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Studies of the theory of resonances in three-particle systems are reviewed. Particular attention is
paid to a method which uses analytic continuation of the Faddeev integral equations to the
unphysical sheets of the Riemann energy surface. The features of the method are studied in the

example of the two-body potential problem. In this case, Fourier transformation, normalization

H

and calculation of the matrix elements in the momentum representation are generalized to
include Gamow states. The main subject of study is systems of nucleons. For these systems the
results of experimental investigations during the last 20 years are also summarized. Problems of
allowance for the Coulomb interaction are briefly discussed. Applications of the theory to other
hadronic systems, including mesons and antinucleons, are mentioned.

INTRODUCTION

Resonance states of few-particle systems are currently
attracting more and more interest. The quasistationary lev-
els of the lightest nuclei are important objects of experimen-
tal and theoretical investigation in connection with the prob-
lem of thermonuclear fusion, and also the search for
long-lived states outside the stability region. The important
part played by resonances in the physics of nuclear reactions,
including astrophysical problems, is well known.

The development of methods of theoretical investiga-
tion of resonances has a long history, which goes back to the
work of Gamow' on the description of the decay of nuclei
and the work of Breit and Wigner.** The Breit-Wigner for-
mula is traditionally used to analyze peaks in the cross sec-
tions of nuclear reactions. During the last 15 years many
important results have been obtained and published in many
journals. Unfortunately, the well-known books on scatterin g
theory*’ devote too little space to resonance processes and
the theory of Gamow states. Naturally, the information in
these books is incomplete, since they were published more
than 15 years ago. This was one of the reasons for writing the
present review.

From the formal point of view, the descriptions of a
bound state and of an unstable Gamow state are equivalent,
since the radial wave functions of these states correspond to
the same radiation condition in the form of an outgoing
spherical wave, this being reflected in a zero of the Jost fune-
tion or a pole of the S matrix. However, for unstable states
these poles are situated on unphysical sheets of the Riemann
surface of the energy £ (ImJE <0Q), so that the Gamow
wave function oscillates with an exponentially increasing
amplitude. This leads to well-known difficulties, both in the
calculation of the Gamow wave functions and in their nor-
malization (for a long time they were regarded as un-norma-
lizable, or they were normalized in a finite region of space®).
Problems also arise in the calculation of the matrix elements
that determine the cross section for a transition to an unsta-
ble state. Reactions of such type have been studied in the
literature (see, for example, Refs. 7-13). One of the possible
ways to solve the problem is to use the method of complex
scaling, which is based on the so-called ABC theorem.'* A
fairly detailed exposition of the method of complex scaling is
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given in Ref. 15. Sufficient conditions for validity of the
ABC theorem are formulated with mathematical rigor in
Ref. 16. The application to nuclear resonances is considered,
for example, in Ref, 17. The method is based on solution of a
quantum-mechanical problem, not on the real axis 7, but on
a ray (or a more complicated line) in the first quadrant of
the complex plane of 7. The spectrum of bound states is then
augmented by the spectrum of resonance poles, which are
situated between the real axis and the corresponding line in
the fourth quadrant of the complex plane of the momentum.
It is important that the transformed wave functions are
square-integrable and, therefore, normalizable, although it
is rather difficult to calculate them exactly. In addition, the
method can be extended to systems with charged particles,
since the Coulomb potential satisfies the conditions of the
ABC theorem. A more detailed discussion of the method
and its applications goes beyond the scope of the present
review. We shall give mainly results obtained in the momen-
tum representation on the basis of analytic continuation of
the integral equations of scattering theory.

Fundamental progress in the theory of few-particle sys-
tems was associated with the work of Faddeev, who formu-
lated mathematically correct integral equations of the three-
body problem and proved that they were Fredholm.'
Earlier, Skornyakov and Ter-Martirosyan'® had obtained
equations for a three-body system in the approximation of a
zero range of the forces between the particles. Although
these equations are not completely rigorous from the math-
ematical point of view (since they require truncation of an
integral at large momenta), they already contain important
properties of the three-particle dynamics. A generalization
to a system with a larger number of particles was made in
Ref. 20. Unfortunately, the technical difficulties in the solu-
tion of integral equations increase greatly with increasing
number of particles. The literature contains only a few exam-
ples of solution of the Faddeev—Yakubovskii equations for
four bodies. The mathematical problems of the quantum
theory of scattering and methods of solution of problems for
few-particle systems are discussed in Refs. 21-23. However,
a theory of resonance states is essentially absent from these
studies. For the investigation of resonances in systems with
>4 particles it is necessary to employ some approximate for-
mulation of microscopic description of the type, for exam-
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ple, of the resonating-group method,?* or one must use nu-
clear models. We mention here the dynamical multicluster
model. *

In the present review the main attention is devoted to
calculations that use the Faddeev integral equations for
three-particle systems with short-range forces. The practical
applications are mainly to two- and three-nucleon systems.
We study the trajectories of the poles of the § matrix and
their general properties, including the Efimov effect®**” and
the symmetry theorem for bound and virtual levels.?® First
results on application of the method of integral equations to
unstable:systems were obtained in Refs. 29-38. Allowance
for the Coulomb interaction requires a modification of the
method even for bound states. One of the possible ways is to
use a screened Coulomb potential (see, for example, Ref. 39,
in which pd scattering is considered, and references therein).
One can then overcome the problem of the Coulomb singu-
larities in the kernel of the integral equation. A great many
publications, beginning with the studies of Noble*® and Ve-
selova,*! have been devoted to few-particle systems with
charged particles. An evidently convenient method of such
investigations is that developed by Merkur’ev and his colla-
borators and based on solution of the Faddeev equations in

" the configuration space (see, for example, Refs. 42 and 43).

The review is arranged as follows. In Sec. 1 we define
resonances and present methods of analysis of resonance
phenomena, including theoretical methods for the calcula-
tion of resonances (we do not attempt to give a complete list
of the methods found in the literature). Section 2 contains a
review of the main results of experimental investigations of
resonances in three-nucleon systems. In Sec. 3 we consider
the theory of unstable states for the two-body problem. In-
formation about the two-particle subsystems, including
their resonance poles, is needed to solve the three-particle
problem. In addition, in considering the two-bedy potential
problem, we can more readily follow the main details in the
method of analytic continuation of an integral equation to an
unphysical sheet of the energy. We discuss in detail the gen-
eralization to the case of Gamow states of Fourier transfor-
mation, the calculation of matrix elements, and normaliza-
tion. In Sec. 4 we present a three-particle theory of resonance
states based on analytic continuation of the Faddeev integral
equations to the unphysical sheets with respect to the two-
and three-particle cuts in the complex plane of the energy.
We study the analytic properties of the solutions. In Sec. 5
we consider realization of analytic continuation of an inte-
gral equation by deformation of the contour of integration in
order to avoid the singularities of its kernel. In Sec. 6, we give
numerical results for virtual and resonance states in systems
of two and three nucleons, together with their theoretical
interpretation. The review of results enables us to evaluate
the investigations and draw the conclusion that, except for
the virtual pole in nd scattering and the pole corresponding
to it in the pd system with the quantum numbers of *H and
*He, the discovery near the physical region of resonances in
the 3NV system is unlikely.

In the conclusions, we discuss the extension of the de-
scribed method to other three-hadron systems and give ref-
erences to investigations of resonances in these systems.

If we do not say otherwise we use a system of units in
which#i=c= 1.
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1.DEFINITIONS OF RESONANCES AND METHOD OF
ANALYSIS OF RESONANCE PHENOMENA

Although general questions of the theory of unstable
states, in both single-channel and multichannel problems,
have been treated in, for example, Refs. 3-6, we have felt it
expedient to give here for completeness some well-known
elementary results, since they show why it is preferable to
define a resonance as a pole of the S matrix. The various
existing definitions and approaches to the analysis of reson-
ances give the same results for the positions and widths of
resonances if they are sufficiently narrow, i.e., when the
complex poles of the $ matrix are close to the physical region
of the energy. For broad resonances, the results may differ
strongly. From the practical point of view, it would appear at
the first glance that this is not important; for with increasing
width the very concept of a ‘“‘resonance” loses a definite
meaning, simply because the resonance structure in the cross
section as a function of the energy disappears. However, for
a deeper understanding of the dynamical nature of reso-
nance processes it is important to have the universal defini-
tion of a resonance as a pole of the S matrix, since this con-
cept can also be generalized to the case of relativistic theory.
We list briefly the most common methods used to analyze
resonances and the methods of their theoretical investiga-
tion.

Comparison of excitation function with phase space

Distinct peaks in the excitation function [the reaction
cross section o(E) ] in its dependence on the energy are re-
garded as resonances in the case of small widths I" and a
weak nonresonance background. In the case of a large width,
any appreciable deviation of ¢ (E) from the phase space can
be interpreted as a resonance structure. The structures may
be diverse—for example, the cross section may contain a
minimum rather than a maximum if the interference with
the background is destructive.” In such cases the partial-
wave amplitudes require a more careful analysis, and theo-
retical arguments must be taken into account, since other-
wise conclusions are not unambiguous.

Phase-shift analysis

For simplicity, let us consider the scattering of two
spinless particles in the case when the interaction between
them is described by a central potential. The total cross sec-
tion can be expressed in terms of the phase shifts 8, (k) for
orbital angular momentum / by the well-known relation

o (k) = 4a/k*Y (21 + 1) sin® &, (k), (1)
I
E = BR2,
where u is the reduced mass. It is obvious that a resonance
(maximum of the cross section) at k = k, corresponds to
the condition

sin 28, (k) = max, §, (kg) = = (2n + 1) x/2, (2)

where # is an integer.

Thus, to find the resonance energy we must carry out a
phase-shift analysis and find the value of the energy £ = E
at which the condition {2) is satisfied. The width I" of the
resonance is determined by the rate of change of the phase
shift as the resonance region is traversed.
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Argand diagram

The Argand-diagram method is a modification of
phase-shift analysis. We introduce the S and T matrices by

8 (k) = exp [2i8, (B)]; (3)
Ty (k) = (8; — 1)/2i, (4)

from which we obtain

Re T (k) =cos §; (k) sin & (k), ] (5)

Im T, (k) = sin® §, (k).

From (5) we obtain the equation of a circle in the complex
plane of T,:

(Re 7', (k))* + (Im 7', — 1/2)* = 1/4. (6)

For anarrow Breit-Wigner resonance we have near the reso-
nance energy
—Ti2

TiE)= = (7

Passage through the resonance region in the interval
fromE=E, —T/2toE=E, + /2 correspondsto coun-
terclockwise passage around the upper semicircle in the Ar-
gand diagram (Fig. 1). The complete (unitarity) circle cor-
responds to an increment of the phase from 0 to 7 (with
allowance for the indeterminacy + n7 in the phase). The
Argand diagram has the “ideal” form only in the single-
channel case. In the multichannel problem, i.e., in the pres-
ence of absorption, when the phase shift &, is complex, the
actual diagram always lies within the unitarity circle and
may have a strongly distorted shape. The question of
whether or not a resonance exists may then no longer have
an unambiguous answer.

Poles of the $ matrix

By means of (3) and (4), the condition (2) can be re-
written in the alternative form

Si(Er) = —1, Ty (Ep) =i (8)
or, introducing the K matrix,
27 TF
= ﬁ —tan §,, (9)

in the form of the equivalent condition

Ky (Ep) = co. (10)

Thus, the K matrix has poles at the resonance points on the
real axis of the energy. From (4) and (7) we obtain for the $

FIG. 1. Argand diagram for the single-channel problem.
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matrix the expression

E—Ep—il12

SulE) =g rim

(11)
which is valid for a narrow isolated resonance when the con-
tribution of the background can be ignored. Tt can be seen
from (11) that the § matrix has a pole at the point E=E,
— i'/2. This is a well-known result. The definition of reson-
ances as poles of the S matrix is the most convenient for
theoretical analysis for the following reasons:

1. One frequently encounters situations in which the
“idealized” conditions (2), (8), and (10) are nowhere satis-
fied on the real axis, but the S matrix does have poles in real
problems, irrespective of the widths. Thus, the identification
of a resonance with a pole of the S matrix is a true generaliza-
tion of the concept of resonance behavior of the scattering
amplitude.

2. Bound, virtual, and resonance states corresponding
to the same radiation condition (outgoing wave at infinity)
tan be treated on a unified basis. The common origin of poles
of the § matrix can be seen from the fact that for the three
types of state they lie on the common pole trajectories that
describe the way in vhich the position of a pole in the com-
plex plane of the energy depends on the strength of the inter-
action (or on some other parameter). For this reason, one
can regard virtual and resonance states as “nonoccurring”
bound states. One can establish a critical strength of the in-
teraction at which a state ceases to be bound, i.e., it enters the
continuum.

The appearance of a resonance maximum in the scatter-
ing cross section should not be identified with proximity of
the resonance pole to the real axis of the energy (E>0), since
the unitarity of the § matrix means that it also has a zero at
the same distance [see (11)]. Rather, one should speak of
rapid variation of the § matrix and, accordingly, the phase
shift §(E) for variation of £ near the pole [at which the
factor [sin®5|in (1) attains a maximal value]. If in the exper-
iment the energy resolution AE corresponding to the width
of the incident wave packet is sufficient for observation of a
resonance with width I' (AE «T'), then one can show>® that
the width I = #i/7 of the quasistationary state is determined
by the time of retention of the particle in the potential well:

4 ay ay
w—?l_)_ dp ~ dE

It follows from this that an estimate of the width of a quasi-
stationary state can be obtained by measuring the rate of
change of the phase shift in the resonance region of the ener-
gy.

Theoretical methods forinvestigating resonances

We briefly list the theoretical methods that treat reson-
ances in terms of the poles of the S matrix. The effective-
range approximation, **** which is convenient for the study
of poles situated near a threshold (see also Ref. 46), was
applied, after modifications to take into account the Cou-
lomb field, to the theory of the nuclear shift of the levels of
the proton-antiproton atom*’ and to the pp system in the
spin-singlet state 'S, in Ref. 48. A first unexpected result
was obtained in Ref. 48 the displacement of the well-
known virtual level of the np system from the imaginary axis
into the fourth quadrant of the complex plane of the momen-
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TABLE L Survey of experimental results on resonances in three-nucleon systems.

Nu- : Quantum Resonance, Refer-
cleus Reastion Bncogy, Mev numbers MeV ence
3n 3H (i, p) 3n E,=14.4 — Egp=1 [65]
(bound)
=20.8 — [66]
E,=15.2 — — [67]
E, =14.1;18.0; — [68]
.5
SHe(n~, ©*)3n E, =140 = E=2 I'=12 [69]
E =140 — E=9=+1; [701
5 0 s r=10.5
=14 T, §, L=| E=12;, T= "
" 3/2, 1/2,1 = ||
Eﬂ_ — 140, 200 _— “Broad [72]
295 resonance”
sH(n—, y)3n E,-=0 — = (63,
73—76]
4He (n—, p) 3n E =140 — — 77
E,-=140 — — [70]
E,.-=60; 100; = == [78]
200
E,-=285— 575 = - [79]
E,-=400; 475 — — [(80]
?Li (n, 4He) In+y | Ex = 0 — — {81]
Li (Li, C)3n | Epy=79.6 — = [82]
1N (n~, 3n) 8B, 3H| E,,- = 0 — — [83]
3H (°H, °He) 3n Eyp==22.25 — E=1—1.5 84}
Li (n, 3n) °Li E,—19 — — [85]
JH 3He (n, p) *H E, =144 = (86}
SLi (o, SH)3H | E;=100 - - [87]
"He (°H, #He) SH | Eqpp—22.25 - [84]
SH (*H, *H) *H Eqpy=22.25 — — [B4]
2H (n, n) 2H Ep=0-—2800 [62]
2 (n, p) 2n E,=0—152 — = [62]
2H (p, a*) 9H Ep=0—15GeV - [88]
3He 3H (p, n) e Ep=30, a0 T=3/2,1/2 | E=l6+1; [89]
T=9=+1
Ep =50 E=9.0=0.T; [90]
=5+l
SHe (p, p')He | E,=30.2 - E=102; T=00 [91]
E=12,
Ep=30.9 o=
25 =30. _ — (92
Ep=30 - - (93}
®H (p, p) *H Ep=0--27GeV| T, S, L=|E=142+05 | [94]
12,321 |P=10
°H (p, d*)1H E,—9—13 — E=12.4 [95]
Ep=T7—17 — = [96]
Ep=17-—145 — = [97]
Ep=38—-5 — — [98]
H (d, d *) 'H Ey=19.2 --27 —_ — [99]
2H (p, y) ¥He Ep=10— 175 | T, 8, L=|E=145+05; | [100]
1/2; 1725 1 T=32
Ey=14- 255 - — [101]
H(d, v) *He Eg—=41.1 T, 8§, L=|E=19.5+0.5; [102]
E =452 1/2; 1/2; 1 [T=2
3He (y, 4)1H E,=11 - 65 — — {103]
SHe (e, ¢'d) 1H | E,=43.07 s o [104]
e =87.34
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Continuation of TABLE 1.

Nu- 2 Quantum . Refer-
lEis Reaction Energy, MeV i I o Resonance, MeV| e
SHe (e, ¢')%He |E,=21 [105]
E.=56.6 — — [106]
Eo=200 (107]
3He (n~, ) 3He |FE,=140 T, §, L=|E=16; [71]
3/2; 1/2; 1 T2
iHe (p, 4)%He  |E,=65 - - [108)
“He (*He, 9He) 9He| Eypy, = 44 = — [109]
Eypyo=53
SHe | 3He(x,o)He |Egp=115 - = [108]
E,=63.7 — — [110. 111}
°Li(p, pd) *He  |E,=9—10 — — | 111z
SLi (p, o) °He E,=30 — — [113]
Ep =45 — — (531
Ep=45 — — [114]
E, =20 — — [115]
Ep=35—56 - — [t16]
SLi(p, @d) TH | E, =45 o — [58]
SLi | He (p, 1) 3p Ep=13.1 — - [147]
Ep=14.1 s — [118]
Ep=30—_50 T=32 |E=9+; [89]
r=10.5
2H (p, n) 3p E,=585 — — [L19]
He (°He, 1)3p | Eape— 44 53 B = [120]
Eyy, =53 — (121
SLi (*He, *He) 3p | Egpy, =53.2 — - [122]

Note. The values of the energy given for the nan and ppp systems are measured from the
complete-disintegration threshold. For the nnp and npp systems the energies are mea-
sured from the ground states of *H and *He, respectively. A dash means that a resonanée

has not been found.

tum as a result of the additional Coulomb repulsion. In the
region of interaction parameters close to the formation of a
bound state one can use a calculation of the Regge trajector-
ies* for the poles of the § matrix in the complex plane of the
angular momentum,.

It was proposed in Refs. 50 and 51 that the trajectories
of virtual and resonance levels should be calculated by ana-
lytic continuation with respect to the coupling constant
A(E), which occurs as a factor in the interaction potential:
V' =A(E)V(r). One starts here from the values of 1(E) in
the region of the bound states. A Padé approximant is used
to make the analytic continuation to the region ImJE <0,

A method of summation of divergent perturbation-the-
ory series for the energy eigenvalues E = E(u) correspond-
ing to virtual and resonance states was proposed and devel-
oped in Refs. 52 and 53 for a number of screened Coulomb
potentials. The power series in the argument y of the expo-
nential of the potential ¥ () = f(r)exp( — ur) was summed
by means of the Padé approximant. In the case of reson-
ances, a more accurate result is obtained by considering the
power  series with respect to the variable
z=(1+w)/(1 —w), where w=(1—u/u,)"? where
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M, is the value of the parameter p at which the energy of the
level is zero. One then constructs the Padé approximant with
respect to the variable z. Below, we shall discuss the results
of actual calculations in the framework of this model for the
Yukawa potential. It should be emphasized that in this case
the solution in the zeroth approximation (u —0) is known—
itis the Coulomb spectrum. Finally, the complex poles of the
§ matrix were also studied by means of the N /D method. In
this method, the original information is not the potential of
the interaction between the particles but the discontinuity of
the scattering amplitude across the left-hand dynamical cut.
There is an exposition of the fundamentals of the N /D meth-
od in Ref. 54, for example. The N/D method was used to
investigate systems of “resonance - particle” type,*® the
resonance being treated as a state in the continuum. We wish
to emphasize here that study of a system in the continuum
(at real energies E) is a quite different problem from the
investigation of Gamow states, to which the present review
is devoted.

In listing these theoretical methods, we have not at-
tempted to give a complete survey of the methods used to
study resonances (we have already mentioned the use of the
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ABC theorem in the Introduction). Our main aim is to pres-
ent the method of analytic continuation of the integral equa-
tions and the results obtained by means of it.

It should be noted that the existence of a maximum or
any other structure in the cross section need not be associat-
ed with a pole of the S matrix. In such cases, one speaks of a
pseudoresonance behavior of the amplitude (see, for exam-
ple, Ref. 56). A resonance-like structure can arise, for exam-
ple, from the mechanism corresponding to the Feynman tri-
angle diagram when its complex singularity is near the
physical regjon.

Before we turn to the systematic exposition of the meth-
od of integral equations, we give a brief review of the experi-
mental data on resonances in few-nucleon systems, these be-
ing our prime subject of interest.

2. THE EXPERIMENTAL SITUATION

The principal results of experimental investigations of
resonances in three-nucleon systems are given in Table I and
in the reviews of Refs. 57-62. Almost all the existing experi-
mental information about resonances in three-nucleon sys-
tems up to 1987 can be found in Refs. 60 and 62. An intricate
experimental study of the *H(7 ™, ¥)3n reaction was made
at Los Alamos® on a gaseous tritium target. The 3z mass
spectrum for capture of stopped pions was observed with
detection of y rays by a high-resolution spectrometer. The
upper limit of the branching ratio for the transition to reso-
nance states with width T'<5 MeV was found tobe 2 X 10 %

As follows from Table I, resonances were sought in
many nuclear reactions, but only in a few cases were (broad)
structures similar to resonances found."” In most of these
cases, all deviations from the phase space were interpreted as
resonances, though it can be shown theoretically (see, for
example, Ref. 64) that such deviations could have another
origin, for example, two-particle interaction in the final state
(Migdal-Watson effect). Summarizing the results of the ex-
perimental search for resonances in the three-nucleon sys-
tems over a period of about 20 years, we may conclude that
resonances have not been found, and that little hope remains
of finding them in the future.

3.RESONANCES IN THE TWO-BODY SYSTEM

Integral equations for resonances and virtual statesina
short-range potential

We consider two bodies that interact through a poten-
tial ¥ (7) that admits analytic continuation of its Fourier
transform to the region of complex momenta. This condition
is met, for example, by an “analytic potential” which satis-
fies the conditions*

D {rdr V) l<o, (rr| V)| <o (12)
) 0

2) V{(r) is a regular function in the interval
— qf2 << argr << mf2. (12a)

We relate the partial-wave # matrix to the off-shell scattering
amplitude by

t (g, ¢'52) = — QCalu) f1 (g, ¢'; 2). (13)

In the physical region z = E + {0, where E is the energy of
the relative motion, we have the on-shell (¢°=¢*=p’
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= 2uE) relation
fi (p) =f1 (p, ps E) = p~ et sin 8,0 (14)

The relations (13) and (14) determine the normalization of

the r matrix, which on the physical sheet of the energy
(Im z > 0) satisfies the Lippmann-Schwinger equation

, I i

f(a @' D) =Vi(@, ¢)+gms |

1}

Vilg, B) ti(k, q'5 2)
T~ k2 dk, (15)

in which the Fourier transform of the potential is

Vilg, ¢') = 4n Sfr {gr) V (v} i, (g'r) r?dr, (16)
0

and j, (x) is a spherical Bessel function [j, (x) = x ~ 'sin x].

The analytic continuation of (15) to the unphysical
sheet of z(Imy/z < 0) is determined by the properties of the
Cauchy-type integral (see, for example, Ref. 123) on the
right-hand side of (15), which has a square-root branch cut
along the real axis (the upper edge of the cut is the physical
region of the energy). For the second branch of z,
(Imyz < 0) we obtain the equation®®

— W1 PV Rk g
£ 0 D=V O g | — g k2 dk
0
+ (/) upVile, P27 (0, 45 2), (17)
from which it follows that at g = p
() —— w4 S Vilp, (K, 0t 8 .
47 (p g2 =Vilp, ) g g ke d
+ (i) upVi (p, Pt (ps @' 2). (18)

Here, p = \/2uz is the arithmetic value of the root. Figure 2,
which shows the deformation of the contour of integration
that ensures convergence of the integral, makes the deriva-
tion of Eq. (17) transparent. The return of the contour to the
real axis leads to an additional [compared with (15)] term
in (17). It is associated with the residue of the integrand at
the point k= — p[Im(—p)<0]. Solving (18) for
t!’(p.g';z) and substituting the result in (17), we obtain
an equation that differs from the Lippmann-Schwinger
equation (15) only by the replacement of the potential ¥, by
the function®*’

Vila, s V=Y100. N+ vy

W Vilg, B) Vilps ¢,

(19)

which contains a separable (nonlocal) energy-dependent
addition. Although the zero of the denominator in (19) is
not a pole of the 7 matrix,™ it is more convenient to use the
system of equations (17} and (18) near the corresponding
values of p. Conversely, near a singularity of ¥,{(p, p) it is
better to use an equation of the form

= 3 24 1
6700, 95 2)=VY1(9, ¢'s P) 5
. ":;I {q, k: p) t‘f’ (&, q"; 2)
” z—k2/2u

k2 dk. (20)

0

The relation (19) confirms our expectation that the
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FIG. 2. Deformation of the contour of integration in the Lippmann-
Schwinger equation for analytic continuation to an unphysical sheet of the
energy in the planes of the complex momentum (a) and complex energy
(b).

branches zand 1~ are related through the threshold branch
point z = 0, where ¥ and V are equal.

Poles of the S matrix

In accordance with the theory of Fredhoim integral
equations, an inhomogeneous integral equation does not
have a solution, i.e., f = o, if the corresponding homoge-
neous equation (or system of equations) has a nontrivial
solution. Thus, the problem of the poles of the ¢ matrix con-
sists of finding a discrete set of values (zy, z3,...) of the com-
plex energy for which there exists a solution of the homoge-
neous equation

o0

FO (g, 1) = gy { TUR B BFO G 9 3o gy, (21)

z—k2 20

0

This problem can be formulated alternatively as the
problem of determination of the eigenvalues A, (z) of the
kernel of the integral equation

20

5 - [
@ P (0, 2 =55

1

Vitg, ks p) FiD (

z—k22n

2 jear, (22)

which exist for any z. The poles of the ¢ matrix are found
from the condition

hy (Z):i,z:zl, gy w0 u 23)
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Numerical solution of the integral equations

An approximate solution of the integral equation can be
obtained by quadrature (for example, by Gauss’s method).
Then (21) can be expressed in the form of the algebraic sys-
tem

N
Flljg) = SMu @ Flk,2.j=1,2 ... N.(24)
i=1

where
My = (227 CHV, (ky, ks p)(z — k32p).

The actual values of C; are determined by the quadrature
formula. The set of eigenvalues z, is found from the condi-
tion on the determinant of the system (7 g =0;):

det (/ — M) = 0. (25)

In the case of Eq. (22), we seek the eigenvalues of the matrix
M:
N
At (2) P (B, 2)= g M, (2) Fy (ks 2), (26)

where the condition (23) determines the positions of the
required poles. Note that the relation (19) immediately
yields the well-known symmetry of the poles of the S matrix
relative to the imaginary axis of the momentum. For the
substitution p— — p*is tantamount to the complex conjuga-
tion ¥,(q, ¢; — p*) = V¥(4q, q’; p) [if we take into account
(16) and the relationj, ( —x) = ( — 1)%,(x)]. At the same
time, there is a complex conjugation of the determinant of
the system, which obviously leaves Eq. (25) in force.

Regularization of the equations

If a resonance is very narrow, we encounter a problem
of the accurate calculation of an integral with a singularity
near the contour of integration; this is analogous to the prob-
lem of the solution of the singular integral equation for the ¢
matrix in the physical region of the energy. In this case one
can use some method to derive an equivalent system of non-
singular equations such as the Noyes—Kowalski method
(see, for example, Ref. 54). The homogeneous equation cor-
responding to Eq. (15) can be rewritten, for example, in the
form

W (o TRVilg, B Py, 5 —pV) (g, p) Fy (p, )
e S d]”[ pr—kt ]

Fi(q,2)=

Q

PE—kE "

¢ dk
+5 @ nFie 0 | 2 (27)
)

Theintegrand in the first term on the right-hand side of (27)
is now free of poles in the propagator and can be calculated
without deformation of the contour, while the second inte-
gral can be calculated in analytic form by means of the resi-
due theorem:

¢ di im p o
S e 2 Im 12> 0. (28)
1

Since the momentum p occurs explicitly for such a regular-
ization, the equation on the unphysical sheet is obtained by a
simple change of sign in front of p, and this now corresponds
to Imyz <0 (Ref. 124):
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1 §° g [Vels BED & 9—pvile B PP 0. 27
L z— k22 J

4 (i/25) upVy (g, p) Fi7) (P 2)- (29)

It must be emphasized that the possibility of analytic con-
tinuation with respect to the energy into the region Imyz <0
is determined by the analytic properties of not only the ker-
nel of the equation but also its solution, and these properties
must be investigated in more detail.

Analytic properties of the f matrix and of the vertex function.
Unitarity of the S matrix

Once the pole of the § matrix has been found (z =2,),
Eq. (21) for z =z, or (22) for 4, (z) = 1, or the system of
homogeneous equations (17) and (18) without the inhomo-
geneous term V; (g, g") give an equation (or system of equa-
tions) for the vertex function gi* (g) of the decay of the
unstable state (and, therefore, for the wave function in the
momentum representation). Near the pole, we can write

£ (g, s )= QLD (30)
The expression of the pole term of the ¢ matrix in the form
(30) (without complex conjugation of one of the factors)
arises because of the use of a biorthogonal system of Gamow
wave functions (see, for example, the formulation of the ex-
tended completeness condition in Ref. 125).

We shall assume that the analytic properties of the po-
tential ¥, (g, ¢') and of the # matrix are known on the phys-
ical sheet. Solving Eq. (17) iteratively and summing the re-
sulting Neumann series, we find**'*°

g, 5 2) — 1 (g, 4’5 2)

+ (i) upty (go pr 2 1D (p. ¢': 2)- (31)

The relation (31) generalizes the Hilbert identity (see, for
example, Refs, 18, 22, and 54) associated with the unitarity
of the S matrix. On the energy shell and at physical values of
the energy z, we obtain, taking into account (13), the rela-
tion Im £, (p) = plf; (p)|% which is equivalent to the optical
theorem. Thus, there is an intimate connection between Eq.
(17) and the unitarity of the S matrix. In the derivation of
the optical theorem Hermiticity of the Hamiltonian [reality
of ¥(#)] is assumed. The use of the complex potential F(r)
does not hinder the derivation of (17). However, the optical
model destroys the unitarity of the S matrix and is only an
approximation to the multichannel problem with a corre-
sponding unitarity condition for the § matrix. For g = p, we
find from (31) a connection between #' ~’ and #:

1 p, @'y 2) =t {p, ¢; A1 — (/) ppt, (p. p; 2)].
(32)

Equations (31) and (32) completely determine the analytic
properties of the ¢ matrix on the unphysical sheet in terms of
the analytic properties of the ¢+ matrix on the physical sheet.
Tt can be seen from (32) that the resonance pole can be found
from the equation

1 — (i/m) ppt, (p. pi 2) = Sy (p) = 0, (33)
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though this is technically more complicated than finding the
zeros of the Fredholm determinant for the equations on the
unphysical sheet.

The equation corresponding to (17) for the vertex func-
tion,

, ( F Vil Be® o, o,
4 ,({,):WSJ ek
F(i/my ppn @ (pa) Vilg, pa), (34)

can also be solved iteratively. We then obtain

l]in' (f]) = (Uﬂ) !v‘pngl?) (pn) ity (‘?a P L AE (35)

Thus, all the singularities of the vertex function with
respect to the variable g are determined by the function
t,(q, p,: 2, ). By means of (30) and (32) we can find**'** an
expression for the residue:

g(m (pa) =1— (2u¥m) (d/dp,) (Puft (P72, } (363
Res £17) () [p=p, = 140 (d/dpg) (Puft (P

Symmetry theorem for bound and virtual levels

The relations (35) and (36) completely determine the
analytic properties of the vertex function of the unstable
state in terms of the analytic properties of the ¢ matrix and of
the scattering amplitude on the physical sheet. In addition,
(34) and (36) yield a symmetry theorem, proved in Ref. 28
for analytic potentials with asymptotic behavior

V (r) — const rBexp (—ar), p = —2, a > 0. (37)

Theorem. For potentials of the type (37), the points
situated on the intersections of the trajectories
A= —ip=A(a) of the bound levels (4, = y2p|E,|) and
of the virtual levels (1,, = — \[2u[E,,|) with the lines of
the dynamical singularities of the partial-wave amplitudes
A= +va/2(v=1.2,..) are reflection-symmetric with re-
spect to the point p = 0.

Here, E, is the energy eigenvalue for the principal
quantum number k. The dynamical singularities—the left-
hand cuts and false poles {for the exponential potential)—
are discussed, for example, in Refs. 4 and 49. If the potential
is truncated at a finite distance, all the dynamical singulari-
ties recede to infinity, and the symmetry theorem no longer
holds. The condition 8> — 2 is needed because only then
does the partial-wave scattering amplitude (in the Born ap-
proximation) become infinite at the point of the dynamical
singularity. Accordingly, the residue of the 7 matrix vanishes
at the pole in accordance with (36), and the correction in
(34), which distinguishes the equations on the physical and
the unphysical sheets, disappears. From this the symmetry
theorem follows, and the vanishing of the residue agrees with
the well-known symmetry between the zeros and poles of the
S matrix situated at the points pand — p. The validity of the
symmetry theorem can be verified for the examples of an
exponential potential and the Hulthén potential, for which
the s-wave solution is known in analytic form (see, for exam-
ple, Refs. 6 and 127). A literal proof of this theorem is given
for the Woods—Saxon potential in Ref. 128. This shows that
it can also be extended to potentials that are irregular in the
region Re r> 0, i.e., do not belong to the class of analytic
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(Yukawa) potentials, for which the ABC theorem admits a
rotation through an angle 8 < /2 by virtue of the condition
(12a) (see the Introduction).

Trajectories of poles of the 8 matrix

Until recently, resonance pole trajectories, i.e., move-
ment of the poles with variation of the interaction strength
(or of some other parameter), were known only for poten-
tials that permit an analytic solution. These include the rec-
tangular well (Figs. 3 and 4)'**'** and separable potentials.
The first calculations of the virtual state of the np system in
the 'S, state (“singlet deuteron™) were apparently made in
Ref. 29. They were based on analytic continuation of the ¢
matrix found by the Bateman separation procedure for series
of local NN potentials.

Poles for bound states are always simple (see, for exam-
ple, Ref. 5), whereas virtual states may have multiple poles.
This happens for potentials that have a singularity at
Re 7> 0. The Woods-Saxon potential is an example. 125130
For potentials truncated at finite distance, when S(p) is Tep-
resented as a rational function (i.e., for potentials of Barg-
mann type), the existence of multiple virtual poles was
proved in Ref. 131. The trajectories of virtual poles that are
“nonoccurring” bound states for the Woods-Saxon poten-
tial are shown in Fig. 5. In Refs. 132 and 133, the trajectories
of resonance and virtual poles were calculated for the
Yukawa potential by means of the integral-equation method
and by summation of divergent perturbation-theory series
(see Sec. 1). It was shown that the two methods give results
that agree to a high accuracy in a wide range of variation of
the parameters. The trajectories of the virtual poles for the
Hulthén and Yukawa potentials are shown in Figs. 6 and 7.
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FIG. 3. Pole trajectories in the complex plane of x = kR = J2uE /#R
for a potential in the form of a rectangular well. The numbers next to the

points are the interaction strengths W, = 2uV,/% R. The figure is for
the s-wave case (/= 0). The point of multiplicity of polesis x = — /.
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FIG. 4. The same as in Fig. 3 for the p wave (/= 1).

One observes a strong difference between the behaviors of
these trajectories below the line of the dynamical singularity
A= —ip= — a/2. For a potential of the type (37) with
=0, the trajectories of the virtual poles intersect the lines
of the dynamical singularities (false poles) A = — na/2 (n
is an integer) at the symmetry points. For the Yukawa po-
tential (f= — 1) the trajectories approach the symmetry
points from the left as a is increased. It follows from this that
the verv nature of the behavior of the trajectories in the re-
gion below the line of the dynamical singularity
(A = — a/2) nearest the physical region dependsstrongly
on the type of asymptotic behavior. All the considered tra-
jectories demonstrate the validity of the symmetry theorem.

Ak «&' N
o4 Ky N _dlt
s
0.2 =7
| 1 L | 1 1 L L | t
g 2.5 ne ¥ e/,
—
\\0\ a=2
(=3
—0-27 —"_']
n=J
L= ds
n=4 "’\ "4'/?
~0.4 \a

FIG. 5. Trajectories of ns levels with principal quantum numbers # = 1,
.-, 3 (thick continuous curves) and positions of the dynamical singulari-
ties of the partial-wave scattering amplitude (thin continuous lines) (the
black circles represent symmetrically situated points) for the Woods-

Saxon potential ¥F(r) = — F/[1 + expla(r— R))], ko= 2u Vo /7.
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FIG. 6. Trajectories of ns levels for the Hulthén potential ¥(r)
= — V,/[exp(ar} — 1]. The notation is the same as in Fig. 5.

Trajectories for the exponential potential are given in Ref.
128.

Normalization of the Gamow wave function

The wave function ¢, (g) is connected to the vertex
function g; (g) by the well-known relation (with normaliza-
tion as in Ref. 134)

91 (q) = —g: (@ — p*), p* = 2pz. (38)

The relation (36) determines the normalization constant
g,(p) in terms of the partial-wave scattering amplitude on
the physical sheet. However, one can directly generalize the
rule for normalizing the wave function of a bound state to the
case of a “nonoccurring” bound state. The Fourier trans-
form of the wave function of a bound state has the form

20

$i) =€ j1(e) @1 ¢ dg, (39)
0

where C is a constant.
Using the relations

jir (x) = [Ry" (2) + 1P {Z)V/2,

WP (=)= (— 1)/ 1P (@), “

0.5

-0.5

=40

FIG. 7. Trajectories of ns levels for the Yukawa potential ¥(7)
= —r lexp(—ar, A= J—2E,,. Atomic upits (i=m, 6 =e= 1
have been used, and the remaining notation is as in Fig. 5.
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Img

*—ix Reg

FIG. 8. Contour of integration for calculation of the Fourier transform of
a bound-state wave function.

and also (34) and (38), we can rewrite (39) in the form

i (n)=/2)C § 1 (gr) o) ¢ dg. (41)

—o0

The poles of @,(g) at the points g = £ p determine the
asymptotic behavior of the radial wave function if the singu-
larities of g, (g) are situated further from the point g = 0.
The generalization of the Fourier transform of the wave
function of a bound state to the case of a Gamow state (a
“nonoccurring” bound state) reduces to a contour deforma-
tion (Figs. 8 and 9) that ensures convgrgence oftheintegrals
(42). The contours for the virtual and resonance levels are
different (Figs. 92 and 9b) because of the presence of a cen-
trifugal potential when / #0. As a result, we obtain in place
of (41) the contour integral (we omit the index 1)’

P () =(C12) | 1 (gr) SED - 2 dg. (42)
r

The asymptotic behavior is now determined by the residue at
the point ¢ = — p, which is situated in the lower half-plane,
as a result of which we obtain Gamow growth at infinity:

[ Pp (1) lrowe o const 7~ exp (| Im p | ). (43)

Any matrix element containing a Gamow wave function can
be transformed similarly. In place of the matrix element
F = [¢p((q)dg we obtain

F = F in[BResp (q) lg=-p—Res0(9) |g=l- (44)

Img)

=

RE?

Imagh

“Tres
-

REEE

Yres

FIG. 9. Contour of integration for calculation of a matrix element con-
taining a Gamow wave function for a virtual state (a) and a resonance
state (b).
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For an even function p(g) we obtain

F = +2inResp (1) lg=p,,.- (45)
The relation (45} also holds for the normalization of 2 Ga-
mow wave function when

p (g} = g7 (g)/(g* — p)*, (46)

and in this case an integral equation of the type (34) for the
vertex function must be used to calculate the residue. A nor-
malization of a Gamow wave function was also given in Ref.
135, in which the technique of orthogonal projection was
used to investigate resonances. The proposal (45) is univer-
sal, whereas the method of regularization of the normaliza-
tion integral in the r space depends on the position of the
pole. For example, Zel'dovich’s"* regularization procedure,
in which a factor exp( — Br?) is introduced in the integrand
and the limit f— 01s taken after calculation of the integral, is
valid only under the condition [Re p,. | > [Im p,. |.*°

Muiltichannel problem. Strong coupling of channels

The rule for analytic continuation of the Lippmann—
Schwinger equation can be readily generalized to the system
of integral equations of the so-called method of strong chan-
nel coupling for the matrix elements of the T operator:

I‘ (]l.(l': krz; Z) = Tf— (A‘CI.': km) - /lﬂ"
o [Vl F) T (g Rgi 2)
\! a’r o o 22
s S E2al2g e —(2—Q g0
a=1 0

k% d.
(47)

Here, 0, = m, — m, is the threshold of the (1, a) reaction,
m,, is the total mass in channel @, and the channel of the
lightest particles has index 1. In the method of strong chan-
nel coupling **'*" only binary channels are considered. On
the energy shell

ka2, =2—Q,, (48)

where y,, is the reduced mass, and z is the energy.

With respect to the variable z, the function T, has, in
accordance with (47), n cuts, which begin at the thresholds
z = Q, and lie along the real axis of z; accordingly, there are
2" sheets of the Riemann surface. For brevity, we have in
(47) omitted the channel indices appended to the operators
Vand T (these indices also include the angular-momentum
guantum numbers). Because the cuts in (47) are additive,
one can pass to the unphysical sheet with respect to any one
of them. We denote by {3} the set of channels with respect to
which the system (47) must be analytically continued to the
unphysical sheets. By means of matrix algebra we find that
the result of such continuation is equivalent to replacement
of the potential matrix ¥, by the expression®’

Vara (Rary Ko 53 = Vg (R, o)
+i8n® ;; bpeBpVarp (hary pp) WitV e (Ps, B, (49)
where the matrix W ! is the inverse of W:

Werp = Opp— i8a2uppgV (pps Pp)s

o (50)
Pe=V 2uz (2 —Up).
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Asin the single-channel case, the addition to the potential in
(49) is nonlocal (it has the form of a sum of separable terms)
4drd depends on the energy z. The restriction to binary chan-
nels is not fundamental, as is evident from examination of
the Faddeev equations (see below). In the region of z values
in which the matrix W is singular (degenerate), i.c.,
det W =0, it is better to use the system of equations that
generalizes to the multichannel case the system (17)-(18).

4. THREE-PARTICLE THEORY OF RESONANCE STATES
Faddeev equations. Two-particle cut

The method just described for analytic continuation of
the system of integral equations for coupled binary channels
can be extended to the three-body problem without particu-
lar difficulty.”” We shall illustrate it for the simple example
of the Faddeev equation for three identical spinless particles
whose interaction is described by the separable potential

P VI =hy (0) x* (p"). (51)

The problem of the scattering of a particle by a bound sub-
system reduces to solution of a one-dimensional integral
equation for the partial-wave amplitude X, (g,¢";E + i0)
(see, for example, Ref. 23):

X (g, 45 E+i0) =27 (g, ¢'s E+10) +8n { g2 dy

1]
X[Zeln, g E+i0)yr (B4i0— 320 X, (7, E+i0)].

(52)
Here and in what follows L is the total angular momentum of
the system, and
1
Zelg, ¢'s E 4 i0) = (1/2) K dyPy () Z (q, q'; E + i0);
]

(33}
¥y =qq/yq:
‘. oy W)y (—q'2—q)
Z(w o B+l =g it e o . (54)

Equation (52) is similar to the Lippmann-Schwinger equa-
tion, with Z; playing the part of the potential, and 7(z, )
that of the propagator. The function 7(z, ), whose argument
is the subsystem energy

z, (q) = E — 3¢*/4m, (53)

is connected to the # matrix by the simple relation

(P 1E(zy) | p) = % (07) T (2) ¢* (p). (56a)
s <=
(g =27 { ap LEL DI (56b)

The symbol of complex conjugation in (56) applies only to
the spherical function [see the comments on Eq. (30) |. Sup-
pose that the subsystem has one bound s-wave state. Then

7(z,) hasapoleatz, = — ¢, (¢, is the binding energy):
T(zp) = {(z, + &) C (22}}7 (37)
where
_ yAp) 7* (p)
Ce=—{ do bt Py (38)

Thus, the pole of the function 7(E + i0 — 3¢”*/4m), which
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FIG. 10. Two- and three-particle cuts in the plane of the complex energy
z, =E of the nd system (£,=¢,).

oceurs in the kernel of Eq. (52), induces the two-particle
propagator

[ 1 _ 1
@) tEy B+ —3¢%kmtep  Epept+il—3¢"24m

,(59)

where E, ; = E + ¢, is the energy of the motion of particle
3 relative to the center of mass of the bound pair {12} and,
accordingly, a two-particle right-hand cut that begins at
E = — ¢, (Fig. 10) is also induced. It is obvious that the
pole term can always be separated from the £ matrix (Fig. 11,
A). The separability of the potential is used merely to ex-
press the ¢ matrix in closed form.

Separating the two-particle propagator in Eq. (52) and
introducing the “potential”

Vilg 5 B) =22 (g, ¢5 E) C7 (2, (¢)) (60)

we obtain an equation of Lippman—Schwinger type (there is
a difference in the inhomogeneous term and in the explicit

dependence of ¥, on E) (Imy/E + ¢, >0):
Xo(q, s E)=2Z1(q. ¢'; E) +4n

C Vi a5 BV XL W@ @2 B) g v
><§ LT g (61)
Here, u = 2m/3. Continuing (61) analytically into the re-
gion s, (Fig. 10) with respect to the variable E,,, = £ + £,
as in the case of the Lippman—Schwinger equation, we obtain
the following equation on the unphysical sheet of z, =E:

X (g, ¢ E)=22.(q, ¢'s E) +4n

i"vL (g, ¢; EYXP (", o5 E)
E+4ep—q"tj2u

glf-_», dqn
i}

+1i8n2upVy (¢, p) X0 (P, 05 E); p=V2u(E +ey)-
(62)

P’

= = 1 v
L4 / > L4 -7
B c

4

FIG. 11. Diagrams for scattering of a particle by a two-particle bound
subsystem that illustrate the appearance of the two-particle cut {A) and
the three-particle cuts corresponding to the direct (B) and crossed (C)
terms in the unitarity relation.

580 Sov. J. Part. Nugl. 20 (6), Nov.-Dec. 1989

We emphasize that Z, and ¥, do no have a two-particle
right-hand cut. Expressing X ; ~’ (p.q';E) by means of (62),
we obtain an equation in the same form as (52) but with new
inhomogeneous terms

%, (¢, @3 E) = Zi (q. ¢'s B) + Fa, ps E)Zo (p; @5 E)
(63)

and the “potential”
Velg a5 E) =Vl q5 E)
+ Flg, py EYVolp, o5 E), (64)

where

Fol g By D L1 E)

1—i8nupVi (p, p; E)°

(65)

For the same reasons as for the Lippmann-Schwinger equa-
tion, the denominator in (65) is nota pole of the S matrix.
However, in the neighborhood of the zero of the denomina-
tor of (65) it is expedient to use the system of equations from
(62), augmented by Eq. (62) at the point g = p. The eigen-
value problem for the kernel of the Faddeev equation corre-
sponding to such a system was also considered in Ref. 3 for
the special case of a three-particle system with a Yamaguchi
potential. The function ¥ (p, p; £) has a logarithmic cut,
which connects in pairs the branch points
piE) = +i(2/3)Jme, and pi*’ = +i2\me, for a sys-
tem of particles of equal mass m [see (68)]. Near the singu-
larities of ¥, (p, p; E) itis preferable to use the equation with
the potential (64), since the large-valued ¥, (p, p; E) occurs
in the denominator of (65). Thus, choosing the formulation
of the Faddeev integral equations on the unphysical sheet
that is most appropriate for the E under consideration, we
can use the standard methods of solution known for bound-
state problems. At the point of the corresponding pole,
E = E,, we obtain a homogeneous equation or a system of
equations for the vertex function of the decay
{123} - {12} + 3, as in the case of the two-body problem,
and, therefore, we obtain the same for the wave function of a
resonance (or virtual) state, which can also be normalized
with allowance for the modification considered above or by
means of the 7" matrix.

As in the two-body problem, the analytic properties of
the solution of the three-body homogeneous equation are
determined by the properties of the kernel of the integral
equation, i.e., the “potential” (60). By analogy with the

' two-body potential problem (see Sec. 3), we solve Eq. (62)

iteratively and sum the resulting series. We find the relation
XD (g. ¢ E) = Xy g, g5 B)
+ i8nupC L (z (p)) X1 (g p3 E) X (p, ¢ E).  (66)

Sincez, (p) = — &, [see (55) and (62)], and from (58) we
have C( —£,) = 1 in our normalization, we arrive at an
expression analogous to (31), which is a generalization of
the well-known relation for the partial-wave scattering am-
plitude associated with the condition of unitarity of the §
matrix for a binary channel, and we also obtain the same
relationship between the scattering amplitudes (but now in
the three-body problem) on the physical and unphysical
sheets with respect to the channel 3 + {12}. The relations
(32), (33), (35), and (36) can also be directly generalized
to the case of a binary channel in a three-body problem. In
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contrast to a two-particle potential, for which the singulari-
ties of the Fourier transform depend on the particular model
(and recede to infinity when the potential is truncated ), the
nearest singularities of the exchange “potential” Z, (g,
q";E) and of the partial-wave amplitude X { — (g, q";E) are
determined by real physical properties of the three-body sys-
tem that are independent of the specific form of the short-
range two-body potential. This potential is always specified
in such a way as to ensure, at the least, the correct value of
the binding energy &, for the {12} subsystem. But £, also
determines the positions of the “dynamical” singularities of
the potential ¥, (p, p; E) (see above). Therefore, the sym-
metry theorem, which can be generalized to the case of a
three-body system for the binary channel {12} + 3, reflects
true dynamical properties that do not depend on the particu-
lar model of the two-body interaction.'?® The effective two-
particle interaction has the asymptotic behavior (43) with

B= —2.

Faddeev equations. Three-particle cut

The three-particle cut (see Fig. 10) is related to the
three-particle propagator, which occurs both in 7(z5) and in
Z, (g, q";E). The right-hand cut of the ¢ matrix, which oc-
curs in 7(z,) [specifically in C(z,) in (58)], induces a
three-particle cut, which corresponds to the so-called direct
term in the unitarity relation (Fig. 11, B). The crossed term
in the unitarity relation on the three-particle cut (Fig. 10)
arises from the function Z, (g, ¢":E), the projection onto the
L th partial wave of the exchange potential of the interaction
of the bound pair {12} with the spectator particle 3, as
shown in Fig. 12. In contrast to the two-body problem, the
potential depends explicitly on the energy. Its singularities
are determined (if we forget about the singularities of the
vertex functions y, which do not lead to a right-hand cut
with respect to E) by Q, (¥), a Legendre function of the
second kind with argument

y=(mE — ¢ — ¢"™)/qq". (67)

The function @, (p} has a logarithmic cut along the real axis
of p from —1 to + 1, and this induces two cuts of
Z; (g, q"; E) in the complex plane of ¢”. The positions of
these cuts are determined from the condition of vanishing of
the denominator in (54);

0= —qu2+ VAT B, (68)

where B® = mE — ¢°.
The cuts connect the branch points Gesin and g, pair-
wise:

Gtha=— 4+ L+ B ri0;
qiﬁhx=%+]/q72+32+io; (69)
qgh:_%—]/“;-%ﬁ’z-i—iﬂ;

allowance being made for the sign of the imaginary addition
for real E( >0). The shape and position of the cuts depend
both on g and on E, and they are therefore called moving
cuts. On transition with respectto E toa neighboring unphy-
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FIG. 12. Graph showing the exchange potential in the Faddeey equations.

sical sheet s; (see Fig. 10), the logarithmic cut of Z, dips
into the lower half-plane, deforming the contour of integra-
tion in (52), as is shown in Fig. 13 for the case when the
points g and JmE are on one ray, and |g|2 < |mE|. As a
result, the homogeneous equation for the eigenvalues of the
kernel of the Faddeev equation acquires an additional term
S, (g, E) (Ref. 37):

A (B) X (g, E) =R, (g, E)+ 8, (q, B);
Ry(g, By=8n { ¢2dq"Z, (g, "; B 100
0
X(E—222) X, (q", B;

(70)
Salg, By =8n | dguo
Cig, E)
X(E—3 L) X, (g, E)dise Z, (g, 7 B).

In the integrand, we must take 7'~ instead of 7 if we pass
simultaneously to the unphysical sheet with respect to the
square-root cut of the function C(z,) in (58). In Eq. (70),
X, (g, E) is an eigenfunction of the kernel, and C(g, E) is the
region with nonzero discontinuity disc Z, (g, g; £) 0. The
variables ¢ and g separate in disc Z, , and, as a consequence,
8, (g, E) acquires a factor that includes Y (mE — 3/4qr) s
which depends explicitly on ¢ and determines the far (for
short-range forces) potential singularities. “Nonpotential”
singularities of S, (g, E) arise if a subsystem has a virtual or
resonance pole, i.e., 7' (2, )~ (2, —v,) ~ . At the same
time, S, (g, E) is a Cauchy-type integral whose logarithmic
singularities correspond to coincidence of the pole 7~ ’(z, )
with one of the ends of the integration. The corresponding
branch points

o= VmE=v)R £ Vi, }

b . (71)
Gpta=— Vm(E—v,)3 + Vmv,

also correspond to the Legendre function Q0 (y ), where

Yr =1y, —E)3 —2m)i2 (o/ Vi) VE—v,)I3,  (72)

Img"”

™ Re "
N\7E
2
) '/ VemE/S

K(E)

FIG. 13. Structure of the singularities with respect to ¢” of the kernel of
the Faddeev equation on the sheet s,; K(E) is the two-particle cut for the
subsystem. The heavy line with the arrows is the contour of integration.
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with cuts along lines — 1<y, <1,

Gprap) = —yp VI (E—v,)3
+ [m(E—vy) (g — D83 +mvp)2 (73)

Finally, S, (g, E) has a square-root cut with respect to z,
= E — (3/4) (¢*/m), since Jz, occurs in the limits of the
integration along the curve C(g, E). Thus, the form of the
equations for the unstable states enables us to find the near-
est singularities of the solution with respect to the variable ¢
explicitly. Since the contour of integration must necessarily
pass through the point ¢ = 0, for which the cut C(q, E) con-
tracts into the point JmE , the wave function has the singu-
larities of the function S, (ymE , E), i.e., the singularities
with respect to E associated with the singularities with re-
spect to g. Substituting q;’,b = mE in (71), we obtain a loga-
rithmic cut with respect to E for the first term in the expan-
sion of X(g, E) in powers of g, the cut running between the
points E = v, and E = 4v, (Fig. 14). In addition, thereisa
pole at £ = 4v,, of the function 7~ (£ /4), which occurs in
S, (ymE ; E). The following terms of the expansion in a
power series in g will contain derivatives at the point
G=+mE, ie., the position of the singularities is not
changed, but the singularity becomes stronger. Thus, the
segment in the E plane between the points v, and 4v, is a
forbidden region for analytic continuation with respect to E.
In addition, the solution has a cut that begins at the point
E =v, and goes to the right, parallel to the real axis. This
cut is analogous to the two-particle unitary cut situated on
the physical sheet. The analytic structure of the singularities
is shown in Figs. 14 and 15. For fixed £ and varying g, the
curve C(g, E) wanders quite “capriciously” in the complex
plane of ¢”. Therefore, the Faddeev equation on the sheet s;
cannot be solved by the usual determinant method, since the
problem is not closed with respect to the set of quadrature
points on the contour of integration. However, knowing the
nearest singularities of the solution, we can use the analytic
representation (8 ~ 'is the range of the two-particle interac-

tion)
Xo (0 B)= 3 (e B lan+ S 020 )l (74)

m=

o= VmE—(3%) ¢,

where 2, the sum over the poles. The expansion basis is
constructed using the vertex function y (p,.3) [we note that
y(p, ) =x(p,) ], and is completely analogous to the basis
that arises in the two-body problem in Martin’s method.*’ In
actual problems, the sum over m must be truncated in accor-
dance with the required accuracy. Substitution of (74) inthe
Faddeev equation gives a system of linear equations for the

il )\ Re E

FIG. 14. Structure of the nearest singularities with respect to the energy
for the solution of the eigenvalue problem for the kernel of the Faddeev
equation in s, that arise because of the term $(g, E) in (70) for the case
when the subsystem has a pole at the energy z, = v,
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Yp
FIG. 15. The same as in Fig. 14 for a term R (g, E) of ordinary type.

unknown coefficients @,, and b (7, which can be solved in the
usual way. Since the position of the three-particle pole with
respect to £ does not depend on g, the simplest procedure is
to expand the left- and right-hand sides of the Faddeev equa-
tion in powers of ¢ near g = 0. The number of terms of the
expansion is determined by the number of unknown param-
eters a,, and b ¢ for fixed a maximal number of terms in the
sum over .

Thus, we evidently have a practical and fairly rigorous
method for the study of three-particle resonances. It uses
analytic continuation of the Faddeev integral equations di-
rectly into the region of the energies s, and s; that contain the
corresponding poles of the § matrix. A more detailed exXposi-
tion of the method is given in Refs. 37 and 126.

5.NUMERICAL SOLUTION OF THE FADDEEV EQUATIONS ON
THE UNPHYSICAL SHEETS BY DEFORMATION OF THE
CONTOUR OF INTEGRATION

Determination of the resenance poles

As an alternative to the formulation presented, the reso-
nance poles of the T matrix for three particles can be calcu-
Jated by the approach proposed by Moller and
Glockle.? 128 This approach proceeds from the Faddeev
equations (52) on the physical sheet and uses a deformation
of the contour of integration. The deformation of the con-
tour has two purposes in this case. First, the contour can be
chosen in such a way that the integrand contains no rapidly
varying structure, i.e., is as far as possible from the singulari-
ties of the kernel of the equation. Second, the deformation of
the contour leads to a deformation of the cuts in the energy
plane for the three-particle amplitude, thus “uncovering”
part of the unphysical sheet. This means that the deforma-
tion of the contour enables us to pass to the unphysical sheet
without changing the original form of the equations, in con-
trast to the approach presented above. In addition, the defor-
mation of the contour of integration gives the values of the T’
matrix on the unphysical sheet not on the complete Riemann
surface of the energy but only in a restricted region, which
depends on the contour of integration. However, there al-
ways exists in principle a contour that enables one to reach a
necessary point with respect to the energy, provided that at
this point all the integrands, including the solution, are ana-
lytic. To explain the method, we proceed from the equations
for the eigenvalues of the kernel of the Faddeev integral
equation. We change the notation somewhat from (52). For
a separable potential ¥(p, p') = —Ag(p)g(p’) we have
(m=1)

Apn (25) Fro (s 25) = 4m S krdiv, (g, & 25) T
1]

3 9 Ay
X (25— 53 B) Fra(kizg), (75

K. Mdéller and Yu. V. Orlov 582



where

1
gip) glps) Pr (w)
0 i 25) Sj o (76)
Pi = ykq + ¢ + Kl pt = ykg + B+ ¢4 (77)
and
L o F Rk g k-1
T(2,) = _l[1+k~m§ e (78)

In actual calculations the Yamaguchi potential with the
form factor

2

g(p) = (p* + pH? (79

was used. Then the integrals in (76) and (78) can be calcu-
lated analytically. We obtain

1

UL (Q; k" 23) '—:W
QL (y3) QL (—1uy) QL {—yq)
X[ Y3+ 1) (13+J2)+(JJ -+ ) Jl_J2)+ (¥3+v2) wz~y1)]
(80)
where
2 g2 kg B k24-g4 | I it
yi=£_wlkq+__*_; = By B
(81)
For m we have
1 (e--B)2
&)=~ TR e (82)
where
p=Viz; Imp>0; e;=0a2%

Aswe have already noted, the analytic structure of the eigen-
values 4,, (z;) that is shown in Fig. 10 results in the exis-
tence of two unphysical sheets, which adjoin the physical
sheet and which we denote by s, and s,. In what follows, we
shall restrict ourselves to considering only the analytic con-
tinuation into s;. The continuation into 5, can evidently be
done without having to deform the contour. It has already
been considered in Sec. 4 (see also Ref. 138). As we have
already noted, the use of the method of contour deformation
requires a careful analysis of the positions of singularities in
the plane of integration. In the given case, we have the fol-
lowing singularities of the kernel of the equation in the com-
plex plane of k ( — 1<p<1): the kinematic cuts (68)

1
By = —?W"‘ I/QZ Izyz-—i) +- 24
and the dynamical cuts
kﬂ“5=2(—ur/+ V(> —1)—p%); (83)

A yr'-l- ]/

As we have already said, the singularities (68), (83), and
(84) arise from the functions @, in (80). The function 7 in
(75) gives the following singularities: kinematic cuts

(y*—1)—p~ (84)

iy = 4 1V z3—s. 0<s< o0, (85)

‘4:
and two poles
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FIG. 16. Structure of the singularities of the kernel of the Faddeev eigen-
value equation in the plane of the complex momentum k (the variable of
integration) for z, = E + ie(E,e>0), 0 < g <y/mE for undeformed con-
tour of integration (Yamaguchi potential}.
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kpto= = —= Vg T @, a>0. (86)
V3
The positions of the singularities for one value of g and z,
= E 4+ i0areshown in Fig. 16. In a numerical solution of the
integral equation (75), the variable g takes all the values that
k takes. Thus, instead of individual cuts an entire region of
singularities prevents solution of the integral equations. This
situation is shown in Fig. 17, from which it can be seen that
direct proximity of the singularities to the contour of inte-
gration makes it possible to obtain reliable numerical results
by applying the ordinary methods of numerical integration.
In contrast to this situation, the deformed contour of inte-
gration shown in Fig. 18 gives results with great numerical
accuracy.”'**'** The path of integration shown in Fig. 18 is
suitable for investigating the positions of the resonance poles
of the scattering amplitude only in a restricted region of the
unphysical sheet. For other regions, it is necessary to use a
different deformation of the contour.*'** The method
works reliably in practice. If the contour of integration is
appropriately chosen, it even permits analytic continuation
with respect to cuts situated on the unphysical sheet s,. This
was shown by the example of calculation of the pole trajec-
tories for the *n system in Ref. 139. In this case, as in a
number of others, the analytic continuation requires defor-
mation of the contour not only in (75) but also in the inte-

FIG. 17. Singularities of the kernel of Eq. (83) forz, = E L ie (E, e~ o
for the undeformed contour of 1 integration ( Yamaguchi potential).
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integration

FIG. 18. Positions of singularities for the deformed contour of integration
shown 1n the figure.

gral (78), i.e., for the two-particle T matrix, as we have al-
ready discussed in Sec. 4.

Vertex functions and coupling constants

The vertex functions and coupling constants for the de-
cay of Gamow states of two- and three-particle systems can
be calculated in the method that uses contour deformation in
complete analogy with the calculations for bound states. The
only difference from the formalism presented, for example,
in Ref. 134 is in the replacement of the contour of integration
along the real axis of the momentum by a deformed contour.
Fourier transformation and the normalization of the wave
function in the momentum representation are generalized
similarly.

As we have already noted in the Introduction, the ver-
tex functions for the decay of unstable systems can be used
for a separable representation of the z matrix that is particu-
larly helpful at energies near the corresponding pole of the ¢
matrix when a restriction is made to a single separable term.
A separable expansion of the ¢ matrix in Hilbert—Schmidt
form is often used in the literature. For the scattering of two
particles,

An (25)

t(q, q'; 2,)= m"f"n {a, 25) Fr(q's 32), (87)
1

NEE:

where the eigenfunction F, is a normalized solution of Eq.
(22). For a three-particle system, for example, for a process
with breakup (Fig. 19), we have

T(f & ke 2= [1— o (za)) P (ke; 23) Fo(f, K; zg).

(88)
The index « represents the set of conserved quantum

I

FIG. 19. Diagram for a process with disintegration.
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numbers, F, (f, k; z; ) is an eigenfunction of the kernel of the
Faddeev equation and is proportional to the vertex function
of decay of the state |@) into three free particles, and F, (kq;
z,) corresponds to the vertex function of decay into the
bound subsystem {12} and particle 3. Bearing in mind the
definition of the vertex function (30) and the fact that near
the pole atz =z,

Ay (2) = 14 (2 — z,) (d;“n’]dz)zZZn + oo (89)

we obtain the following relation for the two-particle prob-
lem:

g(n)(‘]) = C?an (qv Zn), (90)
where
C?\ = (""‘dln'ldz);izzn'

An analogous relationship between the vertex functions and
eigenfunctions is also obtained for both stable and unstable
three-particle states. The Hilbert—Schmidt procedure was
first used in scattering problems by Weinberg. '* The further
name of the method—the quasiparticle method—arose be-
cause Weinberg called all poles of the S matrix, including
bound, antibound (virtual), and resonance states, quasipar-
ticles. Details of the application of the Hilbert—Schmidt ex-
pansion can be found in Refs. 141-147. To conclude this
seclion, we note that some studies with calculations of vertex
functions and coupling constants for the three-nucleon sys-
tem were not included in the review of Ref. 134 (many of
them were published later). Among these are the studies of
Refs. 29 and 148-157, which include calculations with “real-
istic”” NN potentials. We recall that the coupling constants
have the status of independent physical quantities that deter-
mine the asymptotic behavior of the coordinate wave func-
tion. They can be extracted from analysis of experiments.
For example, in Ref. 158 the vertex function and constant
for the virtual decay *He—p + d were obtained from analy-
sis of the reaction *He + p—p + p + d at ‘He momenta 2.5
and 5 GeV/c.

6.NUMERICAL RESULTS FOR NUCLEON SYSTEMS
Virtual two-nucleon state

It is well known that the np system can be either in a
bound *S, state (deuteron) or in a virtual 'S, state (“singlet
deuteron’). Because of the particle identity, the correspond-
ing nn and pp systems can be only in the '8, state. Table II
gives values for the energy E, of the singlet deuteron for
different NN potentials. Note that the rather large value of
|E,| for the Reid potential arises because the scattering

TABLE IL Pole values of the energy of a singlet
pair of nucleons for different potentials.

Potential — E,, keV | Reference
Darewich—Green 78 [29]
Malflict-Tjon 71 [29
Bressel-Kerman—-Ru- 81 [29]
ben (modified)

Reid 122 [36]
Yukawa 69 [133]
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TABLE III. Review of theoretical results on the study of resonances in the system.

Method

Quantum

sonance, MeV
numbers Re - M

Reference

5) Solution of Faddeev equation
with separable potential, A < [, *P
interaction + terms containing
L:S and (L-S)?

L, S, J—=

ist
15373172 A bound state exists

[161—163]

Variational calculus, local poten-
tial, systematics for separation en-
ergy of last neutron, 12

[164]

Solution of Euler-Lagrange equa-
tion, A~ 5

[165}

Solution of Schrodinger equation
with resonance boundary condi-
tions, method of K harmonics, '’
potentials: rectangular well, expo-
nential, Yukawa, 4 =2

[166]

Calculation of cross section for the
*H(n,p)3n reaction

Cross section for
formation of *n
below experimental
sensitivity

[168, 169]

Investigation of *He(w ,77)3n
reaction, Faddeev equation. Devi-
ation from phase space interpreted
as nn interaction in the final state

164]

Special model for calculation of re-
sonances, variational calculus, po-
tentials: Afnan-Tang,'"' Eike-
maier—Hakenbroich '™

I

W ne
=
[

Gt
o
~1

=
=
Ta
-
[y by

[170]

K matrix for three particles, calcu-
lation of eigenvalues of K matrix

r, §, L=
a2 12, 1

E=6.1

[173, 174]

Faddeev equation, calculation of
eigenvalues of kernel of Faddeev
equation for real energies

[30]

1. Schrédinger equation, rectangu-

lar-well potential, first eigenval-
17

ue

2. Skornyakov-Ter-Martirosyan

integral equation,' zero-range po-

tential'™

[175]

Faddeev equation, Yamaguchi po-
tential (separable), pole trajectory
for 8§ matrix

3
[33]

Faddeev equation, Reid potential,
*P,F, interaction, A = 4

[176]

Faddeev equation and variational
calculus; comparison of the results
showed that the differences is due
to the difference of the potentials,
and not of the approaches

[177]

Faddeev equation, coordinate
space, Reid potential with soft
COI'CI-H‘

[178]

Calculations with a potential that
reproduces the binding energies of
the nuclei *H, *He, *H, *He, *Li

(Ref. 177)

[179]
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Continuation of TABLE II1

Method Quadiem Resonance, MeV | Reference
numbers

Lower bounds for the binding ener- No cpmradicti?n [180]
gy of the *1 system for various po- to existence of *n

tentials Tesonanoes

Faddeev equation, pole trajectories |7, S, L% = E=(—88.0+ [139]
of .S matrix 3/2; 1425 1© +i27.9) keV:

2= —0.051i10.1
Calculation of the spectrum E, _ _ (81

from the g~ + ‘H-v+ 3n reac-
tion

length chosen in Ref. 36 is much smaller than in the remain-
ing calculations of Table II (a,~ — 17 F instead of a,
~ — 23 F). This indicates that the parameters in Ref. 36
relate to the s, and not the #p, system, since in the literature
(see, for example, Ref. 159) such a value for a, is given for
the nn system. The possibility of taking into account differ-
ences between a, for the nn and np interactions in the Fad-
deev equations for “H is discussed in Ref. 160. It was noted in
Sec. 1 that allowance for the Coulomb pp interaction shifts
the virtual level from the imaginary axis to the right into the
complex plane of the momentum p, as was first shown in Ref.
48. However, it must be said that it does not become a “true”
resonance (quasistationary state), since |Im p/Re p| > 1:

Pugre = (00647 —i 0.0870) p-1 , }

Esppe = (— 140 — i407) keV. 91

These numbers were obtained from analysis of experimental
data on pp scattering in the framework of the effective-range
approximation, modified to take into account the Coulomb
interaction. The position of the pole (91) is fairly close to the
result for the Reid potential in Table IT.

Unstable three-nucleon states

The main numerical results obtained in theoretical
studies of resonances in the three-nucleon systems 3# and "H
(without the Coulomb interaction) are given in Tables IIT
and I'V, respectively, and in the review papers of Refs. 57, 59,
60, 62, and 188. As regards unstable states in the *He and Li
systems, practically no work has yet been done on the basis
of the Faddeev integral equations. In the Introduction we
noted that allowance for the Coulomb interaction in even the
bound-state problem requires modification of the theory ei-
ther by the use of a screened Coulomb potential® (see also
Ref. 162 and the references in it) or by means of equations in
the configuration space.*>*

A modification is also required for the dispersion theo-
ry of nuclear reactions with charged particles, including the
definition of vertex functions with allowance for the Cou-
lomb interaction. A review devoted to Coulomb effects in
nuclear reactions is given in Ref. 190 (see also Ref. 191). In
Ref. 192, the pd system was treated in the framework of the
N /D method, also with allowance for the Coulomb interac-
tion, and it was shown that, as in the case of the pp interac-
tion, the tritium virtual pole is displaced into the complex
plane of the momentum. However, it should be noted that at
the present level of accuracy achieved in the calculations of
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resonances, and in connection with the experimental situa-
tion, it is hardly necessary to treat the *He and °Li systems in
the framework of complicated modified equations. One can
use charge independence with subsequent allowance for a
shift of the levels by the Coulomb energy. We therefore turn
to discussion of the 3NV system without the Coulomb interac-
tion. Tables IIT and IV show that most theoretical studies
conclude that there are no resonances in the *» and “He sys-
tems near the physical region. An exception is the pole for
3He that we mentioned above, which corresponds to the "H
virtual pole. The bound state of the n system obtained by
Mitra'®" was not confirmed in further studies. It is asserted
in Ref. 188 that Mitra’s calculations contain an error. Never-
theless, some authors (see, for example, Ref. 193 ) regard the
existence of a localized (i.e., situated near the threshold at
which all three neutrons have zero energy) trineutron as
possible. The only general theoretical result is the virtual
pole for the nd system with the quantum numbers of bound
tritium near (~0.5 MeV) the threshold of the # + d chan-
nel. The position of this pole depends on the form of the NV
potential, but the actual existence of virtual tritium can be
regarded as reliably established. It should be noted that ob-
servation of this state in an experiment is not easy, as the
following arguments show:

1. If the virtual pole is to be observed in the physical
region of energy near the n + d threshold, the corresponding
pole term in the Hilbert—Schmidt expansion of the nd ampli-
tude must be dominant at low relative energies. But it was
shown in Ref. 194 that the background contribution of the
other terms in the Hilbert—Schmidt expansion is of the same
order as the contribution of the pole term, having, moreover,
the opposite sign, so that there is a rather accurate compen-
sation. This fact is due to the small value of the residue at the
virtual pole. Moreover, the compensation leads to a strong
sensitivity of the nd doublet scattering length to the form of
the NN potential.

2. In a number of studies (see, for example, Refs. 195—
197) it is asserted that the effective-range expansion for the
doublet S-wave phase shift of nd scattering, ‘*'8,, has a pole
situated in the unphysical region near the threshold:

keot? §, (k) = —A + BE* — C/(1 4- DI#%). (92)
The expansion parameters (4 =03105F ', B=0.85F,
C=3.138 F !, D =478.5 F?) obtained in Ref. 196 by fit-
ting the data at low energies correspond to a virtual pole at
energy — 0.515 MeV if the energy is measured from the
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TABLE IV. Review of theoretical results on the study of resonances in the *H system.

Method Quantum numbers | Resonance, MeV | Reference
See Table 111 S=1/2; L=1 - [166]
Dispersion relations o4 §, L= E=15—1i5 [182]
/2, 3/2; 1 E=18—i8
1/2;  1/2: 1
See Table III, potentials, Af-
nan-Tang T, §, L= E=10.6; I'=1.6 [170]
312 1/2; 1
Eikemaier—Hakenbroich 1/2; 3/2: 1 E=9.3
3/2; 1/2; 1 E=12.0; T=2.7
1/2; 3/2; 1 E=9.3
Generalization of Jost function T. §. L— E=—(0.3354 [183]
to the case of the three-body | 1/3; 3/3: 1 +i0.28) *
problem, analytic continuation | 1/2; 1/2; 0 E=—0.49%
of the Jost function to the com- (virtual state)
plex plane of the energy, deter-
mination of zeros of the Jost
function
Investigation of the *He(7 ) — — [184]
*H and *He(r , 7°)°H reac-
tions
Faddeev equation, pole trajec- T, 8, L= E= —(0.2354- [124, 185]
tories of the S matrix 1'2; 3/2; 1 +10.93)
1/2;1/2; 0 E=—0.35
(virtual state)
C3=0.1058
Determination of position of T, 8 L= E=—0.482% [34]
pole and residue for doublet nd | 1/2: 1/2; 0 €3 =0.0504
scattering: Faddeev equation,
N/D
Calculation of poles of Tmatrix | 7, §. 1= E=—0.381% [369
in the complex plane of the en- | 1/2; 1/2: 0 (2=10.0589
ergy by the method of Refs. 36
and 186
Formulation of Faddeev equa- T, §, L= E= —0.502* [37]
tion on unphysical sheet, calcu- | 1;2; 1/2: 0
lation of poles of the T matrix,
Malfliet-Tjon local potential
Faddeev equation with three-| T, §, L= '::hree-_pa_rtic]e
1 B: 1'2; 0 Orces raise
nucleon forces ! / somewhat the [187]

bound level and
the virtual level

Note (on Tables Il and IV). The quantity 4 is the factor by which one must multiply the
potential in order to obtain a three-particle system with zero binding energy, sothat A > 1
corresponds to an unbound state; the asterisk indicates that the energy of the level is
measured from the two-particle threshold; C2 is the residue at the resonance pole asso-
ciated with the scattering amplitude (14): limg . [(k— ko )fp(k)] =3/2iC2.

elastic threshold. Since the scattering amplitude at low ener-
giesis f(k) = [k cot™§,(k) — ik] ™", the pole in the expres-
sion (92) corresponds to a zero of the amplitude f(k). On
the other hand, at the point of the virtual pole f{ k) becomes
infinite. Thus, near the threshold f(k) must vary strongly
and, therefore, must depend on the details of the calculation.

3. The cross section for nd scattering at the threshold is
given by the expression o, = (4/3)7 % [2%4> + @4?]. For
the adopted experimental values of the quartet and doublet
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scattering lengths, ‘Y@ = 6.35 F and P2 =0.65 F (Ref.
198), the first term in gy, is approximately 190 times greater
than the second. Thus, it is difficult to detect a virtual pole
when this cross section is measured, even if it strongly in-
fluences the value of ‘4. To avoid this difficulty, it is neces-
sary to make measurements with polarized particles. Thus,
analysis of the theoretical calculations indicates that one can
hardly expect observation of resonances in the 3N system,
since the calculations of the trajectories by variation of the
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dynamical parameters show that the poles of the 5 matrix
(apart from the virtual pole for *H and the corresponding
one for *He) are situated far from the physical region.

Correlation between the energy parameters in nd scattering

For more than 20 years there has been intense discus-
sion in the literature on the connection between the nd doub-
let scattering length ®a and the tritium binding energy. The
dependence E; = f(‘¥a) is known as the Phillips'** line, on
which the results of calculations by means of the Faddeev
equations using different NN potentials lie. The Phillips
curve is close to a straight line near the experimental values
of E; and Pa.

In Ref. 200, the correlation between E . and “ais inter-
preted in terms of the effective-range expansion. A similar
question arises in connection with the relationship between
@14 and the energy E, of the virtual level. The existence of
such a connection already follows from Eq. (92). Finally, in
the recent study of Ref. 201 a correlation between £, and “'a
was obtained in the so-called minimal approximation for the
three-nucleon system by solving the Skornyakoy-Ter-Mar-
tirosyan equations truncated with respect to the momentum
at the upper limit (the cutoff parameter g, was regarded as a
parameter). The resulting relation reproduces the correla-
tion exhibited in Ref. 34. This result explains the weak de-
pendence of the three-particle low-energy parameters on the
particular model of the NN interaction, provided that the
binding energies and NN scattering lengths are correctly re-
produced in the doublet and triplet S states. The effective-
range expansion for doublet nd scattering was also consid-
ered in Ref. 202.

Summarizing our discussion of the properties of nd
scattering at low energy, we can conclude that these proper-
ties are determined mainly by the singularities which appear
in the kernel of the Faddeev equation on account of the effec-
tive single-nucleon exchange potential, as discussed in Sec. 4
(see also Ref. 34). This circumstance evidently explains the
successful application of the two-body approximation to the
three-particle system.?>% Since the effective nd interac-
tion that reflects the dynamics of the three-particle problem
can be expressed in the form**

T
exp (— ‘ ﬂul Br)

B Cr

Vi =—-V, (93)

where a and r, are the scattering length and effective range
in the two-body subsystem (with the greatest scattering

b 1 ReE,MeV
T
0159 s X=1.05F 1
' e 0.95
0925-\—4 .88
Loz
E -’a 68
—~X, S
g.49
ImE, MeV

FIG. 20. Trajectory of first pole of the 3n system on the unphysical
sheet 5.
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Re E, MeV

FIG. 21. Continuation of the pole trajectory shown in Fig. 20 to the un-
physical sheet s,,.

length), it can be concluded that the symmetry theorem con-
sidered in Sec. 3 must also hold in the three-particle prob-
lem, the positions of the dynamical singularities being deter-
mined by the binding energy of the subsystem (see Sec. 4).

Trajectories of poles for three-nucleon systems

We give some examples of such trajectories for different
parameter values of the NN interaction. The Faddeev equa-
tions with an s-wave single-term separable potential for the
3n system and for the quartet state of the nap system are,
apart from a spin factor ( — 1), identical to the one-dimen-
sional integral equation for three spinless bosons. For the
doublet nup state there is a system of two equations.

The 3nsystem

The pole trajectory of the first pole (ground state) of
the 37 system with the quantum numbers (7,5, L™) = (3/2,
1/2,17) is shown in Figs. 20-22 (Refs. 32 and 33), in which
a = +[/me3/#. It can be seen from Fig. 20 that fora>1.1 F
~ ! the pole of the 3n system becomes bound. In the interval
0<a<1.1 F ~ ! the pole is on the unphysical sheets,. For
a <0, the pole does not pass to the unphysical sheet 5;, as one
would have expected, but passes directly from the threshold
to the sheet that we denote by 5,, (Fig. 21). The sheet s, is
associated with the elastic cut, which for a < 0 is situated on
the sheet s,. For the real singlet interactiona = — 0.04 F ~ !
we obtain the pole position and scattering-amplitude residue
given in Table ITI (Ref. 139):

E = (—88.0 7 i27.9) keV,
Ct = —0.05 & i0.1.

The nnp system

In this system there are not only singlet but also triplet
parameters of the NN interaction. For the state (T, S,
L™ =(1/2,3/2,17), the Faddeev equation can be ob-

e ,;,4’472@
r— 2,
N T
N A
&y B i |
PC bs
ATE
vl

FIG. 22. Analytic continuation for the trajectory shown in Fig. 20 (TPis
the trajectory, and PC is the path of analytic continuation).
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FIG. 23. Trajectory of the virtual pole £, as a function of the binding
energy £in the 'S, state for the Yamaguchi potential (1) and the Malfliet—
Tjon potential (2).

tained from the equation for the 3n system by simple replace-
ment of the singlet parameters by the triplet parameters.
Thus, from the trajectory in Fig. 20 it immediately follows
that there is a pole at £ = (0.235 + i0.93) MeV (see Table
1V, Ref. 124). It is difficult to detect this pole experimental-
ly, since it is fairly far from the elastic threshold. In addition,
since we are now dealing with a P state (L = 1), the corre-
sponding partial amplitude for nd scattering vanishes at the
threshold, and the presence of the pole cannot be clearly
manifested.

The Faddeev integral equation for the state
(1.5, L7)=1(1/2,1/2,0"), ie, with the quantum
numbers of *H, contains both a triplet and a singlet interac-
tion. This means that complete investigations of the trajec-
tories require variation of two parameters. So far as we
know, there are no such calculations in the literature. Tra-
jectories of the virtual level of *H as a function of the triplet
parameter of the binding energy € of the “deuteron,” calcu-
lated for the Yamaguchi NN potential®®® and the local Mal-
fliet-Tjon potential™ (set of parameters I, II), are given in
Refs. 186 and 207, respectively. The equations from Ref. 37
with the Bateman separation procedure for the Malfliet—
Tjon potential (four separable terms) were used. The results
of the calculations are compared in Fig. 23. It can be seen
that in the region of the physical value of the triplet param-
eter, £ = £,, the two potentials give similar results. How-
ever, the behavior of the trajectories is different. In the case
of the Malfliet-Tjon potential the trajectory behaves nor-
mally (i.e., the pole moves to the n + d threshold with in-
creasing attraction in the two-particle subsystem, approach-
ing the region of the three-particle bound state), while in the
case of the Yamaguchi potential the behavior is anomalous.
The anomalous behavior of the trajectory in the region of
small £ is due to the Efimov nature of the level. It must there-
fore also occur for the Malfliet—Tjon potential, but at smaller
values of £. The true value £ = ¢, leads to the values of E,
given in Table TV (Refs. 37, 185, and 186) for the Malfliet—
Tjon and Yamaguchi potentials.

The Efimov effect

Investigation of the pole trajectories reveals a patho-
logical behavior as @ ~£}%* -0, which is associated with the
Efimov effect. In 1970, Efimov***” showed that in the limit
a— oo (ie., @—0), where a is the scattering length in the
two-body subsystem, the number of three-particle bound
states also tends to infinity. The qualitative explanation is
that when one particle moves in the field of a two-particle
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subsystem with binding energy near zero it is acted on by an
effective long-range (of the type 1/¢) potential [see (93)]
irrespective of the range of the interaction potential of the
two particles. A very simple explanation of the effect is given
by Amado ez al.,*'"*"* who showed that in the Efimov limit
(£, =0, z; - 0) the kernel of the Faddeev integral equation
becomes non-Fredholm, i.c., Sp(K™) — e (n=12..).
Since

oo

sp(K*f):Ei Bon=23..., (94)
7
where 4, is the eigenvalue of the kernel, in the limiting case
we find that the accumulation point of the eigenvalues A, for
I— oo is not at the value zero, as it is for integral kernels of
Fredholm type, but at a finite value. For the S-wave state, the
accumulation point is greater than 1, from which
there follows an infinite number of bound states, N
~(1/7m)In(|a|/ry). The first illustration of the Efimov ef-
fectin numerical calculations was given in Ref. 214, in which
it was shown that in the limit & -0 a large number of bound
levels do indeed arise. With decreasing @ (@ 2 0), these states
come out of the continuum and become bound states, but for
@ = 0they go back into the continuum. The question arises of
the way in which the Efimov poles behave in the continuum.
The trajectories of the first three poles for a system of three
identical spinless bosons for L = 0 are shown in Fig. 24.2'° It
can be seen that as the strength of the two-particle interac-
tion is increased from zero to infinity the poles of the § ma-
trix situated in the complex plane of the energy approach
from infinity on the unphysical sheets,. Ata = — 0.15F !
a=0011F ', and @ = — 0.000 55 F ' the first, second,
and third poles, respectively, become bound states. With
further increase of e, the first two poles remain bound states.
At a = 0.0103 F ', the third pole passes to the unphysical
sheet s5,, while at & = 4.25 F "' it returns to the physical
sheet and becomes a bound state. The investigation of the
behavior of the trajectory of the third pole on the sheet 5, is a
complicated problem, since it does not remain all the time on
the sheet s, but passes to other sheets of the Riemann sur-
face that are associated with different cuts. For the other
Efimov poles the same qualitative behavior as for the third
pole is expected.

There is an unexpected property of the trajectory that is
a characteristic aspect of the Efimov effect. In a certain re-
gion of strength of the two-particle interaction there arises a
situation in which, when the strength is increased, the given

o 0.4 0.8 ReE MeV
L] T T T

0.4
= Sheet s,
= T Second pole
wog 8t (x1072
& | First pole

Third pole
g (x1079)

FIG. 24. Trajectories of the first three poles on the unphysical sheet 5, that
characterize the behavior of the Efimov poles in the region a 0.
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three-particle bound state does not become more strongly
bound, as one would expect, but enters the continuum. This
is due to the fact that in the plane of the energy the origin of
the two-particle cut is shifted to the left more rapidly than
the pole of the bound state. The anomalous behavior of the
pole trajectory associated with the Efimov effect has already
been discussed above for virtual states (see also Refs, 215
and 216), Searches for real physical systems in which Efi-
mov levels are manifested have been made in many other
studies that used various theoretical models (Refs. 34, 36,
and 217-222). As Efimov noted®* already in 1975, one of
the possible candidates is the system of three a particles,
since there are a quasistationary state of *Be with low energy
( — 95keV) and a three-particle '*C level with binding ener-
gy 7.65 MeV quite close to the threshold of 3« disintegra-
tion. However, for the final experimental proof of the exis-
tence of the Efimov effect it is necessary to find a system in
which, not one, but several levels with the Efimov effect are
manifested.

CONCLUSIONS

The approach that we have described here to the search
for and the investigation of resonances in three-particle sys-
tems in terms of poles of the 7 matrix can be extended to
different three-particle (or three-cluster) physical systems.
For example, the contour-deformation method for transi-
tion to an unphysical sheet of the energy was used in Refs.
224 and 225 to look for dibaryon resonances in the frame-
work of the three-particle NN+ dynamics. In fact, a modified
and simpler way of deforming the contour of integration was
used in Ref. 225. The method of integral equations for reso-
nance states can also be applied to other hadronic systems,
for example, NNN, 77N, 37, KK, K7, etc. The Faddeev
equations for the NNN system were applied in Refs. 226~
229. For completeness, we also mention Refs. 230-236 on
this subject, although in most of these studies other ap-
proaches to the investigation of resonances were used.

With regard to 3N systems, on which we have mainly
concentrated in this review (see also Ref. 237), we may con-
clude that they do not contain resonances near the physical
region (except for the *H virtual level ). In particular, a nega-
tive result was also obtained in the recent study of Ref. 238
devoted to experimental search for the tri- and tetraneutron
in reactions on a "Li target induced by ''B and "Beions (see
also the theoretical study of Ref. 239).

Thus, at the present time there are several fairly accu-
rate and practical methods of theoretical investigation of
Gamow states, among which an important place is occupied
by the method of analytic continuation of the integral equa-
tions of scattering theory, the exposition of which has taken
up a large proportion of the present review. The further de-
velopment of this method requires more accurate allowance
for the Coulomb interaction, which plays a particularly im-
portant part near the threshold with respect to the channel of
charged particles.
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