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Stochastic #-component lattices are studied. A general classification of annealed and quenched
statistical-mechanics systems is given. The Potts model, including its simplex representation, is

studied in detail. A number of applications in condensed
optimization problems are described. A method is devel
lattices with arbitrary distributions of random interacti
obtained using this method are reviewed. They show th
earlier, the form of the distribution of the quenched par:
thermodynamic properties and structure of the phased

1.QUENCHED STATISTICAL-MECHANICS SYSTEMS

In a number of statistical systems a state is character-
ized by more than one type of variable. Depending on how
these variables are involved in the calculation of thermody-
namic quantities, they can be classified as annealed or
quenched variables, and, accordingly, the statistical systems
are referred to as annealed or quenched. Let us describe this
classification for classical systems within the framework of
the canonical ensemble.

Let the state of a system be described by two types of
variable, Sand J. The Hamiltonian of the system H'is a func-
tion of these variables, H = H(S, J). If the variables S and J
are on an equal footing, the total probability density P(S, J)
has the form

P (S, J) = Z-Yexp [—BH (S, N]. (1)
Here Z is the partition function of the system,

W e S DSDJ exp [—pH (S, )], (2)
where {DSDJ... stands for integration over continuous vari-
ables and summation over discrete ones. Relations (1) and
(2) describe the situation where the objects characterized by
the variables .S'and J are in thermodynamic equilibrium with

each other. Accordingly, such systems are referred to as an-
nealed systems. Their free energy has the form

F=—p1tInZ. (3)

The probability density of one of the two types of variable,
say, J, can be obtained by integrating (1) over the variables
of the other type:

P, () = S DSZ-exp | —BH (S, J)] (4)

= Z7l exp [—BH ; (],

where H, (J) is the effective Hamiltonian,
exp [—BH; (/)] = § DS exp [—pir (s, 1), (5)
and Z, = Z is the corresponding partition function

Ty = § DJ exp [—BH ; (J)] (6)

631 Sov. J. Part. Nucl. 20 (6), Nov.-Dec. 1989

0090-4759/89/060631-26504.40

-matter physics and combinatorial

oped for studying n-component quenched
on strengths and fields. The results

at, in contrast to the viewpoint prevailing
ameters of a model significantly affects the
iagram of the model.

or, alternatively, for S,

P (8) = S DJZ7 exp [—BH (S, J)] (7
= Zg' exp [—PH; ()],

exp [—H (S)] = Sm exp [—BH (8, J)], (8)
Z, =7 = S DS exp [—BHg (S)I. (9

In summary, it can be stated that annealed systems are
ordinary statistical-mechanics systems containing objects of
several different types.

The relation between the variables S and J can also be
different. There exist systems in which the probability den-
sity of one type of variable, say,J, is fixed and independent of
the state of the objects characterized by variables of the other
type—the variables §. We denote this probability density by

Py (). (10)

The probability of finding the system in the state § for given
values of J, i.e., the conditional probability, is given by the
canonical distribution

Ps (S | J) DSDT = Zg! (J) exp [—BH (S | J)] DSDJ,

(11)
where Z (J), being a function of J, can be termed the parti-
tion function of the S-subsystem for given variables J,

Zs(J) = S DS exp [—BH (S, J). (12)

In relation to the fact that the distribution density of the
variables J (10) is fixed, in other words, that the objects
described by these variables are in some given state, the vari-
ables J are referred to as “quenched.” Therefore, this system
is classified as a quenched system.

The total probability density has the form

P(S. Jy=P,; (1) P (S|J)
=P, (1) 25" (J) exp [—BH (S, J)I.  (13)

Accordingly, the (thermodynamic) expectation value &/ of
some dynamical quantity 4 (S, J) is given by the expression
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# =\ DIDSP, (1) Z5 ) exp [=BH (S, TN A (S, I)
—{Drp, () (A2 (), (14)

where (4 ) (J) is the expectation value of this dynamical
quantity with respect to the conditional probability distribu-
tion Pg (S |J), i.e., its Gibbs average for given values of the
variable J,

(A3 () = EDSZ§1 () exp [—BH (S, N A (S, J).

(15)
Alternatively, if the expectation value with respect to the
probability density of the variables is denoted by (...),

(.o={DIP, G (16)

the thermodynamic value & of the dynamical quantity 4(S,
J) can be written as

A = ((A e - (17)

Integrating the total probability density (13) overJ, we
obtain the probability density of only the variables S:

Ps (S) = SD.IPJ () 2 (J) exp [—BH (S, ). (18)
Next, let us consider the quantity
F(J) = —B~ InZs (), (19)

which can be referred to as the free energy of the S-subsys-
tem for given values of the variables J. According to rela-
tions (12) and (15), in which the variables J enter as param-
eters, for any value of J the quantities (4 Y (J) and F(J) are
related to each other via the usual thermodynamic relations.
If we then introduce the quantity

F=F )= DIP; NF ), (20)
then, since the thermodynamic relations are linear, in partic-
ular, differential, the same relations will connect the thermo-
dynamic values of dynamical quantities 4 and the quantity
Z (20). For this reason it is completely valid to identify 7
with the free energy of the quenched system. The quantity F
(20) will perform exactly the same functions. In particular,
for a quenched system, starting from the frec energy

F=—ptnZg )y = —p! S DIP;(J)InZg ()

(21)
one can use the methods of ordinary thermodynamics to cal-
culate the thermodynamic characteristics.

Therefore, quenched systems differ from annealed sys-
tems, i.e., from ordinary statistical-mechanics systems only
by the fact that the Gibbs probability density (1) is replaced
by the non-Gibbs form (13) with a given distribution den-
sity of the variables J (10). A consequence of this (without
bringing in any additional physical arguments) is that
expression (3) giving the relation to thermodynamics is re-
placed by expression (20).

An example of a way in which quenched systems can be
obtained in practice is the following. A sampleis heated toa
temperature 6, at which the relaxation times of the J- and 5-
objects are comparable, and allowed to reach a state in which
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they are in thermodynamic equilibrium with each other (al-
though this is not at all necessary). The system is then rapid-
ly cooled to a temperature &, at which the relaxation time
of the J-objects will be much longer than the S-object relaxa-
tion time, with this relation being valid in some range of
temperatures including 6, and in certain ranges of the other
thermodynamic parameters of the system. If we now work in
these ranges on a time scale much smaller than the J-object
relaxation time, but much larger than the S-object relaxation
time, the state of the J-objects can be assumed fixed, and the
state of the S-objects can be assumed to be an equilibrium
state described by the densities (10) and (11). Here the
probability density P, (J) will correspond to the equilibrium
probability density of the variables J (4) at the temperature
0..

Here we shall study the quenched Potts model using the
Bogolyubov variational method. "

2. THE POTTS MODEL

Here we shall give a formulation of the Potts model,
which is used to describe a wide range of objects and phe-
nomena in statistical mechanics and condensed-maiter
physics and which is also applicable to optimization prob-
lems.

The Potts model is a natural generalization of the Ising
model. In the Ising model there are IV discrete objects called
lattice points, each of which can be found in one of two
states. The Hamiltonian of the model is written as a sum,
over pairs of interacting neighbors, of the pair interaction
energy of the points. The pair interaction energy takes one
value if the interacting points are in the same state, and a
different value if they are in different states. In the Potts
model each point can be in one of g>2 states, and the pair
interaction energy takes one value if the interacting points
are in identical states (no matter what the state is), and a
different value if they are in different states (again, this is
independent of which states they arein). (The Hamiltonians
of the two models can also contain the sum of the energies of
the individual lattice points.)

Let us consider alattice containing N points. Each point
of the lattice can be in one of the states Py, ..., £, g=»2. The
state of a point numbered i (1<i<N) will be described by the
variable S,: S, = P,, ..., P,. The Hamiltonian of the Potts
model has the form
(22)

H= Hi;(S, S5)+2 Hoi (),
<3 1
where the summation in the first term runs over pairs of
different lattice points.
The pair interaction energy H,; (5,,8,)1s taken to be
E" if the points i and j are in identical states S; =S;,and
E if the points i and j are in different states S, 75

Hi.i (Sh SJ):Ei;)a(Sn S.‘i)"‘“E(i?[i_ﬁ(Sh ‘Sj)L (23)

where
1? Si :Si‘l
550 =10 5 25,

Discarding the inessential constantE, _, E [’ in the Hamilto-
nian H and using the notation E,, = E"’ — E (¥, the Hamil-

tonian can be written as

(24)
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H= % E;6 (S, Sj)+§ Hy; (S3). (25)

Pairs of points (7, /) for which E ;7 =0 are referred to as
pairs of interacting points (neighbors).
The partition function of this model is

Z= 3 .
o Sn=Fr -...P
Xexp [Z}_Eiiﬁ(‘sia S,-H—Z Hy, (Si):l. (26)
1<Jj 1

This model was proposed in Ref. 3 and is referred to as
the Potts model (more precisely, the standard Potts model).

3. THE SIMPLEX REPRESENTATION OF THE POTTSMODEL

It would be convenient if the states Py, ..., P, could be
assigned a vector interpretation, with the delta function
8(S;, S;) represented as the scalar product of vectors de-
scribing the states S, and S§;. Forthisweneed tofinda system
of vectors for which the scalar product of each pair of (dif-
ferent) vectors is identical.

Let us consider a system of m + 1 vectors

{BP} = {Elr LRI 5m+1} (27)

in m-dimensional Euclidean space R™ defined by the rela-
tion*
Epeg = (m + 1) mbyy — m-1,

pyg=1, ..., m+41. (28)

In the one-dimensional case R' the system of vectors
{e,} has the form

g =1, g, =—1, (29)

An example of a system of vectors {e, }inR™ form > 1
can be constructed by induction in the dimension of the
space m, starting from R', i.e., from the vectors (29).

Let thesystem {e, } = {e,, ..., ¢,, } in the space R™ ~ ' of
dimension m — 1 satisfy the defining relation (28). Namely,
in the space R~ let the vectors {e, } satisfy the relation

epeg = m~t(m — 1) §,, — (m — 1),
pog=1, ..., m (30)

Then the desired system {e,} ={e,, ....,,, , } in the m-
dimensional R™ will be the following:

Epm =cCo0st,, p=1,..., m, (31)

Epx = €ppsint,, p=1,..., m,

z=1,...,m—1, (32)

Emtie = Omy, a2 =1, ..., m, (33)
where

cos 0, = —m-1 (34)

We shall now show that Eq. (28) is satisfied for the
vectors (31)—(33). Let us consider the following three cases
scparately: a) p, g#m+1; b) p=m + 1, g#m+1; ¢)
P=g=m+ 1. 1If p, g#m + 1, then, according to (31)-
(33),
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-1
£,8, = Ex pxlqzx SIN* Oy, + cos? O,
2=

=epeg (1 —m-2) L m=2, (35)

and, owing to (30),
*r¥ =M — O 'mb,y — (m — 1)-1]

Xm=(m —1) (m + 1) + m-2
=mtm41)8,, — m, (36)

In the case where p = m + 1 and g#m + 1, we have

m+1

EpEq = Ei Smxtox = cos B,
=

=—m" =m' (m 4 1) 8pg — m. (37)

Ifp=g=m+ 1, then
g8 =1 =m(m+1)6, —m, (38)

Relations (36)—(38) show that (31)—-(33) is an exam-
ple of a system of vectors in R™ satisfying the property (28).
The system of vectors {g,} is clearly defined in R™ up to
rotations.

The vectors of the system {ap } are directed toward the
vertices of a right (m -+ 1)-vertex polyhedron in m-dimen-
sional space (an m-dimensional simplex) from its center.

The vectors {&, } possess a number of useful properties.
One is that*

mid
_ (39)
pgi g, = 0.

Actually, let us consider the square of the sum 2" *'e

Owing to the definition (28) of the vectors {e,}, we have

b

m4-1 m+1 m-f1

2
(E 819) = X gygy= ) [m™ (m 1) 8, — m
p=1 P, =1 Py =1
=mt(m 1) (A1) —mt (m 4 1)2 =0, (40)

Let us now show that the system of vectors (31)—(33) is
complete in R™. First we show that any unit vector j<»
(im) = 8, ), %, p=1, .., m, is a linear combination of the
vectorse,, ..., &, , ;. Thisistruein R ;i = ¢ . Letit also
be truein R ™~ !;

m
Ereton Yl (41)
1

p=

We note that

R S A FR St (42)
i'Snm'y):O' ¥ :1‘ o fn-i, (43)
i:(cm'm) = 6m:\'v €T = 1, o omy T (44)

Using (42) with (32) and (33), we find

m
i — 3 (sigt ﬁmag"’)ﬁpx-_(

m
(i)
= E Clg ﬂmaq )Seri,.xs

g=1

z, y=1, ..., m—1. (45)
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According to (43), (31), and (33),

m m
igln‘ e 21 (Sinﬂ1 ﬂma(lly)) Epm— ( Zi ctg ﬁmaaw ) Em+1, mr
p= g=

y=1, ..., m—1. (46)
Equations (45) and (46) imply that
m+1i
i(‘m, w — 2 bg})ep‘ (47)
p=1
where
b = sint ey, p=1, ..., m,
I (48)
b, = 3 ctg 00",
g=1
i.e., the unit vectors i™", ..., """ * " are linear combina-
tions of the vectors €;, ..., €,, , 1 - However, the same is true
for the last unit vector /™™ [(33) and (44)]:
jitm,m — B (49)
Owing to the properties (39), any m vectors of the sys-
tem €, , ..., €,, ;1 form a complete set of vectorsin R™.
Another useful property of the vectors {€, } is that"
m+i
] Epabpy =m L (m + 1) by, z y=14,..., m
=
(50)

In order to prove this, we take an arbitrary vector A and
expand it in the first m vectors {e.}.

A= D aeg,, (51
g=1

and consider the contraction with respect to y of the left-
hand side of (44) with 4, :

m m%l m m4-1 m
E 2 Ep:cepyAy= 2 g 2 Epy 2 Epylay
y=1 p=1 q=1 p=1 =1
m m+1
= 2! a, 21 pe ML (m A1) 8,y —m7Y]
q= p=
m m m+1
=m"(m—+1) 2 a.8qc—m* Z aq Epg (52)
q=1 g=1 p=1
Using the property (39), we find
m mi1
Zx 21 EpxEppd, =m 1 (m 1) 4,. (53)
v=1 p=

Since the vector A is arbitrary, we obtain the property (50).
The property (50) allows us, in particular, to write
down the scalar product of two vectors in an overcomplete
basis
m-+1

be = (m +1)tm 2 eybege, (54)
p=1
since
n m41
be= 3 bueyby=(m+)tm 2 epbaepcy (59
x5 Y= p=

In turn, the representation (54) makes it possible, in
particular, to reconstruct an arbitrary vector a from its com-
ponents g, *ain the basis {e, }. Taking bin (54) to be the unit
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vectori™® in the direction of the x axis, and cto beequal toa,

we have
m+1

ax = (m + 1H1m ¥ EpaEpa. (56)
p+1

After showing that the system of vectors with the prop-

- erties (28) exists, we can reformulate the Potts model in the

language of the simplex vectors.*® With each state P; ..., P,
we associate one of the vectors g, of the system (27) in the
space R™ form =g — 1P, g, p= 1,...,m - 1. Then the
state of the ith point is characterized by the vector s;eR™,
which can take one of m + 1 values €, ..., €44 1°

s; = 8 (§,). (57)
Then the delta function (24) can be written as

8(8; 8;) = (m + 1)1 + ms(S;) s (851 (58)

For each point i the quantity Hy, (S,) can be written as
the scalar product of the vector $(.S;) and some vector h;:

Hy; (8;) = hys (8- (59

Actually, according to (56) this vector h; is
m+41
hig = (m + 1)"'m 21 sx (83) Hoi (S1). (60)

The vector h, will be referred to as the field at the point 7.
Substituting (58) and (59) into (26), for the partition
function Z we find

7 = W 3

L ! =
5=P, --u1 Py Sy=Py -1 Py

% exp [:—?,-(”‘ + 1y tmE ;8 (8:)8(S))

Shs(S)+ 2 A Ey |- (61)
i 1<]
Since the relation
Ppﬁsp =S(Pp) (62)

is one-to-one, in (61) we can go from summation over S, ...,
Sy tosummation over 8(8,) =5, ...8(5y) =sy. Discard-
ing the inessential constant

3 (m A+ 1) Ey (63)
i<i

and introducing the notation

Jij = —(m + )7 mEy,, (64)
we obtain
Z= X T
§1 =8 - By SN2y o= EN

Xexp [— Z_aniijSj-l'; ]‘isi] . (65)

Therefore, the Potts model can be formulated as fol-
lows. We have a lattice containing N points. At each point i
(i=1, ..., N) there is a spin 5,€R™ which can take one of
m + 1 different values {¢,} = {¢,, ..., &, . The state of
the entire system is characterized by the N vectors {s,} = s,,
..., 8. The defining relation for the vectors {e, }is Eq. (28).
Each point 7 is also characterized by a ficld h, eR™. The
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Hamiltonian of the Potts model in the simplex representa-
tion has the form

— —_E_Jij5i5j+2 htsi. (66)
i<y i

Here the summation in the first term runs over pairs-of inter-
acting neighbors {/, /}. The summation in the second term
runs over all the lattice points. The quantities J;€R are re-
ferred to as the interaction strengths.

The partition function is

... D exp(—PBH) =Y exp(— BH),
1 SN {83}

Z=E

5

(67)

where the summation runs over the m + 1 spin vectors {EP}
at each lattice point.

This representation of the Potts model (66), (67) is
referred to as the simplex representation. It has the advan-
tage that the vectors {e,} possess the properties described
above, owing to the symmetry of the simplex, which greatly
simplifies the calculations.

The physics of the system in the representation (25) or
the representation (66) is the same.

4.SOME APPLICATIONS OF THE POTTS MODEL

The Potts model serves as the basis for the theoretical
description of a number of experimentally observed phe-
nomena. There are several physical systems described by
Hamiltonians with the same symmetry properties as the
Potts model, which therefore belong to the universality class
of this spin model. Here we shall consider several of these
systems.

The adsorption of inert gases on adsorbents like graph-
ite can be described by Potts lattice gas models (25). Physi-
cally adsorbed films of this type are an experimental realiza-
tion of phase transitions in two-dimensional systems. The
adsorption of krypton on graphite has been studied in Ref. 6.
The adsorption centers form a triangular lattice on the basal
plane of the graphite crystal (Fig. 1). The adsorbed atoms
(adatoms) of krypton interact in pairs: The interaction po-
tential is positive (unfavorable) and very large (350 times
larger than the well depth E) for nearest neighbors and nega-
tive (favorable) for the others (Fig. 1b); the potential has
quite a short range. These properties of the potential lead to
the exclusion of nearest neighbors. Therefore, the krypton
monolayer is completed when one of the sublattices is filled.
Two phases can be distinguished: a synchronized phase,
when mainly one of the three sublattices on the lattice of
adsorption centers is filled, and the disordered liquid phase,
when all three sublattices are equally filled.

1
+~
4
&

FIG. 1. Modeling of the adsorption process: a—triangular lattice of ad-
sorption centers on a basal atomic plane of graphite consisting of two
sublattices; b—the Lennard-Jones interatomic potential.
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FIG. 2. The description of adsorption based on the Potts model.

The authors of Ref. 6 approximate the problem of the
krypton lattice gas by the Potts lattice gas model, using the
feature of nearest-neighbor exclusion. The renormalization-
group method is applicable to this formulation of the prob-
lem.

Let us consider an elementary triangle consisting of
three points of the krypton lattice gas (the triangles i andj in
Fig.2). This triangle, viewed as a whole, can be in one of four
states: It is possible for it not to contain any krypton adatom,
or it can contain one such atom in position a, b, or ¢. This
triangle can be viewed as a single point of the Potts lattice
gas. Its state is described by two variables (¢, 5;). If the
triangle is empty, then ¢, = 0, and if it contains one atom,
then 7, = 1; in the latter case the additional variable s; de-
scribes the position of the adatom. If the adatom is located at
a, then s, = 1, and so on. The points of the Potts lattice gas
also form a triangular lattice, which completely covers the
lattice of the krypton lattice gas. The Hamiltonian of the
Potts lattice gas has the form (25), where H, now denotes
the chemical potential of the adatoms.

The Potts lattice gas model reflects the fundamental
property of nearest-neighbor exclusion in the krypton lattice
gas, which leads to the existence of three degenerate states.
However, this model is an approximation: Whereas the
points (a, b) cannot be occupied simultaneously, the points
(; @) and (i, b) can be, although the probability for this is
suppressed. The description of the krypton lattice gas using
the Potts lattice gas can be systematically improved by intro-
ducing into the Hamiltonian (25) the interaction of next-to-
nearest neighbors.

The authors of Ref. 6 studied (25) using the renormal-
ization group, and obtained a phase diagram which gives a
good description of the experimental data on adsorption,

The author of Ref. 7 introduced a generalization of the
three-component Potts model in which the $pin states are
coupled to lattice directions. This situation is realized in the
adsorption of nitrogen on a graphite substrate having a hex-
agonal structure. One third of the elementary cells are occu-
pied by nitrogen molecules, which form a triangular sublat-
tice. Here the molecules acquire an orientational ordering,
consisting of alternating bands in which the molecules are
rotated by angles + 7/4 relative to the bands (as in a fish
skeleton). The same ordering occurs in quantum liquids at
temperatures near zero, in smectic type-£ liquid crystals,
and in systems of large molecules adsorbed on graphite. The
authors of Ref. 7 studied the phase boundaries in this model
using the mean-field theory and other methods.

The Potts model is also realized in anisotropic ferro-
magnets with a cubic structure.® In ferromagnetic crystals
the magnetization vector tends to be oriented along certain
crystal axes, referred to as easy magnetization directions. A
finite amount of work is necessary to magnetize the crystalin
a different direction.® The Hamiltonian of this system has
the form'®
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H= _%r(a)M2-+uM4_v(M;+M‘;,+M:)—11M, (68)

where M is the magnetization vector. It can be shown that it
has the symmetry of the Potts model.? In fact, in the new
variables

0= (Mgt M, M)/ V3, By=(hathy+h)/ Vo

6, = (My— M)/ VB, Ty=(hi—h)/ V'

6y =(M, + M, —2M)/ V'3, Ty = (he+hy— 1)/ V3,
(69)

related to M and h by an orthogonal transformation, the
Hamiltonian (68) takes the form

H= —Tho— ro* +-uc*—2v0} (0} + o)

— 9 V330" (6] —30%05) ++v (0} + 0+ 3 0% (70)

The presence of the term o3 — 30303 leads to a first-order
phase transition as 4 and 6 are changed. The dependence of
the component of the magnetization parallel to the external
field M| on this field for the system described by the Hamil-
tonian (68) has the form shown in Fig. 3. When the field is
directed along the principal diagonal of the cubic crystal
[h= (H,0,0)], a change of k and € is accompanied by a
first-order phase transition® [the vertical segment on the
curve M, (H)]. Of course, the jump is different for different
materials.

The magnetization of a rare-earth composite DyAl,
was measured at temperatures below critical in very strong
magnetic fields in Ref. 11. At low temperatures the jump of
the magnetization in this material is 25% of its total value.
As the applied field is rotated from the direction [111] to
[110], the jump of the magnetization decreases, and then the
phase transition becomes a second-order one. This experi-
ment shows that for the three-dimensional Potts model the
predictions of mean-field theory® are, at least qualitatively,
true.

Structural phase transitions in certain materials such as
SrTiO, (Refs. 12 and 13) and Pb;(PO,), (Ref. 14) pertain
to the universality class of the Potts model with g = 3. Com-
posite materials with crystallographic structure Al5, such
as Nb, Sn, are superconductors, and undergo a structural
phase transition in which their crystallographic structure is
transformed from cubic into tetragonal.’* In the continuum
limit this phase transition can be described using the free-
energy function constructed from the components of the de-

M
W is [11]

n o

1
0 50 700 H, kOe

FIG. 3. Magnetization curve of DyAl, at § =4.2 °K (Ref. 11).

formation tensor €,y , £,, , and £, which has the symmetry of
the Potts model.'® Therefore, the phase diagram for Nb,Sn
in the variables (8, S, Syys S22 )5 where §; (i=1, 2,3) are
the components of the stress tensor, coincides with the phase
diagram of the three-dimensional Potts model with three
states (see Ref. 16). This fact can be used to explain the
pressure dependence of the temperature phase transition
(related to the temperature transition to the superconduct-
ing state; see Ref. 15)."

The five-component liquid mixture ethylene glycol
+ lauryl alcohol + water + nitroethane + nitromethane is
described by a three-component lattice system.'”"® The
mean-field-theory prediction of a first-order phase transi-
tion in this system has been studied intensively, and it has
actually been observed.'

Recently there has been a great deal of discussion of
phase transitions at the boundaries of different phases. 12
These are realized experimentally in multicomponent liquid
mixtures and in adsorption systems which, as we have al-
ready seen, are related to the Potts model.

A number of polymer problems can be formulated in
terms of the Potts model.”™*'

The statistical-mechanics techniques of lattice systems
are applicable to combinatorial optimization problems, in
particular, to so-called NP-complete problems.** The travel-
ing-salesman problem, the problem of the partitioning of a
graph, and the coloring problem have been studied using the
techniques of the theory of quenched systems. In most of
these studies the basic tool which is used is the g-component
Potts model.

The traveling-salesman problem is formulated as a lat-
tice problem in statistical mechanics in Ref. 23. The high-
and low-temperature regimes are discussed. The exact solu-
tion of the replica method was obtained, and a spin-glass
type of phase transition was found. The authors of Ref. 24
obtained a solution of the traveling-salesman problem in the
formulation of Ref. 23 using the replica method without
symmetry breaking. Good estimates of the distance of the
shortest path were obtained. The authors of the key study of
Ref. 25 discuss various estimates of the free energy of the
traveling-salesman problem, construct the mean-field theo-
ry, develop a field-theoretic approach, and discuss the rela-
tion to quenched systems.

The application of statistical-mechanics techniques for
quenched systems to the problem of the partitioning of a
graph is discussed in Refs. 26-29. The method of simulated
annealing, which at present is very popular, was used in
Refs. 27 and 28. These authors discovered the existence of a
low-temperature phase of the spin-glass type, characterized
by a set of metastable local extrema and non-self-averaging,
which sheds light on the structure of this complicated com-
putational problem.

The authors of Ref. 29 discuss the relation of the prob-
lem of the partitioning of a graph into g subgraphs with mini-
mization of the couplings between components, and also the
problem of partitioning a random graph, to the theory of a
spin glass in the Potts model. Estimates are obtained for the
free energy using the mean-field theory for the spin glass and
certain other numerical methods.

Another very interesting problem is that of the coloring
of a graph with g colors. The author of Ref. 30 obtained an
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approximate equation for the coloring number of a hypercu-
bic lattice with ¢ colors in d-dimensional space, and Monte
Carlo calculations were carried out in Ref. 31,

The relation between the three-coloring problem and
the eight-vertex model is studied in detail in Ref. 32. In Refs.
33 and 34 the equivalence of the coloring problem and the
problem of the ground state of the antiferromagnet Potts
model was used to calculate the chromatic polynomialin the
complex plane. In Ref. 35 it was shown that the formulation
of the Potts model in terms of the dichromatic polynomial is
closely related to the generalized percolation problem.

In Ref. 36 a series in powers of 1/3 was constructed to
calculate the entropy of the ground state of the six-vertex
model, which reduces to the coloring problem. The exact
solution of this problem was later obtained in Ref. 37.

As we have already noted, the thermodynamic proper-
ties of weakly condensed media are described by quenched
lattice systems. The simplest of these are models of dilute
magnetic systems.™® In particular, the dilute Potts model is
described by the Hamiltonian®®

H=—27 3 858(S, S)—h 3 66(S,, a),

(L3

=Py, .iop Py (71)
where £, are the quenched quantities, which can take the two
values 0 and 1. The expectation value (£;) = p corresponds
to the probability that the point i is occupied by the magnetic
spin S,.

The critical behavior of this system is different for dif-
ferent p. The system can make a transition to the magnetical-
ly ordered phase as the temperature is lowered onlyifp>p,,
where p, is the critical concentration of the problem of per-
colation through the points (only in this case is there an
infinite connected cluster). The critical temperature of the
transition from the paramagnetic to the ferromagnetic phase
8. (p) must fall off monotonically with decreasing concen-
tration of magnetic atoms p. In Ref. 40 it was shown that for
the dilute ferromagnetic Potts model

Bf‘ (P) ~ P — P

The dilute antiferromagnetic model with g = 3 ona triangu-
lar lattice was studied in Ref, 41. States of fractional order
were found in which only some of the symmetries are
broken.

In Ref. 42 the dilute Potts model in a transverse field
was studied by the renormalization-group method of mean-
field theory. The critical surfaces in field—temperature-con-
centration space and some critical exponents were found.

There are more complicated models in which, in con-
trast to (71), the strength of the interaction of points / and J
does not factorize:

H=—37 3 J:8(Si 8)— S hid (S, q), 8,=P,
(i, J) i
where the strengths J; and the fields 4, are quenched quanti-
ties.

In particular, such models serve as the basis for describ-
ing weakly ordered magnetic systems in which atoms pos-
sessing a magnetic moment are randomly distributed among
the nonmagnetic atoms of a lattice. In such systems a spin-
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glass phase arises, where the magnetic moments of the im-
purities are frozen in fixed random directions, i.e., there is a
short-range order in the absence of long-range order.** The
large amount of available experimental data (see, for exam-
ple, Refs. 44 and 45) indicate that the spin-glass phase is
observed at sufficiently low temperatures ranging from a few
to several tens of degrees and concentrations of magnetic
impurities ranging from a fraction of a percent to several tens
of percent. The spins of the randomly distributed magnetic
atoms interact with each other by means of an indirect ex-
change interaction via the conduction electrons, This is re-
ferred to as the RKKJ interaction (Refs. 46-48), for which
the interaction strength varies with distance as

J(r) ~ r# cos (2kpr).

The impurity concentration is small enough to exclude di-
rect exchange (when the spins are located at neighboring
points), but large enough that the interaction between the
impurity spins is not negligible (in contrast to Kondo sys-
tems).

A method of theoretically describing such systems on
the basis of the Ising model (g = 2) was first developed in
Ref. 49. Here it was suggested that the spins be viewed as
arranged on a regular lattice of smaller dimension, in which
each point is occupied by a magnetic atom. Since the RKKJ
interaction is long-range and oscillating, it is assumed that
on the regular lattice the strengths of the pair exchange in-
teraction J; are independent random variables with proba-
bility densities P, (J, ). The equivalent system should obvi-
ously be treated as a quenched system.

The overwhelming majority of studies limit themselves
to a Gaussian probability density for the interaction
strength. In the case of the Ising model such a lattice is usual-
ly referred to as the Sherrington-Kirkpatrick model, since
the solution for that model problem was obtained by those
investigators in Ref. 50. The distribution

Py =cd(/ —DN+(1—c)6(J +7)

corresponds to the so-called frustration model.’! The pa-
rameter ¢ can describe, for example, the concentration of
ferromagnetic couplings.

The spin-glass phase has also been found in the Gaus-
sian Heisenberg™ and Potts®** models. Quadrupolar spin
glasses have been studied in Ref. 55.

Stochastic Potts models, in which the number of spin
states is different at different points, have been studied in
Refs. 56 and 57. It has been found that the type of phase
transition can change as the population of a point changes.
The duality properties of quenched models were studied in
Ref. 58. The phase diagram for a quenched random two-
dimensional vector Potts model was constructed.

5. MULTIDIMENSIONAL GENERALIZATIONS OF THE
HYPERBOLIC TRIGONOMETRIC FUNCTIONS

Below in our study of the Potts model an important role
will be played by multidimensional generalizations of the
hyperbolic trigonometric functions. Let us consider these
functions and their properties.

We define a scalar function R of a vector argument from
R™ as
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m4-1

R =m+D'm 2.1 exp (bey). (72)
o
In the one-dimensional case m = 1 the system of vec-

tors {e, } has the form (29), and the function R is

R (b)= § lexp (b) +exp (—b)l, m=1, (73)

i.e., it coincides with the usual hyperbolic cosine
chb= 5 [exp (B) +exp (— ). (74)

Therefore, the function R(b) (72) is a natural generaliza-
tion of the hyperbolic cosine.

Recalling that the derivative of the hyperbolic cosine i§
the hyperbolic sine

sh b= chb = [exp (b) —exp (—b)], (75)

let us consider the derivative of the function R (b) with re-
spect to the xth component of the argument b,

m+1
0u (W)= R(B)=(m+1)m 3\ epsexp (be),
p=1
z=1, ..., m (76)
or, in vector notation,
m+1
Qb= R(b)=(m-+1)*m 3] epexplbey).  (77)
p=1

In the one-dimensional case, where the system of vectors
{e, } reduces to (29), the function Q(b) takes the form

Q (b) =5 [exp () —exp (— B}, m=1, (78)
and coincides with the hyperbolic sine (75). Therefore, the
function Q(b) is a natural generalization of the hyperbolic
sine.

The second derivative of the hyperbolic cosine with re-
spect to its argument gives back the same function:

B chb=chb. (79)
Let us see how this property is generalized to the multidi-
mensional case. We define the functions Q,, (&) as the sec-
ond derivatives of R(b):

m+1

Quy () =555 R (W) =(m-+1)tm 3 eyep, exp (bey),
B =y e mfii (80)
and, accordingly,
Qxy (b) = Qy (b). (81)

Let us take the trace of the matrix @,, (b). According to the
definition (28) of the system of vectors {g, }, we have

m 44 m
21 Q. (B)=(m+1)"'m 21 exp (be,) 21 e
x= = x=
m+1
=(m+1‘m 21 exp (be,) (82)
=

or, comparing with (72),
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3 Ot = R O (83)
In other words, the Laplacian of the function R (b) coincides
with R(b) itself:

5 55 Ry =R (b) (84)

x=1
or

ViR (b) = R (b). (85)

Relations (84) and (85) are the generalization of the prop-
erty (79).

In order to determine the functional properties of R,
Q.,and Q,,, let us consider a function of one scalar and two
vector arguments:

T (a, b, ¢)
m4-1
= (m + 1) mgpg 1exp (agp2y + bep + eg,).  (86)
We note that when the first argument is zero, this function
reduces to the product of two R functions:

7 (0, b, ¢) = R (b) R (e). (87)
It is also easy to show that in the one-dimensional case

T (a, b, ¢)=chachbche -+ shashbshe, m = 1.

(88)
Let us now consider
8
V(a, b, €)= T{a,h,e)
m+41
=(m+1)2m? Z £p8, exp (agye, +-be, - cg,). (-89)
p-q=1

We note that ¥ is symmetric in the vector arguments, and
also that when the scalar argument is zero, the function V
reduces to the scalar product of two Q functions

V (0, b, ¢) =Q(b) Q(c). (90)

According to the definition (28) or the system of vectors
{e, }, we have

m+i
Vi b ¢e)=(m+1)"mexpa En exp [(b + ¢) £,]
p=
m+1
—m - (m + 1) m? N 1exp (ag &, +bey, 1 cgy)
o, g=

—=expaR (b 4+ ¢)—mT (a, b, ¢). (91)

This relation allows us to obtain an expression for the R
function of a sum. Setting @ = 0 and comparing the result
with (87) and (90), we find

Rb+9)—QMQE +m BORE  (92)
or
R+ =3 0x0) Qs @)+ mR BB @ O

This is the generalization of the addition theorem for the
hyperbolic cosine. In fact, for m = 1 we have

ch (b4 e)=shbshe | chhche, (94)
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1.e., the usual addition theorem.,

To generalize the addition theorem for the sine function
we consider the function

V,(a, b, ¢) = -ag_x V(a, b, ¢)

m+1
=(m+1)y2m2 Y e,ee, exp (agpe, |-bey, +cel).  (95)
P, q=1
For a = 0 the function ¥, takes the form
Vo, b, ¢) = El Oxy (b) 0;; (e). (96)
y=

Taking into account (28), from (95) we find
m-4-1

Va(a, b, ¢) = (m + 1)t mexp a 21 Epx eXDI(b + ¢) e,
e

m+1
—mtm 4+ D2m Y  Bv XD (a8, 4 be;, + cz,).
P

(97)
Setting @ = 0 here, using (96), we obtain

0040 =2 00y 40, 0 +m 0, R E. (98)

Using the fact that for m = 1 it follows from (83) that
Q.. (b) = R(b), we see that in the one-dimensional case
(97) gives

sh(b+e¢)=chbshe 4 shbche, (99)

so that relation (98) generalizes the addition theorem for the
hyperbolic sine,
- Let us see what is the second derivative of the function T
with respect to its first argument:
a2

W(a, b, c)=m T(a,b,c)
m+1
=(m+1)2m? 2 (epe,)% exp (aspeq+b£,,+ceq). (100)
P, =1

According to the fundamental property of the simplex vec-
tors €, (28), we have
(8,8,)* = [m~1 (m + 1) 8,, —m12

=m=(m—1) (m+1)8,, +m=, (101)

from which we find
W(a, b, ¢)

mt1
=expamt(m—1)(m+ 1)""m > exp (b + e) g,]
p=1

+ m? (m 4 1)~2 m? mi_il exp (ae,g, + be, + ce,)
= expam (m — 11)”;1’ (b +¢) + m=2T (a, b, e).
(102)
Taking into account the addition theorem (92),
W (a, b, ¢) = expa m-1 (m — 1) Q (b) Q (c)
texpam=(m —1)R (b) R (¢) + m=2T (2, b, ¢), (103)

so that the function W is expressed in terms of the known
functions R, Q, and T. For a = 0, according to (87) the
function W takes the form
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W0, b,e¢)=m?t@m—1) Q (b) Q (¢) + m~R (b) R (c).

(104)
Let us now consider the tensor function

M-
Qsy: ) = (m + 1)1 m 2{ €pxEpy€py exp (be,), (105)
p=
which has the obvious relation to ., (b) (80):
Qxyz (b) = '5_32_ ng,- (b),

and is obviously completely symmetric in the indices x, y,
and z. Let us also consider the vector and tensor functions

(106)

m+-1
U, (a, b, €)= (m+1)2me b3 15px exp (ag,e, +be, +es,),
D, =

(107)
Upy(a, b, €)=(m+ 1)z m2

X :;: , Eratpy OXP (a€re, 1 be, + es,) . (108)

which are derivatives of the function T (86):
U,(a, b, ¢)= % T (a, b, ¢); (109)
U,,(a, b, c)=3§?(]x{a, b, ¢), (110)

where U, , is symmetric in the indices x and y. Owing to the
normalization of the vectors £,, the functions (106) and
(108) have the following properties:

m

m+-1
2, Gy O =(m+1)tm 3

X[( gl Bfm) &p, EXp (bep)] :()y (b); (111)

X

2 Usela, b, ©)
x=1

-

m
= (m 1) 2 m2
Pog=1

m
X[ (xgi e.?,x) exp (agye, - be, +csq')] =T (a, b, c).

(112)
Let us also define the function
m+1
Pefa, b)) = (m 4+ 1)tm 3 exp (aepx + bep), (113)
=1
which in the one-dimensional case has the form
Pi(a, by =ch(a+8), m=1. (114)

Let us write out its derivatives with respect to b, and b,:

m1
Sy (@, b) = m-+1)tm El Eny €XD (@eyx + be,);
p=

(115)
m+1
Sty (@, b) = (m -+ 1)1 m }—'_,1 €pyEpz ©XP (@epy -+ bey).
e
(116)
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It is easy to see that

21 S{y)xac (a, b) = P(y) (a, b). (117)

Finally, we note that

2] a2 i
S.(J.)x (a, b) =Tj'&' P(x) (a, b)1 S(x'}xx (a, b) = Pa? P(x) (a, h)

(118)

and
Py (0, b) = R (b), (119)
S{x)x (O, h) = Qx (b): S(x)x (0, b) = Qxx (h) (120)

6. THE EFFECTIVE HAMILTONIAN OF THE QUENCHED
POTTS MODEL

Let us describe the quenched Potts model. We shall
consider the simplex representation of the Potts model (see
Sec. 3). Splitting the field h, into two terms, we write the
Hamiltonian as

(121)

H=— 2 J 88+ hs; + 2 visi.
i<j i i

According to Sec. 1, the system in question is characterized
by variables of different types: s, J;; and h,, v;. The variables
s, are ordinary variables, the variables J; and h; are
quenched variables, and the variables v, are fixed, i.e., the
fields v, are given parameters. The interaction strengths J;
and fields h, are mutually independent random variables.
Here we shall not specify their distributions P; (J;;) and
P (hyy ). The distributions P; (J;;) can be different for dif-
ferent pairs (7,7}, whilep,, (4, ) canbe different for different
points { and components x.

The thermodynamic value .2 of some quantity 4 fora
quenched system with the Hamiltonian (121) in accordance
with (14) is given by the expression

A={A {{Jij}a {h'i:vc}))

:S .o S [ a7 (i)l
i<i

XH T 1hcpia (Ria) Ay (i} thith (122)

i x=1

where (4 )} ({J;}, (i }) is the value of this quantity for
given values of the interaction strengths J,; and fields h;.
In particular, for the free energy .# = Ng we have [see

(21)]

F=(F, o=, (123)
where

Nf =F = —p7 InZ, (124)
[ is the inverse temperature,

B — -1, (125)

and Z is the partition function for given values of J; and h;,

Z=3 ... Zexp(—PH)= I exp(—BH ({5}l
5 hﬂ‘- E!—

=trexp (—BH). (126)
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In (126) the summation runs over the m + 1 spin vectors
{e,} (28) ateach lattice point.

We use the replica method*” to calculate the free energy
(123). Here we give one elementary relation. If the limit for
n—0 of some function a, is equal to unity,

Ly =1 (127)
then
lim (2 In @) = lim [r~ (2, —1)). (128)
n—+0Q n-+0
Setting @, = @" in (128), we have
In ¢ = lim [n-1, (2" — 1)L (129)
=0
Now, in accordance with (124) we can write
—pF = ln Z = lim [n7" (Z" — 01, (130)
n-0
so that the free energy (123) can be written as
—ﬂfslinai[n‘l((Z’W-mi_)]. (131)
s

Owing to Eq. (128), this expression for Z can be rewritten
as
—p.F =lim[rn~1In (Z"].
n-=0

In contrast to Ref. 49 and many other subsequent stud-
ies using the replica method to investigate weakly ordered
spin systems (see, for example, Refs. 50, 60, and 61), rela-
tion (132) will serve as our starting point.****°*

We note that it can also be written as

(132)

(InZ) = lim In (Z")"". (133)
n-—+0
For brevity we introduce the notation
Fp=—n"'pt1n (Z"), (134)
in which the desired quantity, the free energy F, 18
F =lim #,- (135)
-0

The nth power of the partition function Z can be written as

2= ... S e[ b3 HEM)

sh s

=% . Nexp[ B2 H(H], (136)
G a=t
which will be denoted by
Z“:trnexp[gﬁglf{({s?}')]. (137)

We introduce the Hamiltonian H,, of a system consist-
ing of nN points whose state is described by the variables s7
(i=1,..,N;a=1,..,N) (Refs. 63, 65, and 69):

1) = - o
(= (e[~ 2 H(E])- (138)
Here a is the replica number, and we remind the reader that
the averaging (...} is carried out in accordance with (122).

The Hamiltonian (138) is useful because its trace gives the
expectation value of Z" (137); in fact,
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tr, exp H, =tr, (exp [—B X H ({siHD
a=1

= (trpexp . . .I) = (Z"). (139)
In accordance with (134) for & . We obtain
—npFp = Intr, exp H,. (140)

Let us now calculate the Hamiltonian H . Accordingto
(138) we have

n

Hy=2 In{ diP; (1) exp (w ) s?s?)

i< a=1

+ 2 i lnS dhp;y (h) exp (f'h i ?x)+5 i D) sk,

i x=1 =1 a=1 i

(141)
We use the power expansion
8 (ay) = exp (aD) g (y7) =y, D = d/ov. (142)
Substituting into (142)
a= 2 sisf, y=p, (143)
=
and then
n
a= > sk, y=B8, (144)
=1

we find

H,=3) exp(D oo s?'s?‘) In S dJ P (J) exp (BJT) |1—y

i<j a=1

+ 21 2} exp (D 2 s?‘x)ln § dhpis (h) exp (Bhv) oy
a=1

i x=1

+B D ) vl

a=1 i

(145)

Introducing the notation

¥y () =1n { dJP,;(Jyexp (BI7)=In (exp (BT ;y7)), (146)

;. (v) =1 { dhpys (k) exp (Bar) = In (exp (Bheyr)y, (147)
we obtain
Hy,=2) (D 2 878% ) Wit lemo
i<j a=1
m i n 13‘ 5
+2 2 exp(D 3 %) B (9) lema+-B 3 Sivast. (148)
i x=} a=1 =1 i

We have therefore constructed the effective Hamilto-
nian H, for the random quenched Potts model (121 ), (122)
(Ref. 59). The free energy (123) is expressed in terms of H n

as
F=lim 7, (149)
—nﬁ,?n = In trn exp Hn. (150)

This effective Hamiltonian H, does not contain random
quantities. It can be viewed as an average over the interac-
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tion strenghts J;; and fields h;. The form of the Hamiltonian
(148) and its relation to the partition function of the original
system (149), (150) are independent of the specific form of
the distribution functions P,(J,)andp,, (h, ). All the infor-
mation on the distributions P, and p,, is contained in only
the functions W (146) and ®,, (147).

7.THEFREE ENERGY

Let us calculate the right-hand side of (150), starting
from the Bogolyubov variational principle :

In tr exp % — In tr exp &7 == (5 — &) (151)

For the case under study we write this in the form >

—nfF=Intr,expH, >1Intr,exp i,
+ ey exp B v, (B — Hy) exp B 1= —np 7., (152)

where Im{,, is an arbitrary Hamiltonian serving as the trial
Hamiltonian, and the quantity % , is introduced to simplify
the notation.

We take the trial Hamiltonian H, to be of the form®

n

A=, (s (6 65 =2 [ 3 s+5u(3 s)} ,

i a=1 a=1

(153)

where 7, and §; are variational parameters. According to

relations (149), (150), and (152) the free energy .# can be

calculated as % ({%, },{¢, ), where
F (i), (&) =1im 7 ({0}, &), e

and the quantities W, = v, and £, = £, are determined from
the equations

7= [—BF (ng, L1 =0, ss)
s [—BF ((na}, L)1 =0. (156)

Let us calculate the right-hand side of the inequality
(152), i.e., &, with the trial Hamiltonian H, in the form
(153). Here we shall use the relation

exp (%bz)zs dGu exp (l]ll), (157)

where b is an arbitrary vector from R™, and dG, is the nor-
malized Gaussian measure

dGy = (2n) ™2 exp (*% u2) ., UER™, (158)

Sdc.,: 1. (159)

We consider the quantity

™

— ] 2
exp (0fl ,) = []exp (mﬂi > s?) exp B—( Vot 2 s?) }
i a=1 ==1
(160)
Starting from Eq. (157), we have
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exp (mﬁ )

n

1 [ea(on 3

5

=1

) S dGuexp(]fGQ,-u

n

% s =176,

— H S dGy exp I:(om,- + Votu)
N a=1
(161)

i.e., each factor in the product over I is a function of 57
(z=1,2, .., n) with a single value of /. In this case for the
trace tr, we obtain

A(@) =tr.exp(oH,)=> ... 2 [] f:(sD

syl

=11 2 fisD)

1 o
{85}

= H 2 S dGue’*P[ on;+ Voiu) 2 s,] . (162)

2 a=1
(si H

Similarly, performing the summation over s}, ..., 87, we find

# () = HSdGE 3T expl(ome+ Vaza)sf]

nm__

=11 { 46 I[ ) exp [(om, + Vo Lu) s7].  (163)

i a=1 lZ

Taking into account the fact that here the summation over si*
gives the same results foranya = 1, 2, ..., n, we obtain

mo-1

;&(m):ﬂ S dG“[ 2 exp [{wn; + Voim)e, ]]

i =

(164)

Using the definition (72) of the multidimensional general-
ization of the hyperbolic cosine R(b), we write
tr,exp(ewHo) as

#@ =T[ § d6alm (n+ )R (om+ Vagu)l". (165)
The quantity %, involves the expression tr,expH,,,
which is equal to & (1), and can therefore be written as

tr, exp T, = (2L )™ [] § d6ur™ (by), (166)
ke
where for brevity we have introduced the notation
b, =n; + L. (167)

Thetracetr, (H,expH, ) which also enters into Z ,can
be calculated by writing it as

try, (ﬁn exp ﬁn) =% tr, exp (mﬁn) [w=1 = A" (1). (168)
Then, noting that
(&) = g,)E(gl & (169)

and also that according to the definition (77) of the function
Q(b)
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2 R(on+ Vot =(n+go2u) Qon; + Vo),
(170)

we have
# (@)= 4 (@) 2
x{[ § d6u (m (m+1) B (omi+ Vara)"]™
xcn § 46y [mt (m+1) B (on+ Vo L)l m (m+1)
x (o4 o7t2a) Q (om+ Votm)}, (171)
so that
tr, (H epo,,) =n tr, epo 2 {[S dG R" (n; +§iu):|*l
x { dGuR™ (- L) (m o zau) Qmi+Lw}.

(172)

We can get rid of the factor u in the integrand by using the
relation

§ deu.t ()= § d6u5—1 (). (173)
Noting that
Zar IR (by) Qx (bl = (n-—i) B2 (h) Q; (b)) 5 R (b)
+ R*1 (by) = Qx (ba), (174)
mﬂ(hi)zgiox (b;), (175)
o Qu(b) = Lius (0D, (176)

and using the property (83) of the functions @, , we find

) o R (by) Qs (b))

x=1

=i [(n—1) R*2(b;) Q% (b)) +R" (by)], (177)

so that for the trace tr, (H,expH, ) we have

tr, (ﬁn exp ﬁn)= ntr, exp HNn Z {[S dG,.R" (b,-):l_1
i

x § dGu [ B (0) mQ (b)) +5 L (n— ) B™* (b)) Q2 (b

+R 0N ]} (178)

Let us now consider the trace tr, (s3 ...s epo ).

IJ('I
where among the indices a,, ..., @, there is no pair of identi-
cal values, Using expression (157), we write

3§ e

tr, (s?,}l Tk s?}t exp ﬁ“) = 2

6B R
n , n
X exp( 2 hhs‘ff) S dGus?}'l - s?}l exp ( Z hisf). (179)
a=1 a=1

Using the fact that here each factor in the summed expres-
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sions depends on only sﬁ’; with a single 7, we interchange the
product and summation:

[+ 4 @ o~
tr, (si,il . si,ﬁl exp H,)
n
=1 3 S dGy exp( A bhs;‘f)
R(z%=1) {SE} a=1

n
X Z S ci.'Gus?x‘1 e szﬁl exp (Z b,-s?)
oL

a=1
{851

=TI Sdcuz vs 5 ) ﬁexp(hksé‘)

R{==1) {g}ll ‘{sﬂ} a=1

x{a. 3.3

) (P VG )
1
% N %y %y
X exp (b;s]) H Six_ exXp (b;s;7).
r=1

Interchanging the product over « and the corresponding
summation in the analogous manner, we obtain

n
sexp B )= [ S dGu I 2\ exp (bysh)

h(==1) a=1

o
t'rn (si:l:l wimra

144
Sx

1
2 exp (b;s] > sf{r exp (b;s;").

- 4 ¥ r=1 @
7 s? s

x S | |
Vo, ..
(180)

Taking into account the definitions ( 72) and (74) of the
functions R and Q, we finally obtain

o
tr, (si,@1 i v

siexp )= | {aou[2E ray |

m
R(s=1)

x { a@, [ 2t B 72 0, b)) ... 0x (b)

=[§ deurm )] tr,
xexp fy § d6uB™ () 0u (b) ... QuB).  (181)

In order to calculate the trace tr, (H,exp H,) appear-
ing in ¥, we use (148) to write it as

tr, (Hyexp ) = ) 4%, ()] emo

i<
+2 %iﬁ’f@u(ﬂfz—ﬁ-ﬂ i{ 2 Vi%ias (182)
i = g=1 %
where

Aij=try, [exp(Dé s?s?)exp}},,]; (183)

a=1
B iy =11, [EXP(Dé sfii-) expd, |; (184)

a=1
Cin=tr, (s?expﬁn). (185)
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Using (157) to write expH, as

expﬁn= H S dGy exp ( i hhsi) ,
3

=1

(186)

for & ; we have

n n

Aij=tr, l:exp(D b s?s?) 1 S ciGuexp( 2 hksf)].
=1 .1 =]
(187)
Isolating the factors with k = i, Jj in the product over k and
combining them with exp(DZE) _, 8;87), we write

a

A=) ... > 1I SdG“exp(zbhs}f}
x
1

g a) (=i, §) =1

X S dGy dGy exp [ 2 (Dsfsf 4 b;s?+ cjs?)]
a=1
=2 3 I A 65 s, G=n+tyv,
b (e
(188)

ie., o is the sum over {s7}, ..., {s%} of the product of
N — 2 factors, each of which depends only on §¢ (a =1, 2,
-y 1) with a single value of &, and a single factor depending
onsfands (a = 1,2, ..., n;i%jf). Interchanging the product
and summation, we find

Ay= I 2560 3 D 6% s,
Men ) ) {sf] {3}
Then in turn, summing £, (s%) over {s2}, we obtain
E I (S%)': S dGy E “ae E H EXD(bksZ‘)
(s L

={ 6 [T 3 exp(usiy =221 )" d6ur* b,), (190
1 o

o=

(189)

o)

S
and summing f; (s7, s7) over {s7}, {s7} gives
2 fis(s%, 87).
(st} [s5)
"
= S dGadGy 3, v D I] exp(Dsis? +b;st
5}, s3 s, sna=1

i’ 7

+eisf)=§ dGudey 1| 3 exp(Dsis} + bisT4 e

a=1I %, S;";
22 E H T (88) Fu5 (sE, s7), (191)
{s.lz) {,%} h(==1, j)

where the function T is defined as in (87), and

e; = 1; + §;v. (192)
Therefore,
= || S dGuR" (by) | dGud6,T"(D, b, ¢;)

k(z=1, j)
:(.”"mi )N“ I S dGyR" (by) [ S SdGu dGyR" (b;)R" (c,‘)]_1
3
x § { d6ude,r (D, b, ¢). (193)
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Similarly, for % ;. we have

Fo=> -2 1l SdGuexp(f)j, bks%)

() R
it

% S dGuexp[i (D3$*+hi5?)]
=1

=1l SdGuﬁ Eexp(thsﬁ)

n(=1) a=1 @
R

Hn

x § d6u T 2 exp (Dsfe +Dis),

a=1 o
&

(194)

or, according to the definitions (72), (113) of the functions
Rand P,,,

B o= m (m ) [ § duR" ()

R

x[ { dgurr (b)] 7§ d6uPE (D, b)- (195)
In accordance with (181), for ¥, we have
Crun= ("L )" I § dGuB” (by)
R
% [S dG, R (bi)]_i S dGaR™ (b;) O, (b)). (196)

Therefore, using (182), (193), (1952, and (196) and
taking into account (166), for tr, (H,expH, ) we ultimately
obtain

tr, (H,expH,)=tr, exp H, |

x{[{ § a6. a6,r" by B (e ]

x { { d6adG 1™ (D, by, ) Wiy ()}

+tr expH, D g {I: S 4G, B (bi)]—i
i x=i

x | 46,y (D, 1) Dia (9]0}

+Btr, expH, 2 3 {w[ § deurm 0y

a=1 i

x { dG.R™1 (b) Q(b)]. (197)

Finally, combining (166), (178), and (197), for %,
(152) we obtain

—nBF =, {[S S dGu dGR" (b)) B (‘3;'):|¢1
i<

x { § d6udG, 1" (D, by, ¢) Wi ()=}

+33 {[{ d6ur" 0) " § d6ully) (B, b) Brc (9)] 10}

i x=1

+np 3 {vi[ § dGur )] § dGuR=1 ) Q0
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—n B[ d6ur® w7 § a6 nmmt B Qb

+ A (=D R ) Qe b+ B () ]}

m+1

4y mg dGeR" (b)) + Anln™=—. (198)

Now in accordance with the variational principle we
must calculate the limit lim% , = Z (Ref. 59). Here we
n-0
shall use relations (128) and (129), and also the fact that,
according to the definitions ( 146) and (147), the functions
¥, (7) and @, (7) satisfy the equations
¥, (0) =0, S
@, (0) = 0. (200)

Therefore, owing to (199), (200), and (129),

b W 1) mg

== il_’ﬂul (T — 1) ¥y (1) | pmo = 1n T (1) | =c (201)
}ll_fg 1Py D (=0

ﬁlifg Pl — 1) Dy (7) | im0 =10 Ploy@; (1) | c=0 .  (202)

We further take into account the fact that the measure dG, is
normalized as in (159) and, therefore,

lim { dGuR" =1, (203)
n=0
so that according to (128) we can write
Jim 2t In S d6,R" = lim 7t S dGR" —1)
n=+0 10
=lim S AGan~t (B" —1), (204)
n—0
or, again using relation (129),
lim 7 1nS dGy R" — S dGyln R. (205)

On the basis of (20~1), (202), and (205) we can now
write down the limit of 7

—pF = lim (—B.7x)

=3 { § deude 7 (D, by ) ¥y (Do

+3 5 § dbutn Py (D, ) Dy, ()]s
i ox=1
+ 2 [@vi—m) § a6ur ) Q)]
+3[gaf warrmy@em]-3 (7 4)
i i

+ 5 S dGy In R (b;) - N In 211

m

. (206)

We note that in the expression for the free energy 7 ,in
the process of taking the limit n—0 the factor (n — 1) in
front of R "~ 2(b,)Q?(b,) in the term proportional to §7
changes sign. That is, the term
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—5 0 dGulin—1) 2 (0) Q2(b) + B (b)) (207)

becomes

51 | dGu IR (b) Q2 (b) —11. (208)
As a result, the sign in front of all the terms containing £ ?
reverses. This also causes the maximum with respect to £, in
— BZ , tobecome a minimum with respectto £, in — B.7.
Therefore, if (v, §;) = (W, &) is the point at which
—B.Z, reaches its maximum, then for —B.% the point
(M §:) = (M, &) will be a saddle point (a maximum with
respect to M, and a minimum with respect to ).

In order to write (206) in a more convenient form, we
use the relation

# (D) B(1) =0 =B (D) A (1) [2—9- (209)

Therefore, in accordance with (206) and (209) for the
free energy we have the expression

b7 =2 {{ deuaew,;(0ym 7z, b, ¢)],c

i<

+21 2 | 460 (D) n Py (x, by my

i x=1

+ 2 (Bvi—m) | d6ur1 (b) Qb))

1

+3[rafdrm)ee)]-3 (+a)

1

+2 g dGyIn R (b)+NIn 2ZEL — (290)

1

Let us see how the quenched Ising model is described in
our scheme. We obtain the Ising model by setting the dimen-
sion of the spin space m equal to unity, m = 1.

Using the fact that for m = 1 the function R (b) is the
hyperbolic cosine cosh & and Q(b) is the hyperbolic sine
sinh b, and also taking into account Eqgs. (88) and (114), for
the free energy of the quenched Ising model we obtain

—BF = 2 S S dG, dG,¥;;(D)In(chtchb;che;
i<j

+shtshb;she))|—p

43 S 4G, D (D) In ch (t-+b,) |,y

“+ 2 [(ﬁ"’i — ) S aeG, th 'L‘i] = 2 [-é— &3 S daG,, 1]13.7,‘,-]

o]

= [k 8)+ 3 S dG, Inehb,+NlIn2, m=1,
' ! (211)

where

dG = (2m)"1/2 exp ( — é ur3) dw;

b= - e =n; T,
i n‘wl Lild; Cj 15 +:1yi (212)

Vi@ =1l { dIP,; () exp BIE);
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©; 8 =1n | dhp, (k) exp (BI);

7, and £, are scalar variational parameters, and P;; and p, are
the distribution densities of the interaction strengths of the
Ising spins at points / and j and of the field at the point i,
respectively.

Let us now obtain the explicit equations for the vari-
ational parameters %; and £,, (155) and (156).

Differentiation of (206) with respect to M gives Nm
equations:

2§ § d6uder-1(D, by, ) UL (D, by, €) s (0o
i(=3)

[P(_I:) (D’ b!) S{y):x (D, hz) (Diy(T) |1:=0]
1

-|-SdG“

RN E

+§ 46 {3 1Bvi,— i) (— B20,0, + B10,,)

=1

+a[ —re.+ Z (R20,04) |} b) =0, (213)
y=1

where the functions U, and S, »x are defined by (107) and
(115). Differentiating (206) with respect to £, and eliminat-
ing the factor u from the integrand using Eq. (173), we find
the other & equations:

& 2 {§d6uds, 31—, b, eh U (D, b, ¢
(1) x=1

+T7(D, by, e) U, (D, b, ¢;)] Wi () le=o

T S e Z [—£) (D, by) S (D, by)

x, y=1

+P(E:) (D, bl) S(_.-;)xx (Dl b:)] cDiy

X (om0 +2: § d6u{ 3 1Bvi,—my) QR0
x, y=1

—RﬂQmQy _2R_20:.\:Qxy 'T‘ R_’Ox.xy)]

+a[ 30 (@2 — 3 (R90,.Q)

=1

+ 2 (—AR0,0,0u+ BH0Y + RH0,00) |

x, y={

+ 21 (BQu) } (b)— =0, (214)
x=1

where Q,,., S,,,.. and U,, are defined as in (105), (116),
and (109). The properties (83), (111), (117), and (112) of
the functions @, ,, Q, .. Stz and Uy, allow Eq. (214) to be
rewritten as

& 3 |

(5=1)

dGudGyT2(D, b;, e;) U2(D, b,, e} Wis (T)e=o

m
~2{ 46u 3 Pe3 (D, b)) Sty (D, b) By (5)] oo

x=1
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+E: S dGy {2 IETL“ [(ﬁ"iy—' Niy) (RﬂanQyﬂ % R2Q,0,, )]
=t x=1

+a[3RAQ@R—4 T (B0.0,05+R7Ch) |} b)=0.
x, y=1

(215)

Let us see what the equations for the variational param-
eters look like for the Ising model. Using the fact that in the
one-dimensional case (see Sec. 5)

Ug(a, b, ¢) =chashbchec+shachbshe, m=1;

(216)
S(y)x (a, b) = sh (a + b), m = '1, (217)
Qxy (b) =chd, m= 1, (218)

we have
¥ S S dGy dGy (14 th D thb, the;)™!
1)

X (th b, + th D they) Wi () |1=q

+S dGy th (D—i—bi)fDi('c)lT:g—i—S Gy
< A(Bvi— ) (—th2 b+ 1) 4-5; (—th®b; 4-th )} =0, m=1;
(219)
~E; 3, SS dGy dGy (1 th Dthb, the,) 2 (th b,
J(==1)
- th D th ;) ¥y (1) |emo —Li | dGu th* (D48 ®; ()=

£E S G {2 (Bv; — ;) (th3D, — th b,)

4+ &3 (3thtd; —41h2d, +4)}=0, m=1. (220)

8. THE ORDER PARAMETERS

Let us make a few remarks before considering the order
parameters.

For the trace of the product 57! ...sif,‘l exp H,, in which
all the indices a,, ..., a, are different we have expression
(181), where the trace tr, expH, can be written in the form

(166). In this case

lim (53 Sitye =\ dG.R (b
s xg -ee Six gﬂ— S iy, ( ;) Q‘t] (h,) - sz (bi)'
(221)

On the other hand, within the framework of the vari-
ational principle

& 1 = ek !
(sle L sut)};nﬁi‘_{’i) = <31x1 S S“Cz)Hn’ (222)
so that

& o
lim (s;2 ..
n-0 1

5y, = | d6R () 0, B) - .. 0, (),
(223)
where

Bs:"f_li+gi“a (224)
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and the parameters %, and £, are determined from Egs.
(213) and (215).

Let us now consider the quantities (({s,)y) and
({51 )@ (55 )n)- Since

N S o (225)

MWix 7

where F'is the free energy for given values of the interaction
strength j; and the fields h; (124), according to (129) and
using expression (137) for Z ", we can write

(seom=tim {nt1r, 3 {stexn[ —p 3 7 @]}}

(226)
from which

(Sabp =lim tr, [o% exp[—ﬁélﬂ({si})]} , (227)

From (226) we find

n n+l

s oy o 7
(Si00m (i = lim {n 1 2 D s {Sixsiy
71,-»8 a=1 y=n+1

xep[ —'2 7@}

= lim {tr,i {s‘-&s}’y exp[ —B .21 H({s?})]}} , o=y, (228)

h=0

In accordance with (227) and (228), using the definition
(138) we find

{Siade) = ling e, (s5cexp H,) =lim [{Z )™ tey, (85 H n)]
n-» fi—
= lim [try! exp H, tr, (sTcexp Hp)] = lm (s e,
n—0 n—=+0
(229)

USiwdm (%;})H) = liﬂ; tr,, (sixsiy exp Hy)
= lim [(Z")~ tr,, (s5esty exp H )]
n—+0

= lim [tr exp H, tr,, (555t exp H )]

ned
=111r13 (STSiydm, @F= V- (230)

Therefore, owing to (221),
(i) = { dGLR* (by) O (Bo), (231)
(sishm (shmd = | BB () 0 (B Q, B).  (232)

Now let us discuss the order parameters. According to
(122) the magnetic moment of the ith point is

m; = (($; g ) (233)
and from (231) we find for it
m, = { dG.R (0 +Tow) Q (0 +Cw). (234)

To describe the state of a spin-glass in the Potts model

we need to find the quantities
qP) = ((s:2,) 8, (235)

which are the expectation values of the squared statistical
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averages of the spin projections at the ith point on the direc-
tion of the vectors &,. Here, in contrast to the Ising model,
instead of one parameter we have m + 1 parameters. This
obviously is because in the Potts model we are dealing with a
multicomponent spin, and the number of possible orienta-
tions of it is m 4 1.

Since
({siepbly = 2|  sidir (Sig)md sty (236)
X, =
then, owing to (232), we obtain
0 = { d6,R2 (3, 4+ Tu) (2,Q (m; + Sy (237)

Therefore, the values of m, and ¢:?”’ at the ith point are ex-
pressed only in terms of the values of the variational param-
eters 7, and £; at the same point.

Together with ¢/’ let us consider the quantity

mtl
G=(m+1)"m N qp.
p=t

(238)

We note that for an arbitrary vector a, according to (54) we

have
w41
D (agp)t = m! (m - 1) a®. (239)
p=1
In this case for
m-+1
q; = {(m + 1)"'m 21 2 ({85 e €p)%) (240)
o
we obtain
a4 = {({s: ). (241)

This order parameter has the same form as the usual spin-
glass parameter for the Ising model.

Using (239), it follows from the representation (237)
for g, that

q=§ d6ur (0, - Tow) @ (i +Fou). (242)
Now we need the property (39) of the system of vectors

{e,}:

m+1
Lw

p=1
Let us consider the possible states of the ith spin as a
function of the values of the parameters 7, and £, deter-
mined from Eqgs. (213) and (215).
Case I:§, = 0, {, = 0. According to the definition(77)
of the function Q,

Q (0) = 0. (244)

Therefore, if 4, =0 and £, =0, then from (234),
(237), and (244) it follows that

&y = 0, (243)

(245)

m; = 01 q{ipj = 0:

and we say that the ith spin is in the N-state.
Case 2: 9, =0, £, #0. From (72), (77), and (234) it
follows that

m+1 m-+1 o
m; = 2 £, S dGu{ 2 exp (_Qis,;u)J 1e,\:p (Ls&pm)
p=1 g=1
m+1
= 2 &V @), A
p=1
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where V({,) is independent of p, so that the property (243)
of the system of vectors {e, } gives

m; = 0. (247)
Moreover, the parameters g'” have the form
0= | d6.R Gu) (e,Q Tu)e (248)

and, therefore, take the same value for all p and are nonzero:
@@ = | d6uR2 G) le,Q E) 2. (249)

In this case, i.e., if m, = 0 and ¢/ #0, we shall say that the
ith spin is in the SG-state.

Case 3: m,; #0. In this case, again owing to (234) and
(237), we have

m; =0, ¢’ #0, (250)

and we shall say that the ith spin is in the M-state. For defi-

niteness let w; ||¢,, i.e.,
"—Ii =?li3r-

For the magnetic moment of the ith point, taking into ac-

count the definition (39) of the system of vectors {e,}, we

have

(251)

m+1

m;= > {sp exp (n;€,2,) S dGa
p=1

m+1
_ i -1
X [ 2 exp (1;e,&,) exp (C,-map)]
q=1
3 m4 1 ’
% exXp (giusp)}= by {ep exp('r],- % i,P) S dG,
p=1
m+1 {
= 7t - -1 =
<[ 3 exp (w25, ) exp @uue,) | exp (Cue,)}
g=1
(252)
and, therefore,
m-1 -
m; = gl [epU (n;, L))+ W (M Za)s (253)
(?ﬂ;r)

where the function Uis independent of p. Then, owing to the
property (39),

m;=[W (, 5)~UMm, D)le, (254)
and, therefore,
m; || m,. (255)

We also note that the quantities g{”’ for ps£r are equal to
each other:

Qi—p) = \’ dGyR2 (ﬁifr +Et“) [EpQ (ﬁisi + g_iu)]z

={ Uirn D=7, (256)
gy p#f‘

Therefore, the number of different parameters g ig
not at all equal to m + 1. In the N- and SG-states all the
parameters are equal to each other. In the M-state they are
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all identical, except for one: the expectation value of the
squared statistical average of the spin projection on the mag-
netization direction.

9.THE SPATIALLY UNIFORM CASE

Let us now consider the special case where the regular
field v, is uniform and directed along one of the vectors €,
the distribution densities of the interaction strengths J;, are
identical for any pair {i, /) of interacting neighbors, while for
the other pair the interaction strengths are equal to zero, and
the distribution densities of the random fields h, are identical
for all points and components.”*** That is, we take

v, =v |l e. (257a)
For definiteness we set ¥ = m + 1:
V; = VEp 1. (257b)

Let the distribution density of the interaction strength have
the form

Pii(‘fii)
P (J;;), for pairs of interacting neighbors
(i, NELd, N}
8 (— i), Tu=0,
@, 7 e wh

(258)
for the other pairs

with the number of interacting neighbors of each spin equal
to z. We also assume that

Pix (hix) =P (h'ix)'

From the assumption (258) it follows that

(259)

{ ¥ (1) =1n { &P (/) exp (BI), (0.1 ELG D
Vi (T) =

pror=0, & NELL N
(260)
and from the assumption (259) it follows that
®;p (1) =@ (1) = In Sdhp (k) exp (Bh). (261)

With the conditions (257)-(259), taking into account
symmetry considerations, the solution of Egs. (213) and
(215) can be sought among variational parameters of the
form 1, = 7€, 1, &; = &;- In this case instead of Nm+ N
parameters 7., &; (i=1, ..., N:x =1, ..., m) we have only
two parameters, 7 and £. In accordance with (210), (260),
and (261) the free energy (3) is written as

—NBFM D=2 3 S 4G, G Y (D) In T (v, B, €)}e=o

4 { d6.0(D) 3, 10 Py (7, Bt § 46

x=1
< {(Bv—n) B1Qp+ 5 & RQ>+In R}
x (B)—3 &+l L, (262)

where we have introduced the notation

648 Sov. J. Part. Nucl. 20 (6), Nov.-Dec. 1989

B=ﬁ£m+i+gu; C=—ﬁ9m+1+f"‘ (263)

Instead of the N equations (215) we have the single equation

t{—s S S 4G, dG¥ (D)T2 (1, B, C)U? (1, B, €)]co

m
—{ a6 (D) 3 P (. B) S (51 Ble=o

x=1

+{ a6u {2pv—m) (FoQCn— S F4Q.0n:)
x=1

+e[3R (@) —4 S 0.0,Q4 |} B)=0, (264)
x, y=1

while the Nm equations (213) give m equations

2 {{ 6,469 (D) T (v, B, O)Ux (%, B, C)le

+{ a0 @ T Pi) (v, B) Sy (% Bllomo

y=1

+ | d6u [ Bv—m) (= R0 Qu-+ R*Cm)

m
40 —RQQ, + B2 D) 0,0 ) | B)=0- (265)
y=1
However, the left-hand sides of these equations are identical-
ly equal to zero for all components x except x = m. This can
be verified by exactly the same method as was used to show
that ;| €, [see (252-(255)]. Infact, rewriting (263) in vec-
tor form, just as in (252)—(255), we find that each integra-
tion on the left-hand side gives a vector parallel to €, , ;-
Therefore, instead of the m equations (265) we have the
single equation

z S g 4G, dG W (D) T (v, B, €) Uy (7, B, €)=

+ [ 46, (D) 2} Piy (%, B) Stom (%, Bl o0

x=1

+§ d6u] (Bv—n) (— R2@h - B Q)
+0 (AP R 5, 0.0ns) ] B1=0. (266)
x=1

Equations (264) and (266) form a system of two equations
for the two unknowns 7 and £.

In accordance with the representation (231) for the
magnetization

w=(C Top,)
we obtain 1

m= ( GRS (Mt + L0) Q (MEmass -+ TU), (268)
or

m= S dGy R (B) Q (B). (269)

The spin-glass order parameters ¢g'” (235) and ¢ (241) are
independent of the point number i:

q® = ({s;&; ), (270)
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q = {(s: )k (271)

and have the form

Q(P) — j dG“R_z (-ﬁsm+i + E“) [EPQ (?]E'm-i-{ -}‘Eu)]zv (272)

q={ a6 (e s+ T0) Q2 (Rmss +Lu),  (273)

or
o = { dG.R > (B)le,Q B)P, (274)
q= g dG R~ (B) Q2 (B). (275)

According to (256), all the ¢ with p=£m + 1 are
equal to each other:

@ =q p=1, ..., m (276)

q(m+1) = q,-

For 77 =0, i.e,, in the absence of magnetic ordering, all the
g'” (p=1, ..., m, m + 1) are identical:

q(pJ:qN, p:f,...,m—i—i, ln:0. (277)

With the conditions (257)—(259) for studying antifer-
romagnetic ordering, the spin-glass phase, or the paramag-
netic phase (for J <0), the solution of the variational prob-

lem can be sought among variational parameters of the
g g p
form®57.68
Nar-1 = NEm+1, Mor = MEp-

Therefore, as in the ferromagnetic case we have only the two
scalar parameters 5 and .
The free energy takes the form

—NBF (M) =+ 5 § dGy dG,¥ (D) In T (1, B, E)|,—g

]
M g

, dG,© (D) In P(x) (T, B) [+=0

-

dGu(‘D (D) In P(:x:} (1'—9 E) | =0

_%_
ro| =~
ipags i

__;. 1 S dGuR™ (B) £,41Q (B)

st B 5 A6 Rt (E) ,,Q (E)
x=1

+7 0§ dore @@

+ 0 [ am @ Q@ -

+= 3 dGy1n R (B) + 5 ( dGy1n R (E)+ In 2L
(278)
B=ngyy +lu, E=ng,+v. (279

If we make use of the symmetry of the simplex vectors, we
can write

—NBF (1, D=2 | | d6ud6, ¥ (D) InT (v, B, Bz

+ 2 [ 46,0 (D) 1n Pey (3, BY =g
x==1
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—1 [ d6uB (B) 6y Q (B)
+relarmeE—Le
2 = . v 2 =

+g dGoln R (B) 4-In 2EL (280)

Owing to the representation (231), the magnetization
vector of the first sublattice

m® = (g Doty ) =Map = () (281)
R

has the form

mt = 5 dG,R™ (ﬁgm-f-i + Cu) Q (7_l£m+1 + 5“)1 (282)

or

) = S dG, R (B) Q (B). (283)

According to (255), it points along the simplex vector

Byt

m® || &g (284)

For the same reasons the magnetization vector of the second
sublattice

1 ,

m — <<N—,3 % 52h>H> = Mgy, = {(Sap)p) (285)
has the form

m® = { dG.R* (e +Tu) Q (e + Lu), (286)
or

m® = S dGy R (E) Q (E), (287)
it points along the simplex vector g,,,,

m || &, , (288)

and its modulus is equal to that of the magnetization vector

of the first sublattice:
mY = m? = mD,

(289)

On the first sublattice the spin-glass order parameters
g‘?’ (235) and (238), in accordance with (237) and (242),
have the form

4@ = { dGuR> (e pss+To) (2,Q (Mewey + WP, (290)

q® = { d6uR2 (Mo + T0) @ (Mg +Tw), (291

or
g, 0 — S dGy R (B) [¢,Q (B)I?, (292)
q = g dGy R* (B) Q? (B). (293)

According to (256), all the ¢*»"” with p#m + 1 areequal to
each other:
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g, » = @, p=1,...m, (294)

1, 1) — gl
q(m+,)_qo.

On the second sublattice for the spin-glass parameters we
find

q® ? = { dGuR* (nem+ To) [e,Q (e +TWP  (295)
0@ = | 4GB (e +Tw) Q@ (Men +Tu),  (296)

or
q® 2= { dGu R~ (B) le,Q B, (297)
4 = S G, B (E) Q? (E). (298)

Owing to (256), all the ¢*~» with p#m are equal to each
other:

q(p,z):(;lz), B=Ay e e sy m—1, m+1, (299)
q™ = q:}"‘,
where
g0 =g® =g, } (300)
0" =" =do-

It follows from (294) and (299) that the parameters
(238) on the first and second sublattices g’ (291) and g
(298) coincide:

q = g = q. (301)

For 77 =0, i.e., in the absence of magnetic ordering, all the
g (p=1, .., m, m+ 1) are identical:

PV =qF2=q p=1,...,m+1, m=0

(302)

Therefore, according to (276), (277), (299), (300),
and (302) in the paramagnetic phase and the spin-glass
phase all the spin-glass parameters g{”’ are equal to each
other. In magnetically ordered phases for each point / there
are two different parameters g;”’, namely, the expectation
value of the squared statistical average of the spin projection
on the magnetization direction of the point and on any other
direction of the other simplex vectors.

10. THE GAUSSIAN DISTRIBUTION

When studying specific distributions P; and p,,, it is
convenient to use the expansion in semi-invariants x",

In Xy (£) = i (R (iE)rn, (303)
R=

where y,, (#) is the characteristic function of the distribution
w(z) of the random variable z:

Aw(t) = S dziw (z) exp (itz).

In accordance with the definitions (140), (147) of the
functions ¥; and @,
“Pij (T) =In XPEJ‘ (= ipT)!
Dy (1) =Inxe, (— i),
so that

(304)
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W= 3 (I (Buui,

o (305)
Die(v)= 23 (R (1
For the Gaussian distribution
w(z) = (2n0)" P exp | — - 071 (z—2)] (306)
with mean value 7 and dispersion ¢ we have
% (t) =exp (izt—-% O'tz) 5 (307)
so that
e (308)

1

z, k=1
wW=< a k
0, k=3,4...

When the distributions P, and p,, are Gaussians with
average values J; and &, and dispersions o, and p,, , respec-
tively,

Py (J) =20y, Pexp [ —+ o33 (T =T |
J( ] l: 2 7 7 ] (309)

" 1, -
P ()= @npy) ™ exp [ —-pit (=Tl |

the functions ¥; and ®,, have the form
= 1 v
¥;; (8)=BJ: 5+ - o
B . (310)
;e (B) = Bhual + 5 B2

Let us consider the translationally invariant Gaussian
case where

7. | I, G DELE D) U__:[ o, (i, DEL N
T D, (6 DEf D) ¢ 0, (&, NELE N}
- (311)
hia'.zol Qi =0 (312)

We note that setting /.. = 0 does not lead to loss of genera-
lity, since the average value of the random field h; can be
taken into account in the regular field v,. The equation p;,
= p implies that the fluctuations of the random field are
isotropic.

In expressions (262) and (263) for the free energy we
can eliminate the double integration (over u and v) and the
scalar product of the component functions and write it in
terms of the functions

g0 (10) = § dGu R (B) exp (Beyns), (313)
Dy (n, §) = | d6u Bt (B) exp (2Bey), (314)
Dy, ) = SdG,.R*'Z (B) exp (2Bey), (315)
Bo(n, O = {d6uin & ®), (316)

while for m = 1 it can be written only in terms of the fune-
tions &, &, and #, (Refs. 70, 67, and 68). Namely, for
m> 1 in the case of the ferromagnetic, paramagnetic, and
spin-glass phases the free energy has the form
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—NpF (. 0)
=~ 20t (g ) tn n— 1)1 (24 m— 1) 9
Hm— 1) (mi—m 1) 2]
- m3 (m— 1) (10m? 4 6m — 1) &2

— 2 (m—1)"1D, D, — &2 (m— ) (m2+ 5m—2) B €,
+4mt (m— 1) (3m — 1) D o8, — 2m7% (m— 1) (m + 1)2 D,

+2m3 (m—1)"1(m 4122,
—2m (m— 1) (B3m® + 10m? + m—4) §,

—m™ (m— 1)yt (m+ 1 (3m—7)}

=)

—2m7E, +m2)

+—5 5 (BT -+ poo 2
m-}-l(g

3 @—F0) [ 55 nD+ 2) — ]

m--1

— (Bv—") (€ — ")+ Bo+ - sP2om 4 In 2L
(317)
The magnetization m is equal to
m=g, (M, {)—m™ (318)

In the case of the antiferromagnetic, paramagnetic, and
spin-glass phases for the free energy we have

—NBF (n, 1)
= “1‘2052( m1 ] {m™2 (m— 1) (3m— 4) 22

A+ (m— 1) (m2 —m— 1) 27
—2m™ (m— 1) (Tm3— 3m2 — HMm —1) g2
— &m 2D, — 6m (m 1) D€,
—2m™¢ (m— 1)~ (3md - SmE—m —3) 7,
—2m2(m—1yt(mi+ 1) T,
—2m™4 (m— 1) (3m3 4+ Sm2 + m—+ 3) &+ m™® (m— 1)1 (m*
4 48— 122 — 9 — 4)} — 2 (5}4—%590"!7-) T
X {m?2(m4+ 1) E+2m3(m—1) &+ m™ (m-+ 1)}
Fg @B [ T, + 2 "]

+ (Bv—m) (o —m™) +F,o

+ 4 sftomt 4 1n 2EL (319)

The magnetization of the sublattices m‘® has the form
m® =&, (1, ©)

Independently of the type of ordering, the spin-glass order
parameters g, g,, and g are expressed in terms of the solution
(7, £) of the problem of finding the saddle point of the free-
energy function (317), (319) as follows:
A=, (m, D+2m € (1, H—m (m+2),
Q=% (. D—2Im 1€, (M, T)+m2.

4= I, (1, D+ 2o (m, D] —

—mL,

(320)

(321)
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FIG. 4. Phase diagram of the three-component Gaussian stochastic lattice
system.

The functions &, &, &, and & , are universal in the
sense that they are independent of the temperature 1/8, the
number of interacting neighbors z, and the parameters of the
distributions of the interaction strengths J and o and the
random fields p. This is why the representations (317)—
(321) are convenient.

For given parameters of the distributions of J o, and p,
the number of interacting neighbors z, and the temperature

= 1/p, the problem of finding the saddle point of the free
energy (317) or (319) can be solved. Its solution gives the
values of the order parameters of the magnetization (318) or
(320), and also the spin-glass order parameters (321). As
was shown in Sec, 8, if 7 = 0 and 5‘ 0, the lattice is in the
paramagnetic phase, if 7 = O and £ #0, it is in the spin- -glass
phase, and if 7750 it is in the magnetically ordered phase.

The problem of finding the saddle point of the free ener-
gy (317), (319) was solved numerically in Refs. 67 and 68
for the three-component model. The result was used to con-
struct the phase diagram shown in Fig. 4. Here the letters P,
F, AF,and §G denote the paramagnetic, ferromagnetic, anti-
ferromagnetic, and spin-glass phases.

When the interaction strengths J and their dispersion o
are fixed at the average value, at sufficiently high tempera-
tures @ the system is in the paramagnetic state. If J is suffi-
ciently large, as the temperature is decreased the system en-
ters the ferromagnetic phase, while if. Jis fairly small it enters
the antiferromagnetic phase, and it will remain in these
phases down to zero temperature. If the modulus of J is suffi-
ciently small, then for 8 = 1\zo the system goes to the spin-
glass phase, but at lower temperatures down to zero a mag-
netically ordered phase will again be observed: if 7> 0 this
phase is ferromagnetic, and if 7 <0 it is antiferromagnetic.
This is the fundamental difference between stochastic multi-
component (g>>3) lattice systems and the stochastic Ising
model.

This feature is related to the degeneracy of the ground’
state and the possible existence of long-range correlations in
antiferromagnetic and frustrated systems.

The asymmetry of the phase diagram relative to the
temperature axis should also be noted.

11. THE NATURE OF THEPARAMAGNET-SPIN-GLASS
PHASE TRANSITION

In the paramagnetic phase (the N-phase) and the spin-
glass phase (the SG-phase) the variational parameter 7 1s
equal to zero: 7 = 0. This causes the expression for the free-
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FIG. 5. Dependence of the coefficients 4 and B in the free-energy
expansion (115) on the temperature €: (a) m <5; (b) m> 5.
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0.25 R 8(8)
———
A(8) g 7
0
() BN -0,04
8(s)
-0.25 -0.08
0.75 2.00 0.2 0.8

o
o

energy function to simplify considerably. For the free energy
N7'F (0. &) |,—o =f.(£) one obtains the expansion”'

—Bf () = —1— m™zof2 4+ In (m-+ 1) - —}; m~t (1 —m~2202)
4 mE () — 5 M08 ) + O (&Y).

(322)
The substitution x =£> transforms the expansion
(322) to the form

—PBfs(x)=C+ Az>+Bz? - . .., \

A:_Lm—im_m—zwﬁz}, |

4 (323)

B=-g m2(m—5) (3—5ms0p?).
We note that, in contrast to the regular model, both coeffi-
cients 4 and B depend on the temperature. They vanish at
the temperatures 6, = m ™~ 'Jzo and 0, =+/3/26, >0, re-
spectively. The form of the functions 4(¢) and B(#) is
shown in Fig. 5. )

Let us first consider the case m < 5. For 0 <8 <8, the
form of the function — £, (£) is shown in Fig. 6a. The mini-
mum of the function — £, (¢) is reached for £ #0, so that the
gystem is in the spin-glass phase. For 8 > &, both the coeffi-
cients 4(8) and B(#) are positive, the function — £, ()
grows monotonically, and £ = 0, i.e., the system is in the
paramagnetic phase (Fig. 6b). For @ = ¢, we have the rela-
tion

d 2
O], =0
i.e., for @ = 6, there is a second-order phase transition.

The expansion (323) makes it possible to find the criti-
cal exponent associated with the spin-glass order parameter.

Namely, for m <5 and 65 @, the value of £ is given by the
relation

24 9 4 62—0%

84—
EY:

=2
L=~ 6y

and for the spin-glass order parameter we have

q=mP,—mt=m P40 ) ~24=0 (324)

[
i.e., the critical exponent associated with the spin-glass order
parameter is 1 for all m < 5. In the special case of the Ising
model m = 1, this corresponds to the result of Ref. 50.

For m > 5 the sign of the coefficient B(&) changes. In
this case for @ < 6, we have the inequalities B <0 and 4 <0,
so that the function — f; () first decreases, and then, owing
to higher-order terms neglected in (323), must increase [the
function £, (¢) is bounded below], and therefore £ #0 (Fig.
7a). For 8, <6 <@, the form of the function — f,(§) is
shown in Fig. 7b. Therefore, for m> 35 a first-order phase
transition occurs in the system at a temperature & in the
range Ogc€[ 04,685 ] (Ref. 71}.

12. ADISTRIBUTION OF THE INTERACTION STRENGTHS
HAVING TWO MAXIMA

In real spin and ferroelectric glasses the magnetic or
dipole moments are stochastically distributed on a regular
lattice (the so-called matrix). These moments interact with
each other via a strongly oscillating interaction which falls
off slowly with distance (the RKKJ interaction) (Refs. 46—
48). The effective probability density of the interaction
strength in such systems was modeled numerically in Ref.
72. It was shown that the probability density has several
(two or more, depending on the parameters of the RKKJ
interaction and the lattice parameter) maxima.

FIG. 6. The function — f,(x) for m<35: (a) 8<8,; (b) 8, < 6.

~f5(X) ~fstx)
0.04} 0,021
0.02 0.07 -
0 [/
-0.02 -0.07
7 . x 0.8 o b x 0.8
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Therefore, in order to approximate the situation occur-
ring in real spin and ferroelectric glasses, let us consider the
Potts model with the probability density of the interaction
strength P(J; ) in the form of the sum of two Gaussians with,
in general, different weights and arbitrary location relative
to the points J; = 0:

P (J) = (2ao)~1? (x + x4t

X{wtexp {—[J — 7, (1 + a)l*/20}

+wexp{ — [J -+ T, (1 —a)]2/26}). (325)

This probability density has a sufficient number of pa-
rameters to accurately approximate the distribution of the
,interaction strengths in real materials. We shall refer to the
distribution (325) as the frustration~Gaussian distribution.
Calculations carried out for the frustration-Gaussian
distribution using expressions (210), (234), (237), and
(242) for the free energy and the order parameters have
shown that the vicinity of the triple point and its location
undergo certain changes when the parameters of the distri-
bution (325) are varied. For example, in Fig. 8 we show the
paramagnet—spin-glass—ferromagnet triple-point trajector-
ies as the parameter a varies for several values of 3. Here AJ
denotes the dispersion of the frustration—Gaussian distribu-
tion
473
T w)E

AT =0+ (326)

The dependences of the slope angles of the curves for
the paramagnet-spin-glass, paramagnet—ferromagnet, and
spin-glass—ferromagnet phase transitions at the triple point
on the parameter

8/Vz
2.0

7.8
%8
1.4
7.2
.0
0.8
0.6
0.4 1 1 ! 1

2 1 2 3 &
TVz,/ VAT

L] =

FIG. 8. Triple-point trajectories for various values of »x = 0.2 — 5.
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FIG. 7. The function — £, (x) for m> 5: (a) 8<8,; (b) 8,<8,
[the dashed line corresponds to the series (1 15), and the solid line
corresponds to the inclusion of higher-order terms].

C=2 Vi(x+x)'/Vo (327)

for @ = 0 are shown in Fig. 9. Here the slope angles of the
paramagnet-spin-glass, paramagnet-ferromagnet, and
spin-glass—ferromagnet curves are denoted by 7 —p,
7/4 — a, and w/2 + ¥, respectively.

The phase diagram for the frustration-Gaussian model
is constructed in the coordinates

X=VzJIVAI, Y=0/VzAJ, (328)
where T is the average value of J and AJ is the dispersion, or,
equivalently,
X Vo [ U 4 ) (L —a)]
2 A+cHe :
Y = [z0f? (1 +CH)] V2.

(329)

These coordinates are the natural generalizations of the co-
ordinates for the phase diagrams of the Gaussian distribu-
tion.

For the curve corresponding to the paramagnet-spin-

glass phase transition we obtain
Y =1, Xe(-+1, 1),

the curve for the paramagnet-—ferromagnet phase transition
is

X=Y, X>=1,
and that for the paramagnet-antiferromagnet transition is
X=—¥Y, X<1.

For the curve corresponding to the phase transition
from the spin glass to the magnetically ordered phases (the

a’:ﬁi}'
a.08

0.06
2.04
0.02

fJ

~-0.02

/) 7 2 Z 4 c

FIG. 9. Slope angles of the curves for the following phase transitions: a—
slope angle of the paramagnet-spin-glass curve 7 — f; b—slope angle of
the paramagnet—ferromagnet curve 7/4 — a; c—slope angle of the spin-
glass—ferromagnet curve 7/2 + 7.
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FIG. 10. Phase diagrams of the frustration-Gaussian Ising model: (a)
x=1;C=1; (b) x=3; C=1.5; {c) x=1/3; C=1.5; (d) x=1/3;
C=0.5.

ferromagnetic and antiferromagnetic phases) in the vari-
ables G and 5
G=J oﬁ/‘ [
S =of/L }

we obtain the system of equations

(330)

Go=Mz+1/VEInxt+1/ V32 i (— 1)1k (w2t — %2t
h=1

X @™ RGN (4)2G2), (331)
§=1/z—(2— V2) In (x+xY)
+ i (— 1)Ert ke (2%  2) @ 4R20?
E=1
X [24 (2k26%) — V2 (4K2G)], (332)
where
1p(x)=§-]i/-v—_ S due™ (1 +x)¥%, (333)
It

1}

and A =1 for the ferromagnet-spin-glass transition and
A = — 1f{or the antiferromagnet-spin-glass transition. This
system of equations has been studied numerically. The re-
sulting phase diagrams for the frustration-Gaussian Ising
model are shown in Fig. 10.

13. THEFRUSTRATION MODEL

Let us consider the frustration model with the distribu-
tion (Refs. 51, 69, 73, and 74)

P =T —J)+A—a8( +7) (334
where J, is a non-negative parameter—the coupling
strength, and ¢ is the concentration of positive couplings and
takes values in the range O<e<1.

Using the notation

14 (1 — )" 1ee 4B )

A0 =1—hz {3 (—1)"In o e

k=1

— 3 In[(t— o) tel},
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o0

B=1—2z 2 (— 1*EIn[(1+(1—c) tce-*Isf)

k=1

% (1 - (1 -7(2) cwle—éhJoﬁ)]— —;-z In (()——L’z)

the results of Sec. 12 lead to the following conditions for the
phase transition from the paramagnetic phase to the ferro-
magnetic (4 = 1) or antiferromagnetic (1 = — 1) phase™:

AM =0, # =0. (335)

The paramagnet—spin-glass coexistence curve is determined
by the conditions

F=0, £AM>0. (336)
The phase transition from the spin-glass phase to the ferro-
magnetic (4 = 1) or antiferromagnetic (1 = — 1) phase is
described by the system

A S 4G, 1 — th? (Cu)]

Jzln[(1—c)ct]ye S a6, [1—th? (V2 zu)]

e el ()~ ()]

) —unpr b (V20u) A )
X & SdGudGuln[1+e ch(ﬁgy)](uz v?) =0;

(337)
1—3th?lu

1 2
—CW———Z—ZIH(C—'C)

e a,

X { a6, [teu—the (V320)]

- il(wi)"*‘/k[( ) () e
k= |

% § 6, dG, 1n [ 1 e-us07 %] (24 12— 2) =0.

(338)

The triple point is determined by the equations

AM =0, ®=0, (339)

where A = 1 for the coexistence point of the paramagnetic,
ferromagnetic, and spin-glass phases, and A = — 1 for the
coexistence point of the paramagnetic, antiferromagnetic,
and spin-glass phases.

The systems (335), (336) and (337), (338) completely
determine the phase diagram.

These systems have been solved numerically. It has
been found that Eqgs. (337) and (338) can be used directly
for practical numerical calculations only for values of the
parameter £ which are not too small or too large. Therefore,
the limits £ —0 and {— « must be considered separately.

For £ —0 the system (337), (338) is analytically trans-
formed to the form

B =24",
# <0, |A‘“|<1-}

(340)

We note that (340) gives a satisfactory approximation also
in the case of finite (not small) values of .7 ‘*.
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For {— oo the system (337), (338) becomes

xh+4/V§mi—c+4rV§2(_4wﬂ/

e
h=1

(e (155 Ty e =0 caan
1/z+(1—1/V2) In (c—e?)
+Z (__1)h+1/k [(1_—(‘F)h__(i—cc )h]
h=1
e~ 4G [ (2K2G7) — V2 4 (4K2G2)] =0, (342)

where the function #(x) has the form (333). Here

6= lim (J/7),
L—+o0
and J is the solution of the system (337), (338) for J, with a
given value of £.
The phase diagram was constructed in the variables

]
Joz 7

X=C‘, Y=

Itis givenin Fig. 11 for the number of interacting neigh-
borsz =6 (a) and z= 12 (b) (Ref. 75).

The dependence of the coordinates of the characteristic
points of the diagram on the value of z has been obtained. In
Fig. 12 we show the z dependence of the triple-point coordi-
nates. The coordinates X of concentration phase transitions
from a spin glass to a magnetically ordered phase at zero
temperature, and the coordinates Y of the point of the para-
magnet-spin-glass transition for equal concentrations of
positive and negative couplings (¢ = 4) are shown in Fig.
13.

It has been shown that for any z when the concentration
of positive couplings is close to unity, the end point of the
paramagnet—ferromagnet transition curve is the point (X,
Y) = (1, 1), while for the concentration of positive cou-
plings near zero it is at the point (X, ¥) = (0, 1).

CONCLUSIONS

Tt is clear from this review of applications of the Potts
model that this model is interesting because it serves as the
basis for the theoretical description of a wide range of diverse
objects and phenomena in condensed-matter physics. Exam-
ples are complicated magnetic systems (for example, aniso-
tropic ferromagnets with cubic structure), ferroelectrics,

8/zJy 8/27,
7.0 1,0
P P
0.5t 8.5
AF & AF F
58
By
a
1 ] b
0 0.5 ¢ 1.0 0 2.5 ¢ .0

FIG. 11. Phase diagrams of the stochastic frustration Ising model: (a)
z=6;(b) z=12.
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3/2'.]9
N7 7
a5k
c c
B B
A
0 0.5 ¢ 10

FIG. 12. Dependence of the triple-point location on the number of inter-
acting neighbors z; for ¢ 4, the point of osculation of the paramagnetic,
ferromagnetic, and spin-glass phases; for ¢ < 4, the point of osculation of
the paramagnetic, antiferromagnetic, and spin-glass phases. Points: (4)
z=0;(B)z=6;(C)z=12; (D) z— .

spin glasses, multicomponent alloys and liquid mixtures, the
adsorption of inert gases on adsorbents like graphite, phase
transitions on interfaces, structural phase transitions, cer-
tain processes in polymer systems, and percolation phenom-
ena. The language of the Potts model has been used to for-
mulate the classical coloring problem, which, in turn, has
applications in physics, and for a number of optimization
problems. Particular examples are the traveling-salesman
problem and the problem of the partitioning of a graph into #
parts with the minimal number of couplings between the
parts. The latter problem is directly related to designs for the
architecture of electronic computation, to structural pro-
gramming problems, and problems in control theory.

The Potts model is of theoretical interest as a simple but
rich model for studying first-order phase transitions and
multicritical phenomena. Here it fully satisfies the basic re-
quirement that the model be simple enough that a reliable
solution can be obtained, but not so simple that the content is
trivial.

Here we have proposed a method for studying stochas-
tic Potts models, i.e.,, models in which the interaction
strengths and fields are random variables. The techniques
developed were applied to systems in which these random
variables can have arbitrary probability densities, with the
possibility of the latter varying from pair to pair and from
point to point. Possible ordering structures have been stud-
ied.

0.040
2.035
43

> 0.050

N o025
> 0.020
& 0015
]

o 0.070

>
2.0 1 1 I 1
aj.? £ 8 12 15 =z

T

FIG. 13. Dependence of the critical-point locations on z: a—the coordi-
nate X, of a point of the boundary between the ferromagnetic and spin-
glass phases for ¥ = Orelative to the coordinate X, of the tripole point; b—
the coordinates ¥, ,; of a point of the boundary between the paramagnetic
and spin-glass phases for X = 1/2 relative to the coordinate ¥, of the triple
point.
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We have used our method to study specific models with
various dimensions of the space of states and distributions of
the random variables. The corresponding phase diagrams
were constructed. In particular, we studied the three-com-
ponent Gaussian model. We calculated its free energy and
obtained its phase diagram. The nature of the transition
from the disordered to the weakly ordered phase in multi-
component Gaussian lattices was determined. If the number
of possible states of the lattice points is less than six, a sec-
ond-order phase transition occurs; if this number of states is
larger than six, a first-order phase transition occurs. The
corresponding critical exponent was calculated. The frustra-
tion Ising model was solved. We studied frustration—Gaus-
sian models, i.e., models in which the probability density of
the interaction strengths is the sum of two Gaussian distri-
butions, in general, with different weights and arbitrary lo-
cations on the intensity axis. This type of probability density
gives a fairly good description of the distribution of the inter-
action strength in real magnetic and ferroelectric systems.
The phase diagram was obtained, and the dependence of the
characteristics of the phase diagram on the distribution pa-
rameters was determined.

The results show that, in contrast to what was thought
earlier, the form of the distribution of the lattice parameters
significantly affects the thermodynamic properties of the lat-
tice and the structure of the phase diagram.
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