazakh Academy of Sciences, Alma-Ata (1984).
- ²¹ K. S. Zheltonog, Candidate's Dissertation [in Russian] (Alma-Ata, 1971).
- ²² K. A. Kuterbekov and A. V. Yushkov, Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 2098 (1989).
- ²³ K. A. Kuterbekov, S. Ya. Aisina, N. N. Pavlova, and A. V. Yushkov, Preprint [in Russian], Institute of Nuclear Physics, Kazakh Academy of Sciences, Alma-Ata (1991).
- ²⁴A. V. Yushkov, *Doctoral Dissertation* [in Russian] (Alma-Ata, 1991).
- ²⁵ V. Yu. Gonchar, K. S. Zheltonog, G. N. Ivanov, and A. V. Yushkov, Yad. Fiz. 8, 678 (1968) [Sov. J. Nucl. Phys. 8, 393 (1969)].
- ²⁶ E. V. Inopin, Izv. Akad. Nauk Kaz. SSSR, Ser. Fiz.-Mat. 6, 28 (1972).
 ²⁷ T. Tamura, Rev. Mod. Phys. 37, 679 (1963).
- ²⁸J. Raynal, Computing as a Language of Physics (IAEA-SMR 918), p. 281; The Structure of Nuclei (IAEA 8/8), p. 75.
- ²⁹ I. N. Kukhtina, N. N. Pavlova, and A. V. Yushkov, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 2265 (1991).
- SSSR, Ser. Fiz. **55**, 2265 (1991).

 30 V. Yu. Gonchar and A. V. Yushkov, Izv. Akad. Nauk SSSR, Ser. Fiz. **35**, 830 (1971).
- ³¹G. D. Alkhazov, Preprint 599 [in Russian], Leningrad Institute of Nuclear Physics (1980).
- ³² I. I. Zalyubovskii and P. M. Gonych, *Nuclear Spectroscopy* [in Russian] (Vyshcha Shkola, Khar'kov 1980).
- ³³E. V. Inopin, *Doctoral Dissertation* [in Russian] (Khar'kov 1967).
- ³⁴ S. Raman, C. W. Nestor, Jr., S. Kahane, and K. H. Bhatt, At. Data Nucl. Data Tables 41, No. 3 (1989).
- ³⁵Rapp. CEA No. 3147, edited by G. Bruge (1967).
- ³⁶V. V. Alekseev et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 32, 570 (1968).
- ³⁷ K. P. Artemov, V. Z. Gol'dberg, and V. P. Rudakov, Yad. Fiz. 9, 266 (1969) [Sov. J. Nucl. Phys. 9, 157 (1969)].
- ³⁸ R. K. Jolly, M. D. Goldberg, and A. K. Sengupta, Nucl. Phys. A123, 54 (1969).

- ³⁹ F. Hinterberger, Nucl. Phys. 115, 570 (1968).
- ⁴⁰V. E. Lewis et al., Nucl. Phys. A117, 673 (1968).
- 41 V. D. Afanas'ev, Author's Abstract of Dissertation [in Russian] (Khar'kov, 1969).
- ⁴² Nuclear Structure, edited by V. P. Rudakov [in Russian] (Atomizdat, Moscow. 1962).
- ⁴³A. S. Davydov, Collective Excitations of Even Nuclei [in Russian] (Kiev, 1967).
- ⁴⁴ Direct Processes in Nuclear Reactions [in Russian], edited by A. A. Ogloblin (Atomizdat, Moscow, 1965).
- ⁴⁵ D. A. Arseniev, A. Sobiczewski, and V. G. Soloviev, Nucl. Phys. A126, 15 (1969).
- ⁴⁶ V. Yu. Gonchar, E. V. Inopin, and S. P. Tsytko, Preprint D-001 [in Russian]. Khar'kov (1959).
- ⁴⁷ E. V. Inopin and Yu. P. Mel'nik, Yad. Fiz. 9, 982 (1969) [Sov. J. Nucl. Phys. 9, 575 (1969)].
- ⁴⁸ Deformation of Nuclei, edited by L. A. Sliv [Russian translation] (IIL, Moscow, 1958).
- ⁴⁹ J. S. Blair, Phys. Rev. 115, 928 (1959).
- ⁵⁰ V. Yu. Gonchar and A. V. Yushkov, Yad. Fiz. **11**, 1034 (1970) [Sov. J. Nucl. Phys. **11**, 574 (1970)].
- ⁵¹ V. Yu. Gonchar, E. V. Inopin, Yu. P. Mel'nik, and A. V. Yushkov, Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 6, 77 (1972).
- ⁵² L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. **35**, 853 (1963).
- ⁵³B. S. Dzhelepov and L. K. Peker, *Decay Schemes of Radioactive Nuclei*. A > 100 [in Russian] (Nauka, Moscow-Leningrad, 1966).
- ⁵⁴B. S. Dzhelepov, L. K. Peker, and V. O. Sergeev, *Decay Schemes of Radioactive Nuclei*. A < 100 (USSR Academy of Sciences, Moscow-Leningrad, 1963).</p>
- 55 Table of Isotopes, edited by C. M. Lederer et al. (Wiley, New York, 1978).
- ⁵⁶Annual Progress Report, Univ. of Washington, June 1962, July 1964, June 1965, June 1966, June 1967.
- ⁵⁷ J. Kokame, K. Fukunaga, H. Nakamura, and N. Inone, J. Phys. Soc. Jpn. 20, 475 (1965).
- ⁵⁸ H. W. Brock, Phys. Rev. **130**, 1914 (1963).
- ⁵⁹E. J. Martens and A. M. Bernstein, Nucl. Phys. A117, 241 (1968).
- ⁶⁰O. F. Nemets and Yu. V. Gofman, Handbook of Nuclear Physics [in Russian] (Naukova Dumka, Kiev, 1975).
- ⁶¹P. E. Hodgson, *The Optical Model of Elastic Scattering* (Oxford University Press, 1963) [Russ. transl., Atomizdat, Moscow, 1966].
- ⁶²É. V. Lan'ko, G. S. Dombrovskaya, and Yu. K. Shubnyi, Probabilities of Electromagnetic Transitions of Nuclei with Z=1-30 [in Russian] (Nauka, Leningrad, 1972).
- ⁶³ M. P. Avotina and A. V. Zolotavin, Moments of Ground and Excited Nuclear States, Part 1 [in Russian] (Atomizdat, Moscow, 1979).
- ⁶⁴M. P. Avotina and A. V. Zolotavin, Moments of Ground and Excited Nuclear States, Part 2 [in Russian] (Atomizdat, Moscow, 1979).
- ⁶⁵ N. N. Pavlova and A. V. Yushkov, Yad. Fiz. 23, 252 (1976) [Sov. J. Nucl. Phys. 23, 131 (1976)].
- ⁶⁶E. Caurier, B. Bourotte-Bilwes, and Y. Abgrall, Phys. Lett. 44B, 411 (1973).
- ⁶⁷ A. I. Steshenko and G. F. Filippov, Yad. Fiz. **14**, 715 (1971) [Sov. J. Nucl. Phys. **14**, 403 (1972)].
- ⁶⁸ Yu. T. Grin' and A. B. Kochetov, Yad. Fiz. 18, 283 (1973) [Sov. J. Nucl. Phys. 18, 145 (1974)].
- ⁶⁹ V. G. Neudachin and Yu. F. Smirnov, Nucleon Associations in Light Nuclei [in Russian] (Nauka, Moscow, 1969).
- ⁷⁰J. Specht, C. W. Schweimer, H. Rebet, and C. Schatz, Nucl. Phys.
- **A171**, 65 (1971).

 71 Y. Abgrall, B. Morand, and E. Caurier, Nucl. Phys. **A192**, 372 (1972).
- Abgran, B. Morand, and E. Caurier, Nucl. Phys. A122, 372 (1972).
 A. L. Goodman, C. L. Struble, and A. Goswami, Phys. Lett. 26B, 260 (1968).
- ⁷³ F. R. Ruchl, Jr., Indian J. Phys. **45**, 149 (1971).
- ⁷⁴G. F. Filippov, Fiz. Elem. Chastits At. Yadra 4, 992 (1973) [Sov. J. Part. Nucl. 4, 405 (1973)].
- ⁷⁵G. F. Filippov and A. I. Steshenko, Ukr. Fiz. Zh. 15, 626 (1970).
- ⁷⁶G. F. Filippov and V. M. Maksimenko, Ukr. Fiz. Zh. 15, 1277 (1970).
- A. I. Baz', Yu. T. Grin', V. F. Demin, and M. V. Zhukov, Fiz. Elem. Chastits At. Yadra 3, 275 (1972) [Sov. J. Part. Nucl. 3, 137 (1972)].
 Yu. T. Grin', Yad. Fiz. 12, 927 (1970) [Sov. J. Nucl. Phys. 12, 506
- (1971)].
- ⁷⁹Yu. T. Grin' and A. B. Kochetov, Yad. Fiz. **12**, 1154 (1970) [Sov. J. Nucl. Phys. **12**, 634 (1971)].

- ⁸⁰Yu. T. Grin' and L. B. Levinson, Yad. Fiz. 14, 536 (1971) [Sov. J. Nucl. Phys. 14, 300 (1972)].
- 81 Yu. T. Grin', A. B. Kochetov, and A. I. Anan'kin, Yad. Fiz. 14, 953 (1971) [Sov. J. Nucl. Phys. 14, 534 (1972)].
- 82 Yu. T. Grin', Pis'ma Zh. Eksp. Teor. Fiz. 20, 507 (1974) [JETP Lett. 20, 231 (1974)].
- ⁸³D. H. Kurath, Phys. Rev. C 5, 768 (1972).
- ⁸⁴J. H. Hamilton, Lect. Notes Phys. 168 (1982); Heavy-Ion Collisions. Proc. of the Intern. Summer School (Rabida, 1982), p. 287.
- 85 B. D. Wilkins and G. Igo, Phys. Rev. 129, 2198 (1963).
- ⁸⁶G. Igo and B. D. Wilkins, Phys. Rev. 131, 1251 (1964).
- ⁸⁷ V. Yu. Gonchar and K. S. Zheltonog, Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.- Mat. 2, 62 (1971).
- ⁸⁸ E. V. Inopin, V. I. Tishchenko, and A. V. Shebeko, Zh. Eksp. Teor. Fiz. 49, 1824 (1965) [Sov. Phys. JETP 22, 1247 (1966)].

- ⁸⁹G. F. Filippov, Fiz. Elem. Chastits At. Yadra 2, 315 (1971) [Sov. J. Part. Nucl. 2, No. 2, 19 (1971)].
- ⁹⁰ D. A. Arsen'ev, V. V. Pashkevich, V. G. Solov'ev, and U. M. Fainer, Preprint R4-6587 [in Russian], JINR, Dubna (1972).
- 91 H. Chandra and M. L. Rustgi, Phys. Rev. C 4, 874 (1971).
- ⁹² D. A. Arsen'ev, V. V. Pashkevich, V. G. Solov'ev, and S. I. Felotov, Preprint R4-6345 [in Russian], JINR, Dubna (1972).
- ⁹³G. F. Filippov, in *Program and Abstracts of Papers at the 21st Symposium on Nuclear Spectroscopy and Nuclear Structure*, Vol. 1 [in Russian] (Nauka, Leningrad, 1971), p. 22.
- ⁹⁴ N. E. Kirikashvili, K. O. Menteshashvili, and V. A. Nabichvrishvili, Soobshch. Akad. Nauk Gruz. SSR 64, 41 (1971).

Translated by Julian B. Barbour