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A general approach to the problem of quasi-exact solvability in quantum mechanics is proposed.
A large class of quasi-exactly solvable models is constructed, for which the spectral problem can

be solved exactly only for limited parts of the spectrum.

INTRODUCTION

It is well known that exactly solvable models play an
important role in quantum theory. First of all, they are inter-
esting in themselves as models of actual physical systems.
Second, they can be used as the zeroth-order approximation
in constructing perturbation theory. Unfortunately, the
number of exactly solvable models presently known is quite
small, and therefore the range of applicability of perturba-
tion theory in quantum physics is still rather narrow.

Brute-force attempts to find new exactly solvable mod-
els encounter serious difficulties, since the requirement of
exact solvability, which is usually understood as the possibil-
ity of writing down the entire spectrum of the Hamiltonian
in closed form, is too strict. This suggests that the require-
ments be relaxed and that models be sought for which the
spectral problem can be solved exactly, however, not for the
entire spectrum, but for only a limited part of it. It is easy to
see that such models are no less useful than exactly solvable
ones. They can be used successfully to model various phys-
ical situations. Moreover, they have certainly proved useful
for perturbation theory, which, as is well known, does not
require knowledge of the entire spectrum of the unperturbed
problem.' Finally, they can be of independent value if they
reveal the presence of “‘nonperturbative” effects, which gen-
erally are very difficult to study.

Here we shall refer to such models as “quasi-exactly
solvable,” with the order of the model being the number of
states for which the spectral problem can be solved exactly.

We note that one-dimensional quasi-exactly solvable
models of first order have been known for a long time.'?
They are trivial to construct. For the Schrodinger equation

32

[ﬁ—%g——{—r(x)]\p(x):ﬁ'qw(‘r) (1a)
it is sufficient to know the explicit form of the wave function
1(x) and energy £ of any state (whose order corresponds to
the number of nodes of the wave function), and then to use
the same equation, rewritten as

V(1) =-S5 gt () +E, (1b)
to reconstruct the potential for which ¥(x) and E are solu-
tions. Of course, when choosing ¥/(x) one must take care
that the potential obtained using (1b) is physically sensible.
However, all such difficulties are easily overcome. This
problem has been solved in Refs. 3 and 4 for the ground state
and several excited states in models with polynomial poten-
tials.

The example of an infinite series of quasi-exactly soly-
able models of arbitrary order given in Ref. 5 clearly demon-
strated that the potentials of these models are not necessarily

exotic “‘monsters,” but can be quite simple and ordinary-
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looking. For example, the potentials of the models studied in
Ref. 5 are even polynomials of order six:

V (z) = a®28 + 2abz? + [b* & ap — 4aM] 2*, a > 0. (2)

They contain two real parameters @ and & and also a natural
number M, which indicates how many energy levels of parity
p(p= + 1) can be calculated exactly in this model. For ex-
ample, if M = 2, one can write down explicitly the two ener-
gy levels

E.={@A—p)bx2 VB +4da—2pa; (3a)
Po () = 2192 (2032 4-b F 2 VB ba — 2pa)
oxp (4 —22) (ab)

Using the oscillator theorem (direct calculation of the zeros
of the wave function), it is easy to show that for p= + 1
Egs. (3a) and (3b) describe the zeroth and second energy
levels, while for p = — 1 they describe the first and third
levels. Similarly, explicit solutions (involving radicals) can
also be written down for M = 3 and M = 4. However, begin-
ning with M =5, this is not always possibie. The reason is
that for a given M the energy levels in the model (2) arise as
roots of an algebraic equation of order M, the explicit form of
which is easily obtained by seeking solutions of the Schro-
dinger equation in the form

P (£)=2t-DI2Py_y (22) exp | — S — ), (4)
where P,, _ (¢) is an unknown polynomial of order M — 1.
Equating the terms for identical powers of x? and eliminat-
ing the coefficients of the polynomial P,, , (¢) from the
resulting system of equations, we arrive at a single algebraic
equation of degree M in E. Therefore, the differential Schro-
dinger equation for the model (2) is exactly solvable when,
owing to the choice of a suitable ansatz (4), it can be reduced
to the problem of solving rumerical equations.

The algebraic equation in E can be interpreted as the
usual secular equation for the eigenvalues of a finite-dimen-
sional linear problem. The finite dimensionality is due to the
felicitous choice of basis in the functional Hilbert space, in
which the Hamiltonian of the model (2) takes a block-diag-
onal form. Here one of the blocks of the Hamiltonian matrix
is finite and the other is infinite. Therefore, the Schrodinger
problem breaks up into two completely independent linear
problems one of which is finite-dimensional and solvable,
while the other is infinite-dimensional and nothing about its
solutions is known. The manner in which these blocks arise
can be seen clearly for the example of the model with a singu-
lar potential studied in Ref. 6. We discuss this model in Ap-
pendix 1 of this review.

It is easily seen that the model (2) can be viewed as a
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perturbed harmonic oscillator with potential ¥,(x) = b 2x2,
Here the perturbation parameter is the constant a. Since the
perturbation theory in the parameter a is well-defined and
easy to construct, we can compare the perturbative results
with the exact ones. Such a comparison reveals the presence
of a number of nonperturbative effects in the model (2), i.e.,
effects which do not appear in any finite order of perturba-
tion theory.

One of these effects is already seen in the exact solution
(3). This is that the levels E and E_, viewed as analytic
functions of the parameters a and b, are plaited, forming a
single two-sheeted Riemann surface. This implies that by
analytic continuation of the level E_ alonga closed contour
it is possible to obtain the level E , , and vice versa. The plait-
ing points (where the levels coincide) are square-root singu-
larities and lie on the parabola b/a = 2p — 4, i.e., outside
the region where perturbation theory is applicable. We note
that the presence of this degeneracy does not contradict the
familiar theorem about the nondegeneracy of the spectra of
one-dimensional quantum-mechanical systems,” since at the
plaiting points the wave functions %, (x) and ¥_(x) also
coincide, and the geometrical multiplicity of the degenerate
eigenvalue remains equal to unity. We also note that the
normalization integrals for the two wave functions at the
plaiting points vanish identically.

These features are easily generalized to the case of arbi-
trary M: for any given M, the first M levels of identical parity
are plaited. These features are typical for most non-exactly
solvable problems. They were first discovered by Bender and
Wu,® and also by Simon® in the non-exactly solvable anhar-
monic-oscillator with potential

V (z) = 2* + ga*, (5)

for which it was found that all levels of identical parity are
plaited. This behavior was later discovered also in other
models.'* " .

Another nonperturbative effect which is also present in
the exact solution (3) is related to the behavior of the energy
levels £, as functions of the parameter b when @ is small.
Here, if one looks at a poor-resolution graph of the two func-
tions £, (b), one receives the impression that the levels in-
tersect and, in doing so, exchange quantum numbers. For
better resolution it becomes clear that there is no such inter-
section. This effect is well known in nuclear physics, where it
is referred to as the quasi-intersection of levels. '* It cannot be
seen in perturbation theory. The existence of exact solutions
not only allows us to see it, but also gives a simple explana-
tion for it: the quasi-intersection of levels is a manifestation
of their actual intersection (plaiting) at a point lying close to
the real axis (in the complex plane of the parameter of the
problem)."*

Finally, another effect worth mentioning is the behav-
jor of high-order terms of the perturbation series. From the
exact solution (3) we see that the point @ = 0 is a regular
point for the functions E, (a), so that the perturbation se-
ries is convergent for these levels! The radius of convergence,
defined in the usual way as the distance to the nearest singu-
larity, is found from (3) to be b°/(4 — 2p). At first glance
this result seems very strange, since naive semiclassical esti-
mates indicate that for models of this type the high-order
terms of the perturbation series must grow factorially, so
that the series should have zero radius of convergence. This
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result is confirmed by numerical calculations (using alge-
braic perturbation theory®) for all non-natural values of M.
However, if M is a natural number, an amazing cancellation
of all the divergent contributions occurs and the series be-
comes convergent.

Quasi-exactly solvable models possess another rather
curious feature. They can be viewed as unigue approxima-
tions to non-exactly solvable models. As an example, we
consider the model (2) and recall that M is the order of the
secular equation which determines the spectrum. IftM= o,
the problem of finding the spectrum ceases to be algebraic,
and the equation becomes non-exactly solvable. Therefore,
to obtain a non-exactly solvable model M must be taken to
infinity. For the potential to remain finite in this limit, the
parameters a and b must be dependent on M. For example,
if this dependence is determined by the conditions
b2 — 4gM = 1and 2ab = g, then for M — oo the coefficient of
the sextic term in the potential (2) vanishes and we obtain
the non-exactly solvable model of the anharmonic oscillator
with the potential (5).

The properties of quasi-exactly solvable models that we
have listed above show that these models are very interesting
objects to study. In this review we attempt to give a unified
discussion of the problem of quasi-exact solvability in quan-
tum mechanics and to formulate fairly simple methods for
constructing and studying quasi-exactly solvable models,
both one-dimensional and multi-dimensional.

Let us give a few remarks about the history of this prob-
lem. The first nontrivial model with two exactly calculable
energy levels and with a potential expressed in terms of hy-
perbolic functions was obtained heuristically in Ref. 14. A
model with similar properties but with a polynomial poten-
tial was found in Ref. 15. The term ‘‘quasi-exact solvability”
was introduced in Ref. 16, where two-dimensional quasi-
exactly solvable models with degenerate spectra were con-
structed and studied. The first example of an infinite series of
one-dimensional models with polynomial potentials and ar-
bitrary, arbitrarily large exactly calculable segments of the
spectrum was given in Ref. 5 mentioned above [seeEq. (2)].
Then individual infinite series of quasi-exactly solvable
models with potentials expressed as powers of exponential
and hyperbolic functions were found in Ref. 17. The list of
one-dimensional quasi-exactly solvable models was ex-
tended significantly in Ref. 18. The author found new mod-
els with trigonometric and hyperbolic potentials, and also a
series of models with potentials involving elliptic functions.
The existence of finite series of quasi-exactly solvable models
was pointed out in that study.

The next stage in the history of quasi-exact solvability is
characterized by attempts to understand this phenomenon
and to formulate general principles allowing the construc-
tion and investigation of all possible quasi-exactly solvable
models. These attempts led to the development of two funda-
mentally different approaches, which we shall refer to as the
algebraic and analytic approaches.

The algebraic approach formulated by Turbiner in Ref.
19 is based on the idea of the possible use of finite-dimension-
al representations of the algebra SL(2). As is well known,
finite-dimensional representations of the algebra SL(2) can
be realized on the space of polynomials.”” Here the genera-
tors of this algebra take the form of first-order differential
operators.””’ For this reason the spectral equation kg = ¢@,
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whereh = £,,a, 8.5, + Z,b,5; and S, are the generators of
the algebra SL(2), is finite-dimensional and can be solved
exactly in the class of polynomials ¢. On the other hand, this
equation is a second-order differential equation and can be
written in the Schrodinger form. As a result, one obtains a
one-dimensional quasi-exactly solvable model whose order
is equal to the dimension of the representation of the algebra
SL(2). The generalization to the multi-dimensional case is
obvious. For this the algebra SL(2) must be replaced by
algebras of higher rank, whose finite-dimensional represen-
tations are realized on the space of polynomials in several
variables, and whose generators take the form of first-order
multidimensional differential operators.?!-?*

The algebraic approach is attractive primarily because
of the simplicity of the idea on which it is based. (We note
that the final formulation of this approach'® preceded the
studies of Refs. 23 and 24, which discussed similar ideas. ) At
the present time this approach has been used for the detailed
study of only the one- and two-dimensional cases. '**"** Un-
fortunately, the algebraic approach is apparently not univer-
sal, since it cannot be used to describe the so-called finite
series of quasi-exactly solvable models, of which, as was
shown in Ref. 25, there exist an infinite number.

The analytic approach was formulated by the present
author in Refs. 18 and 25 and is the subject of this review. It is
based on the observation that quasi-exactly solvable Schro-
dinger equations can be viewed as equations with several
spectral parameters, some of which are involved in the po-
tential [for example, the parameter M in (2)], while one
plays the role of the energy. If the spectra of the “potential”
spectral parameters are degenerate relative to the spectrum
of the “energy” parameter, the model is quasi-exactly solv-
able and its order is equal to the degree of degeneracy. There-
fore, the construction of quasi-exactly solvable models re-
duces to the construction of multi-parameter speciral
equations and the study of the degeneracies in their spectra.
It turns out that the mathematical techniques used in this
approach are very similar to those used in the classical multi-
particle Coulomb problem, and also in the quantum theory
of completely integrable models of magnetic systems based
on Lie algebras, so that three seemingly unrelated branches
of classical and quantum physics are seen to be equivalent.
We stress the fact that Lie algebras arise naturally, but in
completely different manners, in both the algebraic and the
analytic approaches, The representations of these algebras
used in the analytic approach are not finite-dimensional, as
in Ref. 19, but infinite-dimensional.

This review is organized as follows. In Secs. 1-3 we for-
mulate our general approach to the problem and give an
algorithm which allows exactly and quasi-exactly solvable
Schrodinger equations to be constructed, both in one- and in
multi-dimensional cases. In Secs. 4-9 we consider a special
casein detail. This case is quite rich and includes a large class
of both exactly and quasi-exactly solvable models. The con-
cluding sections are devoted to a brief review of other quasi-
exactly solvable systems and construction methods.

1. FORMULATION OF THE METHOD

As noted in the Introduction, in our approach a central
role is played by spectral equations involving several spec-
tral parameters. The most general form of these equations is
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(X +eY)e=0, gpcQ. (6)

Here X is a linear operator from ¥ to ¥, where F is an infi-
nite-dimensional vector space, and Y is a linear vector opera-
tor from ¥ to V'@ V,, where V), is an n-dimensional vector
space. The problem is to find all vectors e € ¥, for which
Eq. (6) has a solution ¢ € (1, where ) is some subspace of
the space V. The set of vectors e for which (6) has solutions
will be called the spectrum and denoted by S, ({2). Expand-
ing the vectors into components, e={e,}"_, and
Y ={Y,}7_,, can be written in a manifestly multi-param-
eter form. This can be done in many ways, which is related to
the fact that the basis chosen in the space ¥, is not unique.
Transformations from the group GL(n) take one particular
form of Eq. (6) into another.

Let us assume that the subspace Q) has the form
0= Uz _,Q,, being the union of finite-dimensional (M-
dimensional) surfaces {2,, in V. If the equations for these
surfaces are given explicitly, the solution of the spectral
problem (6) reduces to solving various finite systems of nu-
merical equations. In this case Eq. (6) is exactly solvable.

Let us now formulate a theorem establishing a relation-
ship between multi-parameter and one-parameter exactly
solvable spectral equations.

Theorem 1. An equation of the type (6) with n spectral
parameters and exactly solvable in () generates an n-param-
eter family of equations with a single spectral parameter ex-
actly solvablein 0 @ 0 ®...® Q (# times).

Proof. Let V"= g _, V. Weintroduce the vector oper-
ator

J i—t1 n %
X=141® Ilgxe|® I ) ) (7a)
\r=1 k=i+1/f,_,

acting from V" to V" @ V,, and the matrix operator

i—1 = ‘n n
Y={® Tlgyg|® I ; (7b)
=1 h=it1 -

acting from V" & V, to ¥ " @ V, . Here I is the unit opera-
tor. We note that (6) automatically leads to the equations
X +Ye)g=0, qgcQr, (8)

where @ =@/ @ and Q"= ®]_, ). Assuming that the
operator Y is nonsingular, we introduce new vector opera-
tors L acting from V" to V" & V,, defining them as

X+YL=0 o L=7Y-X. (9)

Applying the operator ¥ 'to both sides of (8) and using
(9), we find

Qe Q. (10)

From (10) we see that the vector e is an eigenvalue of the
vector operator L on §2". From this it follows that any equa-
tion of the form

(WL —e =0, geQ, (11)

where y is an arbitrary fixed vector, will be an ordinary equa-
tion with a single spectral parameter e whose allowed values
are of the form ¢ =+ - e and, therefore, can be calculated
exactly. This proves the theorem.

Ly = eq,
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The spectrum S, ()" ) of Eq. (11) is obviously in one-
to-one correspondence with the spectrum S, (Q) of the
original equation (6).

We see from Eq. (10) that all the operators L; (the
components of the operator L) have the same set of eigen-
functions. They do not necessarily commute with each
other.

Theorem 2, For the operators L; to commute it is suffi-
cient that the operators ¥; (the components of the vector Y )
also commute with each other.

Proof. Let [Y;, Y,,] =0 for all ] ##m. Then we have

E Yi¥pm Ly, Lyl =0 for

I,m

i =k (12a)
Furthermore, from the commutation relations [X;,
X, 1=0,[Y,;,Y,]1=0,and [X;, X;,,] =0, valid for all
ik and following from the definitions (7), it follows that
E Y“Yﬁm [L[, Lm] == 0 for

: bt B (12b)
i,m
Combining (12a) and (12b) and taking into account the

nondegeneracy of the matrix operator ¥ ,,, we find
[L; L] =0 forall/andm. (13)

This proves the theorem.

It is easy to see that the procedure formulated in
Theorem 1 of going from a single “one-dimensional” equa-
tion with n spectral parameters to an z-parameter family of
“n-dimensional” equations with a single spectral parameter
essentially solves the inverse problem of separation of vari-
ables. Here the one-dimensional equation (6) is interpreted
as the equation arising as a result of separation of variables
(in the generalized sense) in the n-dimensional equation
(11). The spectral parameters e; play the role of separation
constants, and the operators L; whose eigenvalues they are
play the role of the symmetry operators of Eq. (11), ie.,
operators commuting with the operator y - L.

Let us now describe another method of going from
multi-parameter exactly solvable spectral equations to one-
parameter equations. This method is realized when thereisa
special degeneracy in the spectrum of the multi-parameter
spectral equation. We shall call the subset s, of the spectrum
S, () of Eq. (6) (n/m)-fold degenerate if for alle €5, the
following decomposition is valid:

e—=2¢ @ e’, e € Vm: e’ € Vn—m’ Vn — Vm 5] Vn—m-n
(14)

where e"e ¥V, ,, is a vector identical for all ecs,. The
group interpretation of this degeneracy becomes clear if we
note that the vectors ¢’ and e” are eigenvalues of the opera-
tors L' and L” entering into the expansion L = L' @ L” cor-
responding to (14). Degeneracy of the eigenvalue e” relative
to the eigenvalue e’ implies the presence of a (hidden) sym-
metry group G under which L” is invariant, while the opera-
tor L' is not.

Theorem 3. When an (n/m)-fold degeneracy is present
in the spectrum, Eq. (6) with n spectral parameters and
exactly solvable in () generates an m-parameter family of
equations with a single spectral parameter which arc exactly
solvablein Q@ Q @...® ( (m times).

Proof. Expanding the operator Y as in (14),
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Y=Y oY", werewrite Eq. (6) as
(X' +eY)ep=0, ¢9€Q, (15)

introducing the operator X ‘=X + e” « Y". Since Eq. (15) is
an equation of the type (6) with m spectral parameters, us-
ing Theorem 1 it can be reduced to an m-parameter family of
equations

WL —e)g=0, Q" (16)
with a single spectral parameter ¢’ = 4" » ¢'. This proves the
theorem.

The spectrum S, (1™ ) of Eq. (16) is obviously in one-
to-one correspondence with the set 5, , which is smaller than
S, (02). Therefore, the spectrum §, (2™ ) is smaller than the
spectrum S, (£1) of the original equation (6). We note that
when m = 1, we obtain “‘one-dimensional” exactly solvable
equations with a single spectral parameter.

In general, the exactly solvable equations (11) and
(16) are not equations of the Schriodinger type. They be-
come equations of this type only in one case, when the sets of
exact solutions of (11) or (16) have nonzero intersections
with the sets of all solutions of the equations

(WL—e) =0, pc W,

or

WL =) g =0, ¢ W, (11
in which W and W' are vector spaces with scalar products
ensuring the Hermiticity of the operators y+L and y' - L’
(the Hamiltonians). We shall refer to Schrodinger equa-
tions of the type (11) and (16} as exactly solvable (quasi-
exactly solvable) if all (some) of the solutions of these equa-
tions are contained in the set of exact solutions of Eqs. (11)
and (16).

We have formulated the general features of the method
of constructing exactly and quasi-exactly solvable models. It
can be divided into three steps: 1) the construction of equa-
tions with » spectral parameters which are exactly solvable
in €); 2) the transformation from these equations to equa-
tions with a single spectral parameter which are exactly solv-
ablein Q2" (or in ™, when there is an (n/m)-fold degener-
acy); 3) the determination of whether or not the exactly
solvable equation which is obtained can be interpreted as an
exactly or quasi-exactly solvable Schrodinger equation. This
method was first formulated in Ref. 25, and its final form
was given in Ref. 26.

2. THE CASE OF DIFFERENTIAL EQUATIONS

Let us consider the case when the space ¥V is a space of
functions of a single variable A, X =3%/dA% + U(A),
Y = U(A). In this case Eq. (6), written in terms of compo-
nents, becomes

@A+ U Q) + el () + « o« + e Uy (M) g () = 0.

(17)

We assume that the system of spectral parameters contains
an (n/m)-fold degeneracy, with the parameterse,, , {,....¢,
being degenerate. According to Theorem 3, from Eq. (17)
we can construct an m-dimensional equation (i.e., a differ-
ential equation in m-dimensional space) with a single spec-
tral parameter e. We can take e to be any linear combination
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of the parameters ¢, ..., e,, . Omitting the elementary alge-
bra, we give the explicit form of the resulting equation for the
case in whiche = ¢, :

m ) i
— & [ &
{‘_ 2 Ve kg (]/:

ih=1

o )-] 14 }1p=eq;. (18)

Here g, =det||gh|; g =h =L, i=1, .., m; g% =0, izk;
h=det|U,(A. )|, and % is the cofactor of the element
U; (4,) in the matrix ||U, (1, )||. The function ¥, has the
form

w n
Vo=— D) Iif}, [U(lf)—l— 2 el (li)] Z git (g h2)irs
i=1 h=m+1
a2 S m 1
i 0 — 2 Ew (gah) ]

i=1

X (gah?)!/5 < (g h%) VA, (19)
and the solutions of Eq. (18) are related to the solutions of
Eq. (17) as
Y= (g hHt 1_“1 (A, e=¢eq. 20)
It is easy to see that Eq. (18) has the same form as the
Schrodinger equation on an m-dimensional, in general,
curved manifold specified by the metric tehsor g,
= (g ) ~". The off-diagonal components of this tensor are
equal to zero, so that the coordinate system parametrizing
this manifold is orthogonal. Equation (18) admits separa-
tion of variables in the coordinates 4, (by construction). For
this equation to actually be the Schrédinger equation on a
curved manifold (in a gravitational field), the operator L;
which plays the role of the Hamiltonian, must be Hermitian
on the space of functions normalized according to

1
T

From the fact that instead of the sets of spectral param-
eters ¢y, ..., e,, and weight functions U, (1), ..., U, (1) we
can use any GL(m)-transformed sets, its follows that any
linear combination of the Hamiltonians L, can be reduced
tothe form (18). Wealso note that, owing to the commutati-
vity of the weight functions, all the Hamiltonians L, com-
mute with each other (a corollary of Theorem 2).

Inthe multi-dimensional case (m > 1) the choice of co-
ordinate system, has no fundamental meaning and is dictat-
ed only by considerations of simplicity. In the one-dimen-
sional case (m = 1) it is convenient, after an additional
coordinate transformation A = 1 (x),

Y2 (h)d™h < oo (21)

Alx) .
= : 22
! Vi ° (22)
to write Eq. (18) in the usual Schrodinger form:
[ =V @)} 9k (@)= (& () (23)

In this case g'' =g, A =g~', f, = 1 and the expression
(19) for the potential is simplified:
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V——g¢ [U +2 eﬁva] — g g (24)

k=2
Qur discussion in this section is based on that of Ref. 27.

3.CONSTRUCTION OF MULTI-PARAMETER EXACTLY
SOLVABLE DIFFERENTIAL SPECTRAL EQUATIONS

In this section we formulate an analytic method allow-
ing the construction of exactly solvable differential spectral
equations with several spectral parameters. The central ob-
ject in this method is a functional equation of the form

A M) A (ho) 4+ A (ho) AAs) + A (Ag) A (Ay) + p* = 0,
A+ Ay + Ay =0, (25)

supplemented by the condition

A () +AQRy) =0,

We shall refer to Eq. (25) as the scalar triangle equation and
to Eq. (26) as the scalar unitarity relation. The meaning of
these terms will become clear later. It turns out that the
solutions of Eqgs. (25) and (26) are the elementary building
blocks from which both the multi-parameter spectral equa-
tions themselves and their solutions can be constructed.

It is easy to show?® that any solution of the system (25),
(26) can be orthonormalized in such a way that it satisfies a
special Riccati equation:

A (M) + A2 () = p. 27)

; T S (26)

This follows from the easily proved fact that any solution of
this system has a simple pole at the origin.?® Orthonormaliz-
ing the function A(4) such that the residue at the pole is
unity, we rewrite Eq. (25) as A(A)A(L +¢)
+ A(e)[A(4 + &) — A(4)] = p? Taking & to zero and us-
ing the fact that A(g) =&~', we obtain (27).

Let us now formulate the fundamental theorem of this
method.?>2

Theorem 4. The equation with n = 2N + 1 spectral pa-
rameters

i
{%"E‘Z ea A (A — ag)+ 2 es A (L—aa)+gw)}
a=1

a=1
@(A)=0 (28)
has solutions in the class of functions of the form
N
Q(A) = exp {na S A{A—ay) d?\.} H
:1-—1
X eXp{S A(h—E) da}, (29)
where £;,,i=1, .., M, and ,, @ = 1, ..., N, are unknown

numerical parameters. The system of numerical equations
for the spectral parameters ¢, e''’, ¢ and the parameters
&, and 7, have the form

M

‘“’A(E — B Z A (& —al) =0, i=1, ..., M;(30)

eéf’wnm (M —1):
N M
ﬂa"h&ﬂ (atx—'aﬁ) + 21 T]nr.A ('au _Ez)} H [3“3)

(31a)
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N
g{ﬂ)=3(2 a]m-g—M). (31c)

a=1
Proof. Acting on the function (29) with the operator
d?/dA * and using Egs. (25)-(27), we verify that the result
corresponds to the function (29) multiplied by a sum of four
types of terms: 1) constants; 2) terms proportional to
A(A —a,); 3) terms proportional to A'(A —a, ); and 4)
terms proportional to A(A — £,). Equating the coeflicients
of the M terms of the fourth type to zero, we obtain Eq. (30).
The coeflicients of the remaining terms determine the spec-
tral parameters e, e!", and e‘®. This proves the theorem.
It is easy to see that the spectrum of Eq. (28) is contin-
uous, because 2N + 1 + M conditions are imposed on the
3N + 1 4+ M unknown quantities. Discreteness of the spec-
trum is ensured by imposing an additional N conditions on
the parameters of the system. This can be done in many
ways. For example, it is possible to fix N arbitrarily chosen
linear combinations of the spectral parameters e, ', and
¢'®, Then Eq. (28) becomes an equation with N' + 1 spectral
parameters. To complete the construction of this equation,
we still need to find the explicit form of the function A(A1).
Solving Eq. (27), we obtain

A (M) = peotpd. (32)

Since the number p is arbitrary, we can take it to be real,
imaginary, or zero. These three choices give us trigonomet-
ric solutions A(A) = |p|cot|p|4d, hyperbolic solutions
A(A) = |p|coth|p|4, and rational solutions A(A) =4 ~
(Refs. 25 and 28).

In the following sections we shall make a detailed study
of the quasi-exactly solvable models associated with rational
solutions of the scalar triangle equation. To ensure that the
spectrum of the multi-parameter spectral equation (28) is
discrete, we require that the spectral parameters e{”’ be fixed
by the conditions el = b, (b, — 1), where b, and also a,,
are externally specified parameters. We shall show below
that the set of quasi-exactly solvable models arising for this
method of fixing the parameters is quite large and includes a
variety of both one-dimensional and multi-dimensional
models. Other methods of fixing the spectral parameters
which also lead to quasi-exactly solvable models of a differ-
ent type will be discussed later in Sec. 10.

4. RATIONAL QUASI-EXACTLY SOLVABLE MODELS (ONE-
DIMENSIONAL CASE)

In the rational case Eq. (28) is (because p =0) an
equation involving N spectral parameters and has the
form25,27

a2 N
{ e Z

a=1

b (bg—1)

N
g li“%}@(h):o. (33)
a=1

In accordance with (29), a solution of (33) is sought in the
form

N M
oM)=1[ (—ag)e || A—8). (34)

Substitution of (34) into (33) leads to the following system
of spectral equations s
M

2 E‘_ER +2| Ez—aq, 4"0, Z.-——1

oy My (35)
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M

A b s balp e
AIE Qﬁz i —EF =1,
1= =

N, (36)

Following the general prescriptions formulated in Sec.
1, we attempt to determine the presence of degeneracies in
the system of spectral parameters. For this, instead of the
system of spectral parameters ¢, ..., ey, it is convenient to

consider another system of spectral parameters ry, ..., Fy _ 1,
related to the first one as
z - bab 1
i alp
Z [ea‘l"zz ag—tg :| A—ag
a=1 p=1
N -1N-1
:[m I - am)] i (37)
a=1 n=>0

Here @ is a numerical factor, which for the moment is arbi-
trary. Using Eqs (35)—(37), it can easily be shown that

(38a)
rN_z_-—ZmJ[[Z by - ”‘1], (38b)

o=1

N ; N
rys= — 20M [E P — (a)(z by + 2 )]

o=l =1

rya =05

(38c)

a=1

N
= 2(.](2 by M —-1) o, (B),

and soon (o, aresymmetric nth order polynomials). We see
that the group of transformations GL () allows the hidden
degeneracy in the system of spectral parameters to be ex-
posed. It follows from (38a) that the parameter ry_, is
infinitely degenerate: it is equal to zero for all solutions and
can simply be dropped. The parameters 7y _,, expressed in
terms of the number M, has a finite degree of degeneracy
equal to the number of different inequivalent solutions of
(35) for a given M. Finally, the parameter r, _ , isin general
not degenerate, owing to the presence in it of a term propor-
tional to o, (£), but it can be taken to be degenerate if the
coefficient of this term vanishes:

N

Noby W —1=0. (39)
The presence of degeneracies in the system of parameters r,,
..., ¥y_ allows one-dimensional equations of the Schro-
dinger type to be constructed from (33). One of the most
interesting cases is realized when the parameter r, is taken as
the energy spectral parameter. Then the potential appearing
in the Schrodinger equation has the form

5 { (to—t) (2= 2)

N
Vigy=o || (A—aa)

(A—ag)*
a=1
] 1
N, babg— o= N-1
’ 0 1 n
+2(f§1 aq—ap ) T—tg } = Etrnl . (40)

and the solutions of the Schrddinger equation with this po-
tential take the form

N b _L M
P (I):m[li (A—ay) @ & Ei{x_gi), E=r, (41)
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We see from (41) that the numbers £, determine the zeros
of the wave functions. According to (22), the function
A = A(x) is given by the equation

%
djp’
r:S . (42)
ko o [] (A —ag)
a=1

Let us look at some specific examples.

1) N = 2. The potential contains an infinitely degener-
ate spectral parameter 7, and we find equations with an infi-
nite number of exact solutions.

2) N = 3. The potential contains an infinitely degener-
ate spectral parameter r,, and also the parameter r,, which
has a finite degree of degeneracy. We obtain equations with a
finite number of exact solutions.

3) N = 4. The potential contains three spectral param-
eters: 75, 15, and #. Let us consider three cases: 1) the condi-
tion (39) is satisfied; 2) the condition (39) is not satisfied,
but the equation possesses a Z, symmetry: b, =b,__,
a, = —as_,,a=1,2;3) the condition (39) is not satis-
fied and there is no Z, symmetry in the equation. It is easy to
see that in the first two cases the degree of degeneracy of the
potential spectral parameters is finite as a whole, and we
again obtain equations with a finite number of exact solu-
tions. In the third case, owing to the explicit dependence
of the potential on &, ..., &,,, it is possible to obtain an
equation with K exact solutions if on any K solutions
{£1"}, ., {€{} of Eq. (35) we impose K — 1 constraints:
7 (") =0, () = - = 0,(£(F) ). Although each solu-
tion is a function of eight parameters a,, and b, , owing to the
presence of the two-parameter group of transformations
a, —Aa, + B leaving these equations unchanged, there are
only six independent parameters. From the obvious con-
straint K — 1<6 it follows that the maximum number of ex-
act solutions of the spectral equation in this case cannot be
greater than seven: K,,, = 7 (Ref. 18).

4) N>5. In this case the potential contains N — 3 inde-
pendent spectral parameters which are expressed explicitly
in terms of the quantities

Gy (E): Oz (g)v ey Oz (g)’

Repeating the foregoing arguments, it can be shown tha« to
obtain equations with K exact solutions it is necessary to
impose (K — 1) (N — 3) constraints on the 2N — 2 essential
parameters of the system. From this it follows that the maxi-
mum order of a quasi-exactly solvable model in the general
case (for arbitrary N) is given by

Kre=3+[ =5 (43)

(see Ref. 25).

Up to now we have discussed only the formal solutions
of Schrodinger-type equations with potentials (40). We
have not considered the question of whether or not these
equations and their solutions are physically meaningful. Let
us now attempt to remedy this deficiency and derive condi-
tions for the potential (40) to be the potential of a stable
quantum-mechanical system, and for the wave functions
(41) to be normalizable and to satisfy zero boundary condi-
tions at the ends of the interval in which the Schrodinger
problem is formulated.
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The first requirement which must be satisfied by the
potential is that it must be real. We see from (40) that for
this the parameters @, and b,, @ = 1, ..., N, must be real or
must (simultaneously) correspond to complex-conjugate
pairs. Real numbers g, divide the A axis into a set of inter-
vals, which we shall refer to as the fundamental intervals and
which can be finite, semi-finite, or infinite. Let [A _, A, ] bea
fundamental interval. We choose the sign of @ in Eq. (37) in
such a way that the expression under the square root in (42)
is positive in this interval. Then, under the condition that
Aoe [A_, A1, Eq. (42) describes a continuous and one-to-
one mapping of the interval [4 _, 4] of th A axis to an
interval [x_, x, | of the x axis. From this it follows that the
potential V(x) and the solution ¢(x) of the formal Schré-
dinger equation are regular functions inside the interval
[x_, x, ] and can have singularities only at its ends. The
nature of these singularities cannot be arbitrary, but must
conform to the requirement that the Hamiltonian be Hermi-
tian on the solutions in question in the interval [x_, x_ ].
This requirement, which is equivalent to the condition that
the surface integral arising in Hermitian conjugation vanish,
can be written as

N 1/2 N M
a=1 a=1

i=1

=0, (44)

A= Aism

2
X (7&-—5;)}

whered ,,, =4 ord_isalimitof the fundamental interval.
When A ;,, is finite (1, = a,, ), the condition (44) leads to
the constraints

by > 1/2. (45)

If the point A, is infinite (1, = + «), the constraint
takes the form

N
D bt M<1/2. (46)
=1

Using the explicit expression for the potential (40) to-
gether with Eq. (42), it can be shown that if the end point
Ayim of the fundamental interval is finite (4, =a, ), the
end point xy;,, corresponding to it is also finite, and the po-
tential in its vicinity behaves as

V (2) v B 112) @b — 372

(x — X )?

3 X—=Xjim - (47)

However, if the point A, is infinite (1, = + ), the
point x;;,, can be either finite or infinite, depending on which
case is being considered: N> 2 or N = 2. In the first case the
potential in the vicinity of x,;,, behaves as

N
Ve =it (g ) [ 3 b4 |

1

(X — X )7

X2 Xpmo (48)

while in the second it becomes a constant. We see that in the
cases described by Egs. (47) and (48) the potentials do not
always grow near the limits. However, since the coefficient
of the singular term (x — xy;,, ) ~*is always larger than — 4
there is no falloff at the center and the system remains stable.
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Therefore, our final statement is the following. For a
stable quantum-mechanical system to be associated with the
fundamental interval, it is necessary and sufficient that the
condition (45) or (46) be satisfied at its end points. Inter-
vals in which these conditions are satisfied will be termed
quantum-mechanically stable. There may be several such
intervals. The interval mapped to a segment of the x axis,
where the Schrédinger boundary-value problem is formulat-
ed, will be referred to as the physical interval. By choosing
the physical interval in different ways and ensuring that it is
stable, we obtain different exactly and quasi-exactly solvable
models. We note that the numbers £; lying in the physical
interval determine physical zeros, i.e., nodes of the wave
functions.

The entire set of potentials of exactly or quasi-exactly
solvable models corresponding to a given N can be obtained
by allowing the function 5(4), which contains all the infor-
mation about the system, to be degenerate.

In the nondegenerate case this function is given by the
expression

N
b =3 =—, (49)
a=1

and has N simple poles in a finite region. In the degenerate
case the simple poles can merge or go off to infinity, so that
new functions b (A ) arise. All the results of this section, given
for the nondegenerate case, can also be generalized to a de-
generate case. In particular, the equation for the parameters
£, preserves its original form:

M
N e @) =0 i=1, ..., M (50
p=1

[all the information about the degeneracy is concentrated in
the function #(A)]. The other equations describing the de-
generate case are too awkward, and we shall not give them
here, but refer the interested reader to Ref. 30.

We shall use a graphical method to classify the exactly
and quasi-exactly solvable models obtained by this method.
The real A axis is denoted by a horizontal line whose end
points lie at infinity. The points @, will be depicted by cir-
cles, and points formed by the merging of several points a,
will be depicted by several concentric circles. This rule holds
for both finite points and infinite points. The physical inter-
val will be denoted by a series of vertical lines.

It is easily seen that in the case N = 2 there are six differ-
ent types of diagram:

@]
2) —O—OHH»  J) HHHHHHH -
(51)
6) HHHHH® »

1) —OHHO—

4) —OHHH 5) —OHHO »

which correspond to the six known types of exactly solvable
models. In order to save space we shall not write out the
potentials of these models, which are listed in Refs. 30 and
31. We only note that diagram 1 describes the trigonometric
Poschl-Teller potential, diagrams 2 and 3 describe hyperbo-
lic Poschl-Teller potentials, 4 is the Morse potential, 5 is the
harmonic oscillator with centrifugal barrier, and 6 is the
simple harmonic oscillator.

Let us now consider the case N = 3 in more detail. For
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this case there are 11 different types of diagram:

1) 000+ +» 2) —O0—0OHO—
J)—g—OPHfH» 4) —@—OHtH »
5)—OHO—0 » 6§ —C0O—0Ofi> (52)
7)—@HO—— > 8 —0—0HO» ) —@HHHO!

10) ———@HHH » 1) ——OHHHHO -

The diagrams not written down here do not satisfy the stabil-
ity criterion.* The diagrams in (52) describe 11 different
types of quasi-exactly solvable models. Let us write down the
potentials of these models together with the wave functions
and energies of the exactly calculable states. We shall also
give the form of the functions b(A), the physical intervals,
and the stability conditions.
1. The elliptic potential of the first type:

Vir)=4 (6-—%) (6~%)cszr

a(t—m) Bty 8+ M— 1)

% ([’3—!—1’-{— o+ ]I»'I~%) se? x,
st - | Pty BL
P (z) < [se2x] % [netz] % [dez] 4 _[Jl[scz z—E].

m=ia_—1, ae>1, z£[0, K (m)],
=L L By 8- M— D (1) (M +0)

+(@—1) (v—B) +20,(®),
b =it L+, A€ ],
6>, By oM<,
2. The elliptic potential of the second type:
V(2)=4(8—1)(8— )dez
#4(r— ) (1= ) ase
—4{p=F) (oo
L dm (m—1) @+y++M—)

X (ﬁ+v+6+M——‘Z~) sd? z,

q;_i ﬁ_i 51 M
P(xz) e (sd2z) b (nd2x) 4 (edrx) ¥ H[sd3x—§i],

=1

m=(1+a)!, a0, x€[0, K(m)],

E=g 2l b s By oe—1)

x {(w—1) (M+y) + (24 1) (6—B)+ 20, (B)}
B )
b() =g 1= M0 1),

13>,—i, 6>%.

3. The elliptic potential of the third type:.
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() (-4 )

sc?zdniz—a
-t (e-g)emn cfi-3)(p-3)
+ stz dn?z—ot sctzdn?z

4 (BHy v e M=) (Byt v

- JJ—-—;:’—) sc?x dn® x,

V(x)=

gL oo L

z—a) ¥ (sczdniz—a*) &
ﬂ—i M

X (scrzdn?z) F ] (se?zdna ),
o

P (x) o« (sc®x dn?

= @+a*+2), la|=1, z€[0, K (m)],

= (@t a®) — 4B+ y+y*+M—1)

X {—(@+a*) B+ M)+ (e —a*) (y—v*) 420, (B)},

b= +ilg e A, o),
B>z Byt M <.

(In all these equations, m is the modulus of the elliptic func-
tions and K () is the complete elliptic integral; see Ref. 32.)

4. The trigonometric potential of the first type:
V(z)= —4y?costz - [492— 8y (B—1)] cos? x
+4(8— 1) (6—2) ctg2x+4(|5—}~5—1—111—_—1—)

3 a
X (B—}- 6—}-11[—?) te? x,

iz) « (tg2a)’ T (cos? )

.TE[U. %:I,
E——8(8—¢)(8—7)—87(B—1)—85 (y+H+1
— 80 (M — 1B+ y+20)—8(M—1+ B+0) 0, (B),
y )
b=t it A€, oo,
6> 5, BHo+M< .
5. The trigonometric potential of the second type:
. 3 i
Vi =4(v—7)(v—7) w=
1
+4(6_T)(6_T) costx
+4B[2(y+ 6+ M)+ Plsin 2 —4f% sint o,

M

1 1
¢ (x) = (sinz.r)viT(cosz.r) T p-Bsintx ” (sin?x —E;),

j=1

€10, n/2],
£=(1—4) (3]
+4(8—7) (83— )+ 8B+
—-;—-|—4M(M—1)+8114(v+6+l5)—8‘:301(§),
b (L) = -ﬁ+ +1 T M0, 1],
v>—2—, 6>7.
6. The hyperbolic potential of the first type:
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_pe L M
L p—yeostx ” (tgz_r__féf)‘
i=1

V(e)=4(B— ) (B—5 ) thz-+ 4162 +-25 (v— 1)] shz
1

+482sheat 4 (BHy+M—3) (BHv+M—F )
" A

W (z) « (cth T (sh? x)'“’? e-bsutx [ (;_

sh*z

&)
z€[0, oo], -
E=t(b— 1) (p—3) 4 (v— 1) =001 —op0
—8(0+y) M —4M (M —1)—8(M—1+p+7) 0, (Eh
b=+ L+ AEIO, ool,
§>=10, [’)—;-\:4-11/1‘<7

7. The hyperbolic potential of the second type:

V(a)=4(B—+) (ﬁ—i)c-t.h21—4[62—|-26(v—-1)]chzx

T482ch’*w+4(ﬂ+v+M——-—) (ﬂ+y+M——)th2x,

(@) « (2e)"T (chra) VT gpenns [{ (th? z—E,),
cel0, ol
8 (1= ) (0= & )11
+ 8B (p—6)—1+8M (M —1)
+8M (B —8)—8(M—1-+B+v) 0, &),
bWy = St e MEW, 1

B> 3. 6<0.

8. The hyperbolic potential of the third type:

V=t (o—4) (- 3) e

1 3 1
—4 {V_T} (T_T) chfzx
+-4f2 sh* z - 4 |B2— 2B (v 4+ 8) — 2BpM ] sh2 z,

Y (7) = (sh® Jr‘)@-% (ch® 33)?-% g fohe ﬁ (sh®x —Ey),
z€[0, ool, -

B == 4) (1=3) =4 (o=F) (o= 3]
+88(B—y)+1
+8M(ﬁﬂv—a)—4M(M-1)+Sﬂai (),

b(M)=—P+r + o AEI0, ),
B>0, 6>7 p
9. The exponential potential:
V (7) = 82725 4 28 (y— 1) e — 2 (y+ M) e™ 4 p2 e,
(@) = exp {(v—7) r—ﬁe"—ﬁe‘“““}f[ (*—E),
£€[— oo, ca], -
E=—(y—-5 )' - 286 —29M — M (M — 1)+ %0, (B),

b (M) = —B-+ -+, LED, col, 620, M —B<0.
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10. The rational potential of the first type:
V (z) = 482af + 8y8at-|- 4 (y2-+ 26P - 36) 22
+4(B+M—) (ﬁ+M——)§,

3
e _-Vxn___:“ 1
te 2 H (;a'—'éi) )
i=1

2€ ([0, oo],
E=—8@+M—1)[y+0,E)]

b(x)=%+%+—%, AEI0, o], 60, B M <+ .

Y(@) « (22"

11. The rational potential of the second type:
V (w) = 4y%a® + 8yrt + 4 (> — y— 298 — 2y M) 22

ey
1 Lyt yat

pla)= (@) Te T2 H (22—
z €10, oo],

E =8p (5 M) + 8yo, (B),
b()=—p—vh+ -, LE[O, o], 8>, 730,

These models were written down in Ref. 18. We note
that some of them, namely, models 9, 11, and also special
cases of models 5 and 7 (without the singular term in the
potential) were found earlier."”

Thus, we therefore have obtained 11 types of quasi-ex-
actly solvable models and have derived their stability condi-
tions. The following rule can be formulated for these models:
if the stability condition of any model does not involve M
explicitly, we have an infinite series of quasi-exactly solvable
models of any, arbitrarily high order (the potentials 2, 5, 7,
8, and 11). Otherwise, there is only a finite series of stable
quasi-cxactly solvable models with some maximum order
(the potentials 1, 3, 4, 6, 9, and 10). There is a particular
analog of this rule also for exactly solvable models: if the
stability condition does not involve M explicitly, the model
has an infinite discrete spectrum (the potentials 1, 5, and 6).
Otherwise, the exactly solvable model admits only a finite
number of bound states, and this situation corresponds to
potential wells of finite depth (the potentials 2, 3, and 4).

Earlier we made the remark that in the case N = 4 it is
also possible to have infinite series of quasi-exactly solvable
models if the parameters b, satisfy the condition (39). The
potentials of these models in the nondegenerate case have the
form

‘& r
(=) (1= J1 o
B=1 (53)

A—ay !

4
Viz)=o D)

o=1

whereA = A(x) is the function determined from (42 ). How-
ever, all attempts to explicitly construct these potentials
have convinced vs that we do not obtain any new quasi-
exactly solvable models which are different from the 11
models listed above. This result is a special case of a more
general theorem proved in Ref. 30. According to this
theorem, when the condition (39) is satisfied, Eq. (33) with
N =n reduces to Eq. (33) with N=#n — 1. This can be
proved by a linear-fractional substitution of the variable A in
Eq. (33).

Ifin the case N = 4 the parameters b, do not satisfy the
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relation (39), the potential (53) acquires additional terms
of the form

(2 b, +M—i){ ia,,(

=

S, —|—M)
=

4

+2 E bmaa+201 (E)] A
a=1
4 4
-|-( D) b+ M— 1)( > b+ M) Az, (54)
=1 a=1

It is extended potentials of this type which are described by
finite series of quasi-exactly solvable models up to seventh
order.

If in the case N = 4 the parameters b, do not satisfy the
relation (39), but there is a Z, symmetry in the problem,
certain new series of quasi-exactly solvable models of arbi-
trary order arise which are not present in the list (52). An
example of such a model is the model with the linear sextic
potential for p = + 1 discussed in the Introduction.

5.RATIONAL ONE-DIMENSIONAL QUASI-EXACTLY
SOLVABLE MODELS AND THE COULOMB PROBLEM

In the preceding section we constructed a series of ex-
actly and quasi-exactly solvable models and wrote down
their solutions. However, from these solutions we cannot see
to what states of the quantum systems they correspond.
Moreover, we do not even know the orders of our quasi-
exactly solvable models, not to speak of the numbering of the
states described by them.

According to the oscillation theorem, the number of a
state in the one-dimensional case is determined by the num-
ber of real zeros of the wave function inside the physical
interval in which the boundary-value problem is formulated.
On the A axis one of the fundamental intervals corresponds
to thisinterval, and the numbers £; play the role of the wave-
function nodes. Therefore, the classification problem can be
reduced to the simple calculation of the real numbers &; ly-
ing in the physical interval.

In the nondegenerate case the numbers £; satisfy a sys-
tem of algebraic equations

M

3+ gh+z

i=

=0, i=1, ..., M, (55) .

’G—z—“m

in which ¢, and b, are, in general, complex numbers:
a,=ai + ial?, b, ==b 4 ib?. (56)
Therefore, &; should also be taken to be complex:
& =" +ig®. (57)

Substitution of (56) and (57) into {55) leads to a system of
real equations, which can be written as

Z EJ“)

M
2 "B —Ek
IEz _Ek

k=1

‘nl—au.

alz"‘l_zbocﬁ IE alz"—o
(58)

where E; = (§!", ") and a, = (al”, ai?’) are real two-
dimensional vectors, and £ is the matrix rotating the vectors
by 90° counterclockwise.

Equation (58) can beinterpreted as the condition for an
extremum of the function
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V(E, - - B =—2 0:0 In | E;—E |
i<k

—2 q:be’ In |§; —ag |
1,00

— 2\ b 5 —a,),
7,00
ST (59)

in which f(x) =tan~'(x"?/x'") is the angular coordinate of
the vector x and ¢; = 1 are unit constants. It is easy to see
that (59) is none other than the potential of a two-dimen-
sional (logarithmic) Coulomb system consisting of M mov-
ing particles with coordinates ; and charges g, and N sta-
tionary particles with coordinates u, and two types of
charge: ordinary electric charges b ’, and magnetic charges
b ? creating a vortex electrostatic field. It can be verified
that 5" and » ¥ do actually correspond to electric and
magnetic charges by writing down the potential produced by
a single particle located at the origin,

® =p1n | x|+ b)), (60)

and noting that this potential can be obtained from the equa-
tions of (2 + 1)-dimensional magnetoelectrodynamics,

auFuv:jw a;.ﬁju =&
F,, =0,A,—d,A,, F =-1-—z-:m,,\l-',,,L (61)

o =3
in the static limit. In fact, taking g~b“6(r) and j,
~bM8(r), j,, =0, and finding the static solution (61) in
the class of functions of the form 4, = ®, 4, , = 0, we obtain
(60).

We therefore see that the problem of finding a solution
to the system of algebraic equations (55) is equivalent to the
problem of finding the equilibrium positions of a system of
Coulomb particles moving in the field of stationary dyoens.
In general, this problem is quite complicated. However, in
the special case in which the parameters a, and b, either are
real or are complex-conjugate pairs (we recall that this is the
condition for the quantum-mechanical potential to be real)
it simplifies considerably. In fact, the presence of a Z, sym-
metry in the system leads to the existence of a straight line
(coinciding in the present case with the real A axis) on which
all the Coulomb forces (from the stationary dyons) are lon-
gitudinal. The problem of the equilibrium of the particles
moving on this line therefore becomes one-dimensional,
which allows us to seek solutions of Eq. (55) in the class of
real numbers.?’

Let us now consider the structure of the (real) A axisin
more detail. The real numbers u,,, i.e., the coordinates of the
stationary particles lying on this axis, divide it into some
number of intervals, which above were called fundamental
intervals. We shall say that a fundamental interval is classi-
cally stable if the moving Coulomb particles contained in it
cannot reach its limits. A limit of a fundamental interval can
be finite (it can coincide with one of the real points u,, ) or
infinite. The condition for the classical stability of an inter-
val near its finite limit can obviously be written in the form

bo >0 (62)

as the condition for the charges of the moving and stationary
particles to be the same. In the case of the stability condition
for an interval near an infinite limit, it can be expressed as the
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condition that the total charge of the system be negative:
%
Zlbu-'rM<0. (63)
&y

We note that the conditions for classical and quantum stabil-
ity of the fundamental intervals nearly coincide! The only
difference is that in the quantum case [see Egs. (45) and
(46) ] the right-hand sides of the inequalities contain ! rath-
er than 0.

It is easy to verify that the maximum number of stable
fundamental intervals is N — 1. To each distribution of par-
ticles in stable intervals there corresponds a position of
stable equilibrium. Therefore, the number of different
(inequivalent) solutions of Eq. (55) is equal to the number
of ways to distribute M particles in N — 1 intervals. Of these
N — 1 intervals, only one is physical. Since the number of
moving particles lying in the physical interval determines
the number of nodes of the wave functions, i.e., the number
of states, it is possible for us to solve the classification prob-
lem completely. Here it is worth noting that the familiar
phenomenon of repulsion of wave-function nodes, 1.e., the
fact that any decrease of the distance between nodes requires
a large change in the potential, has a simple explanation in
the language of the electrostatic analog: this phenomenon is
nothing but ordinary Coulomb repulsion. Let us consider
some specific cases.

1) N = 2. There is only a single stable fundamental in-
terval, which must be identified with the physical interval. It
can be either finite or infinite. If the interval is finite, it can
contain any number of moving particles, and a position of
stable equilibrium will exist for each number of particles. We
therefore obtain problems in which all the levels of the sys-
tem are numbered. If the interval is infinite, then all the lev-
els up to a certain one are numbered. We note that for ¥ = 2
the energy levels are expressed directly in terms of the num-
ber of particles M.

2) N = 3. In this case two intervals can be stable, and
only one of them is physical. M particles can be distributed
between these two intervals in M 4 1 ways. Here the phys-
ical interval contains 0, 1, ..., M particles. Therefore, to each
M there corresponds a quasi-exactly solvable model of order
M + linwhich thefirst M + 1 energy levels, beginning with
the ground state, can be calculated exactly. Here the energy
levels are expressed in terms of the centers of mass of the
corresponding particle configurations o (£).

Cases with larger ¥ can be treated in a similar manner.
To summarize, we can conclude that the one-dimensional
quantum systems studied in the preceding section are exact-
ly equivalent to two-dimensional classical systems of Cou-
lomb particles possessing electric and magnetic charges. By
solving the purely classical problem of the equilibrium of
such a system of particles, it is possible to obtain detailed
information both about the wave functions and about the
energies of exactly and quasi-exactly solvable models.

The discussion can easily be generalized to the degener-
ate case. As we have already noted, when degeneracy is pres-
ent, certain points merge or move out to infinity. In the lan-
guage of the Coulomb problem, the merging of points a,
corresponds to the formation of all possible dipoles, multi-
poles, and so on. Movement of points a, to infinity corre-
sponds to the appearance of an external uniform or nonuni-
form electrostatic field in the system.
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The electrostatic analog makes it easy to construct the
trajectories in complex parameter space along which energy
levels transform into other levels. Let us consider the exam-
ple of the quasi-exactly solvable model with N = 3, when
there are six parameters ¢, and b, ¢ = 1, 2, 3. We take the
two finite intervals [@,a,] and [a,a,] to be the nonphysical
and physical intervals, respectively. Their stability is en-
sured by the requirement &, , ; > 0. Let the initial position of
the £-particles correspond to the X thlevel, i.e., let K &-parti-
cles be located in the right-hand interval, and M — X in the
left-hand one. (We assume that M > K.) Let us consider the
following trajectory: 1) the moving particle a, leaves its
original location and moves to the position of stable equilib-
rium: @, —aj;; 2) its charge decreases to zero: b, —b =0,
with the equilibrium position corrected accordingly:
a; —ay; 3) the now-neutral @, particle moves to the left
through L £-particles: af »aj"; 4) its charge is restored:
0=b; —b,; 5) its original location is restored: a}” —a,. The
final configuration of the system of £-particles obviously
corresponds to the (K + L)th energy level. The same result
can be obtained by changing other parameters of the system,
for example, the parameters a,, as, b,, and b, for constant a,
(Ref. 33).

We can also use the electrostatic analog to study the
spectral singularities in quasi-exactly solvable models. This
is related to the fact that the singularities of Bender and Wu,
which arise in the intersection (plaiting) of the energy levels
as functions of the parameters of the system, can be inter-
preted as points where the system of particles becomes clas-
sically unstable. In order to illustrate this, we imagine that
after the first two steps of the procedure described above the
charge b, is made small and negative. This leads to the ap-
pearance of a weak attractive center, which does not spoil
the existing particle equilibrium. If we now begin to move
the particle a, to the left, at some instant the stable state of
the £-particle closest to it becomes unstable, and it “falls
into” particle a,. It can be shown that: 1) two equilibrium
positions—one stable. and one unstable—merge at the point
where the instability arises; 2) the coordinates of all the &-
particles, and also of the energy levels have a square-root
singularity at this point related to the plaiting of the given
level with the following one. The electrostatic analog helps
in the calculation of the positions of all such singularities. It
is easy to see that for small &, they lie at the points £ {*
+ ¢;\ — b., where £ are the positions of stable equilibri-
um of all the £, -particles in the absence of the particle a,, and
¢, are constants easily calculated using perturbation theory.
We note that for positive b, the singularities are located at
complex conjugate points.™

Another type of singularity arises in quasi-exactly solv-
able models when two or more nodes of a wave function
merge. The L merging nodes &, i = 1, ..., L, as functions of
the parameters of the system have root singularities of order
L at the points of merging. Here the energy levels themselves
as symmetric functions of the node coordinates remain regu-
lar at these points. By analyzing Eq. (55), it can easily be
shown that such nodal singularities can arise only when the
charge of one of the stationary particlesis b, = — (L — 1).
A stationary particle of this charge can accumulate L mov-
ing particles with unit charge, as a result of which a com-
pound particle arises, having charge + 1and binding energy
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equal to zero. For such a particle to exist without decaying,
the total force exerted on it by all the other particles must
vanish. This condition leads to all the possible positions a,,
(Ref. 33).

To conclude this section, we note that whereas the prob-
lem of finding the wave-function nodes for one-dimensional
quantum systems is related to solving the problem of the
equilibrium of charged particles in an external field, the
problem of finding the nodal lines or the wave-function sur-
faces for systems of dimension D32 turns out to be related
to the problem of the equilibrium of classical charged strings
or membranes in an external field. Here the Schridinger
equation is not necessarily an equation admitting separation
of variables.’* In fact, let us consider the problem of
constructing a D-dimensional Schrédinger equation
[ — A+ V(x)1¥(x) = E¥(x) which is exactly solvable for
any one state. It is easily seen that for the choice

Vx) = E+ M (x)/y (x), (64)

where ¥(x) is a smooth function, the Schrédinger equation
has the function ¢(x) itself as a formal solution. The re-
quirement that the potential ¥(x) be smooth imposes a
number of constraints on the admissible form of the nodal
surfaces of ¥(x). To derive these we assume that the M nodal
surfaces of #/(x) are described by the equations x, = x, (1),
X,€R,, teR,_,,i=1, .., M. Then the wave function
¥(x) (up to a sign) can be written as

A
)y — exnd olxi(1a®te [ o
¥ <x>_m{ 3 ey ot I,H} expF(x),  (65)
where o[x(2)]d 't is an element of the nodal surface and
F(x) is a smooth function. The substitution of (63) into
{64) and the requirement that ¥(x) be smooth lead to the
following system of integral equations in x, (£):

i —x; (1 L D—1,:
r {x; ()] {P S [x; (0 —x; @N]olx; @]d”" " ¢

| % (1) —x; () [P+

M "
0 IR —xw )]o xRN 27
+Z S | %; (£)—xp (2) ID_H

+b (x; (i))} =0,

k=1
(66)

where b(x) =VF(x). It is easy to see that for D = 1 the first
term in (66) vanishes, while the remainder of the equation
degenerates into Eq. (50), describing the equilibrium of
Coulomb particles with coordinates x; in an external force
field. For D > 1 the resulting system can be interpreted as the
equilibrium condition for M absolutely inelastic massless
charged strings (D = 2) or membranes (D>3) interacting
according to the laws of (D + 1)-dimensional electrostatics
in a D-dimensional subspace. The charge is distributed uni-
formly along the strings (surfaces of the membranes) with
unit density. Equation (66) expresses the condition that the
normal component of a force acting on each element of a
string (membrane) due to the other strings (membranes)
and also the external potential #(x) vanish. This electrostat-
ic analog allows us to understand the features of the nodal
surfaces and the singularities associated with their relative
location, and also to follow the variation in the nodal-surface
shape as the potential is varied.**
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6.CLASSICAL FORMULATION OF QUANTUM-MECHANICAL
PROBLEMS

In the preceding section we showed that quasi-exactly
solvable models can be formulated in the language of electro-
statics. Since quasi-exactly solvable models are a limiting
case of non-exactly solvable models (see the Introduction),
a classical formulation is also possible for the former.?3-33-3%

Asan example, let us consider the eleventh model in the
list (52). For convenience, we replace the quantities &; by
their inverses v; = £ 7!, Tt is easy to show that the spectrum
of this model is given by

M

E:85(B+E vi), (67)

=1

where the numbers v; satisfy the system of equations
S B M46—1

' ! T ot T NP
2wt a0 b=t e M
=1

(68)

This system can be viewed as the equilibrium condition for
M Coulomb particles with unit charge moving in an external
potential corresponding to two wells separated by a barrier
which is singular at the origin. We know that to each distri-
bution of the particles between these two wells (for example,
K particles in the right-hand well and M — K particles in the
left-hand one) there corresponds a certain position of stable
equilibrium describing the & th energy level.

In the limit M — w0, Eq. (68) becomes infinitely compli-
cated and a non-exactly solvable model arises. The finiteness
of the potential of this model is ensured by the dependence of
f and ¥ on M. Determining it from the conditions
4(B* — 2yM) = g and 88y = 1, we find that B~M '/3 and
y~M ~'"3/2. Therefore, the potential of the limiting model
has the form

V(x):(%-—%‘,—)(26~—%)2—2+g12—{—%x". (69)
As before, the spectral problem for the non-exactly solvable
potential (69) can be formulated in classical language, Mak-
ing the substitutions =M ', y= (b2/2)M '3, and
v, = br,M ~*?in (67) and (68), we find

M
E = 48bM173 [1 + > 7}{] (70)
i=1
- 1 1 1 1 4
e A i T
k=1
—(1+ 5 ) 2 =0, i=1, ..., 0 (71)

Introducing the particle distribution density p(7), in the
limit M — « we obtain (in leading order)

E = 48bM%, ¢ = 1 L g o (¥) T dr, (72)

og

where p(7) satisfies the integral equation’

oo

p(th) . L 1 ‘l_ﬁi
S —1 v + _]_T"rrf T

=0, { pmar=1. (73)

-0 -0

It is easy to see that this equation is the equation for the
equilibrium of a charged “liquid” (with total charge 1) dis-
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tributed between two separate wells. The charge Q=K /M
of the liquid in the right-hand well determines the number of
the energy level, and the center of mass of the liquid is the
value of the energy. It is obvious that for any excitations with
finite number K in the model (69) the charge of the liquid in
the right-hand well (in leading order) is equal to zero. Then
the solution of Eq. (73) has the form

Pl =5 (=0t (144,

—o<T<—g; p()=0, T>—. (74)

Equation (74) can be used to find the distribution of
unphysical zeros of the wave function: x, ~in'/?, which
agrees with the semiclassical result. Substitution of (74) into
(72) gives e = 0, which is consistent with the finiteness of
the energy levels in the model (69). By including the correc-
tions to the solution (74) obtained by iterating Eq. (71) in
small (for M — o) deviations of this equation from its limit-
ing variant (73), it can be shown that e~ M ~'/3, which leads
to a finite expression for the energy levels coinciding with the
semiclassical result for K> 1. For K2 1 the corrections do
not form a decreasing series (owing to the fact that the mod-
el (69) is not exactly solvable). It can be shown that of the
quasi-exactly solvable models (52), only models with ra-
tional and trigonometric potentials can be reduced to stable,
non-exactly solvable models.*®

The procedure described above for reducing quasi-ex-
actly solvable models to non-exactly solvable models is pos-
sible for models with arbitrary N. As an example, let us con-
sider the rational model corresponding to the case N = 4 and
obtained as a result of the degeneracy of the potentials de-
scribed by Eqgs. (53) and (54):

V(e)=(20—4) (26— ) —[28 (2 +8+ )

M
—a? 2y T_ifm:laf'z—i[y(MJr-ﬁ—i-l)—aB]xé
i=t

+% (B -+ Zay] 2®+- %ﬁws -+ 11—6 pET10, (75)

This model has the solution

E=46(a+§ v ),

i=1

where the v; are numbers satisfying the system of equations

M
2 (v — )t Vit B Lot — (M 6 —1) vi' =0.
h=1
(76)

This model differs from the one discussed above in that its
potential depends on the form of the solution. Nevertheless,
the M dependence of the parameters a, 3, and ¥ can be
chosen in such a way that the dependence of the potential
on the form of the solution becomes vanishingly small
in the limit M— «. This dependence is found from the
equations 82+ 2ay=4, YM—aff =B, and 28M — o*
+ 2¢2EY v, ' = A. The non-exactly solvable model arising
in the limit M — e has the form

V (a) =422 4 Bab a0+ (26— ) (26— 5 ) .

(77)
Going to the particle distribution density p(7), for it we can

A. G. Ushveridze 516



obtain a system of equations which, as in the preceding case,
can be solved exactly. In the case K> 1 the inclusion of cor-
rections to our solution leads to results for both the energy
levels and the distribution of the wave-function nodes which
coincide with the semiclassical results. Similarly, it can be
shown that quantum-mechanical models with even polyno-
mial potentials of degree 2n can be obtained as limiting cases
of quasi-exactly solvable models with ¥ =n 4 1. This im-
plies that the spectral problem for any non-exactly soivable
model in one-dimensional quantum mechanics can be for-
mulated in purely classical language, in terms of the problem
of finding the equilibrium of an infinite number of charged
Coulomb particles in an external classical potential.*®

7.RATIONAL ONE-DIMENSIONAL QUASI-EXACTLY
SOLVABLE MODELS AND MAGNETIC SYSTEMS BASED ON
THE ALGEBRA SL(2)

Let us return again to the system of algebraic equations
(35), (36) describing the spectra of exactly and quasi-exact-
ly solvable models. It turns out that these equations coincide
exactly with the Bethe-ansatz equation for completely inte-
grable, nonlocal spin systems on a finite one-dimensional
lattice. The Hamiltonian of such a system can be chosen to
be any linear combination

N

#,= )

B—1

* 5283+ S555—2545}

ag—ag

(78)

of the operators acting in the direct product W
= W,e W,®..8 W, of representation spaces of the alge-
braSL(2). HereS o, S ,and S are the generators of this
algebra acting in the representation space W, of the site ex. It
is easily verified that all the operators (78) commute with
each other, [H,,, Hg | = 0, so that they have a common spec-
trum. As we shall see, the parameters a,, enter explicitly into
the Hamiltonian and play the role of coupling constants
characterizing the strength of the interaction between spins
located at different sites. The parameters &, do not appear
explicitly in the Hamiltonian; they are included in the defini-
tion of the generators, characterizing the representations in
which they act. They are related to the “spins” of infinite-
dimensional irreducible representations of the algebra

SL(2), which can be realized as
&
-3 E

02

* Fr

d

@ 5t

Se=1q, Sh=1 + by, Sz=t + 25 (79)
on the space of all analytic functions regular near the origin.
In this space there exists a vector of lowest weight |0), =1
such that S, |0), = 0. The eigenvalue of the operator for
the z projection of the spin S'2 on |0) is — b,, so that b,, is
the spin of the irreducible representation of the algebra
SL(2) with opposite sign. This is confirmed by the fact that
the eigenvalue of the Casimir operator S2 on |0}, is
(—b,)(—b, + 1). The representation (79) is infinite-di-
mensional, owing to the absence of a vector of highest
weight, i.e., an analytic function, regular near the origin, on
which the operator S ;- would give zero.

The spectra of the operators (78) in the case when the
generators of the algebra SL(2) act in a finite-dimensicnal
representation have been calculated by Goden in Ref. 37 by
the Bethe-ansatz method. This method can also be trivially
generalized to the infinite-dimensional case in which we are
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interested. Following Goden, we introduce the following op-
erator-valued functions of the parameter A:
N +

§
8% (M) =D —=

A—ay ’

N
SD
S =2 5= (80)
=1

a=1
which are easily seen to satisfy the commutation relations

S*(A), $ ()] = —— [8% (A) — 8= ()],
[S%(4), S°(w)] = [5* () (u)]} s

(57 (M), 8~ (W= 5= 18 (B)— 8" (.

It follows from these relations that the operators
§2(h) = -;; {87 (A) §(1)+ 8 (R) §7(A) —25° (1) $°(4)} (82)
commute

(8% (M), $*(W)]=0 (83)

for all A and . Therefore, $*(4) can be viewed as an arbi-
trary function of the integrals of the motion. In particular,
the residues at the simple poles of the function $ *(A) give the
operators H,. If we seek eigenfunctions of the operators
52(A) in the Bethe form

N
| M)=8E) % - XS Ea) 10 10=T[ 100, (88)

where £,, ..., £, are unknown numerical parameters (the
quasimomenta of the magnons), then, using the commuta-
tion relations (81), we can obtain solvability conditions for
the spectral equation in the class of functions of the form
(84) which exactly coincide with Egs. (35) and (36).

The models of magnetic systems considered here are
not local spin systems. In the Hamiltonians of these systems
each spin interacts with all the other spins, i.e., there is a
long-range force and the situation is apparently a typical
semiclassical one. This is also confirmed by the fact that the
complete integrability of these models is related to the solu-
tions of not the usual quantum Yang—Baxter equation (the
triangle equation ), but the so-called classical triangle equa-
tion* arising in the limit #—0. The quantum § matrix
$°8 (1) is related to the classical matrix X% (1) as $%° (1)
=1+ %X (1) (Ref. 38).

The classical triangle equation for the matrix X (1)
has the form

(X8 (M), XBY (ho)] - [XPBY (Ry),

Xve (Ag)] 4 [XV (Ag), XoB(Ry)]=0,

Ay - Ay Ay = 0. (85)
If we seek a solution to it in the form X*# (1) =S,S;A(4),
then for the function A (1) we find Eq. (25), whose solutions
were used to construct exactly and quasi-exactly solvable
models, We therefore see that in the theory of exactly and
quasi-exactly solvable models Eq. (25) plays the same role
as the triangle equation in the theory of completely integra-
ble systems.

We have therefore succeeded in relating some of the
exactly and quasi-exactly solvable models considered in Sec.
4 and characterized by the numbers N to magnetic systems
based on algebras of the form SL(2)®..8SL(2) (N
times). We see that by solving the spectral problem for these
systems we can obtain an exhaustive amount of information
on the spectra of the associated exactly and quasi-exactly
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solvable systems. So far we have considered only the nonde-
generate case. It can be shown that an analogous correspon-
dence holds also when degeneracy is present, but in this case
the magnetic systems are based on other (contracted) Lie
algebras. Asbefore, the Hamiltonians of degenerate magnet-
ic systems can be obtained from the operator generating
function §*(A) defined by (82). The operators S= (1) and
S°(A4) entering into (82) satisfy the same commutation rela-
tions asin (81). However, in the degenerate case the form of
these operators is different from (80). We recall that a de-
generacy always reduces either to the merging of poles,
Gy, s -y Ay, —4, OF to the departure of poles to infinity, ag,

«y @ — 0. To explicitly construct the operators .S ),

I'= 4+, —, 0, arising when such degeneracies are present,
in (80) we need to make the substitution

K si I UI
@; i K
Eﬂ s e R N (86)
or

L SI

1 ﬁ,‘ . I
Z —— — Vi4 .. M-V, (87)
el

where U! and ¥ ! are new operators. The commutation re-
lations for these operators are found by substituting the ex-
pansions (86) and (87) into the commutation relations
(81).%° (The classical analog of this method was formulated
in Ref. 40, where it was used to study degeneracies in classi-
cal Hamiltonian systems. )

8.RATIONAL QUASI-EXACTLY SOLVABLE MODELS (MULTI-
DIMENSIONAL CASE)

In Sec. 4 we constructed a class of one-dimensional ex-
actly and quasi-exactly solvable models related to linear
multi-parameter equations of the form (33). According to
the results of Secs. 1 and 2, these equations can also be used
to construct multi-dimensional exactly and quasi-exactly
solvable equations of the Schrédinger type on, in general,
curved manifolds. There are an infinite number of inequiva-
lent ways of transforming from (33) to a D-dimensional
Schrodinger equation. We shall first consider one of the sim-
plest of such transformations,™ based on identifying the
spectral parameter #;, _, as the energy and the parameters
Fos - ¥p 5 asseparation constants. Using the explicit equa-
tions given in Sec. 2, it is easy to show that the resulting
equation has the form*'*!

D s
{—VE IR e v (A)}wm=mpm, (88)
i=1

where
gi—o [l li—a) [["i—a), e= 1] & (89)
a=1 =1 i=1
and
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N
p ] hi—aw) [ m (L) (b—2
V(J\):iﬂz %_ {2 ( (:ilga}z = )

=t " (=)
k=1

1
N N bmbﬁ_ﬂ
16 1
+2 2‘ (2 Gy — g )Aigaa}

a=1 \f=1

N-1 D aD-14n
-3 ( 5 ——) 50)

a=1

The solutions of Eq. (88) are
D N

1 D
v = I 1T (s—ae)’="* 11

=1 a=1

M

[ =% OO

=1
E=rp, (92)

The numbers £,, i = 1, ..., M, satisfy the system of algebraic
equations (35), and the dependence of the spectral param-
eter r,_; on these numbers is given by (38).

Let us consider the case in which all the parameters a,,
and b, arereal and find the condition for the metric g;, to be
positive-definite, i.e., the condition for Eq. (88) to be ellip-
tic, For this we note that the & points @, divide the A axis
into N + 1 intervals, which above were called fundamental
intervals. We define the sign of a fundamental interval as the
sign of the expression (4 — a;) X... X (4 — ay ). Obviously,
the signs of the fundamental intervals alternate. We now
recall that at our disposal we have D independent variables
Ay ooy Ap . We distribute them among the D intervals in such
a way that the signs of the intervals occupied by these vari-
ables alternate. Then, obviously the sign of g will be inde-
pendent of i. The sign of @ can be chosen so as to ensure that
all the diagonal elements of the metric tensor g, are positive.

Let us now formulate the Hermiticity condition for the
Hamiltonian of the model (88) on the solutions (91). By the
same arguments as in Sec. 4, it can be shown that for the
Hamiltonian to be Hermitian it is necessary that all the inter-
vals occupied by the variables A, be quantum-mechanically
stable. The definition of quantum-mechanical stability is the
same as in the one-dimensional case. From Eq. (91) it fol-
lows that the stability of all the intervals occupied by the
variables A, guarantees that the wave function vanishes on
the boundaries of the region in D-dimensional space in
which the spectral problem is formulated. By analogy with
the one-dimensional case, we shall refer to the fundamental
intervals occupied by the variables A, as the physical inter-
vals. It should also be noted that the number of stable inter-
vals cannot exceed N — 1.

The discussion is easily generalized to the degenerate
case arising when the points @, merge or go to infinity. The
graphical method formulated in Sec. 4 for one-dimensional
problems can be used to classify the models obtained when
degeneracies are present. The only difference from the one-
dimensional case is that the number of physical intervals
shown on the diagrams is now D rather than 1.

Let us consider some specific cases.

1) D= N. We have a single diagram of the form

HHOHHOHE - -HOHHO— - (93)

The role of the energy parameter is played by the parameter
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Fn_1, which, according to (38a), is zero. Therefore, the
spectrum of the model is infinitely degenerate. The number
of physical intervals, , exceeds the number of stable inter-
vals, N — 1. Therefore, the Hamiltonian of the model is not
Hermitian, and the wave functions are not normalizable.
The space in which the equation is formulated is flat, as is
easily verified by identifying the variables A; with general-
ized N-dimensional ellipsoidal coordinates. *!

2) D= N — 1. In this case for each N there are two
nondegenerate diagrams:

HHOHHOHT - - - HOHO—O0—— » (94a)

OHHOHF - + « HHOHOHO—— «

The role of the energy parameter is played by the parameter
Fn _ 2, expressed in terms of the number M. We obtain exact-
ly solvable models. In each of the diagrams all the physical
intervals can be made stable. Therefore, the Hamiltonians of
these models are Hermitian, and the wave functions are nor-
malizable. In the nondegenerate case the space in which the
equation is formulated is not flat. However, it may become
flat when a degeneracy is present. We have the following
degenerate diagrams:

(94b)

HHOMHHONH » - « HHOHHOHHE—  » (93a)
HHOHHCHH - - - HHOHHO——F0O » (95b)
HHOHHCHH « - « HHOHHOHHHHHE - (93¢)

As before, the diagram (95a) describes a curved space.
However, the diagrams (95b) and (95c¢) describe flat space,
as is easily shown by identifying the variables A; with
(N — 1)-dimensional ellipsoidal and paraboloidal coordi-
nates, respectively. In flat space we obtain a model of an
(N — 1)-dimensional spherically asymmetric anharmonic
oscillator with centrifugal barriers.

3) D= N — 2. In this case, for every N thereare N — 1
nondegenerate diagrams. For example, for ¥ =4 we have
three diagrams of the form

HHHOHHO—O—O0— » (96a)
HHHO—O—OHHO—— » (96b)
—OHHOHHO—0O—— (96c)

The role of the energy parameter is played by the parameter
rn_ 3, which depends explicitly on &, i = 1, ..., M. The pa-
rameter ry _ , entering into the potential depends only on M.
We therefore obtain a quasi-exactly solvable model whose
orderis K= (M + N — 2)}![(N —2)IM!] !, ie, the num-
ber of ways of distributing the M numbers &, among N — 1
intervals. All the physical intervals can be made stable, so
that the Hamiltonians of these models are Hermitian, and
the wave functions are normalizable. The coordinate space,
which is not flat in the nondegenerate case, can become flat
when degeneracy is present. For example, the diagrams

-HHHOHHOM! -+ HHORHO—®

describe multi-dimensional quasi-exactly solvable models in
flat space, az can be verified by identifying the variables 4;
with (N — 3)-dimensional ellipsoidal coordinates. The po-
tentials of these models have the form

(97)
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D P2
V(z) = a4 2ar2 3| Bt > piat

i=1 i=1

D
ilyi—1
+E vwﬂ )
F: 1 T

de=

D D
Ha{ 2y, 4+ 1)+2+4M}r2, r2=3) 2% (98)
i=1 i

i=1

They contain 2D + 1 independent parameters «, 5;, ¥,
i =1, ..., D, which can be expressed explicitly in terms of the
original parameters of the problem u, and b,, @ =1, ..., N.
The model is defined in the region specified by the inequal-
ities x; 20, i = 1, ..., D. The stability condition for the model
can be written as the inequalities ¥, > 1, i=1, ..., D, and
@ > 0. Let us consider the case with M = [ as an example. It
is easy to show that in this case the Schrédinger equation for
the potential (98) has the solutions

D D D
i 4oex? 4 1
P (x) = H ay (1_2 g__mi)e"P{— a; ‘—2‘2 f)tx%};
1 —

=1

(99)

D
E=%+3 B:(2y:+1), (100)

=1

where the number £ satisfies the equation
D -
_ V2V

E=8a ) T, (101)

i=1

which is equivalent to an algebraic equation of order M + 1.
It is easy to see that if the stability conditions are satisfied,
the wave functions vanish at the boundaries of the region in
which the model is defined.

We note that if ¥; = 0, the potential becomes a polyno-
mial, which, owing to the Z, X Z, ... X Z, symmetry of the
model allows it to be formulated on the entire space. A mod-
el of this type is interesting because in the limit D — o it is
transformed into a nonlocal, nonrelativistic quasi-exactly
solvable “field theory” with gapless excitations.

Multi-dimensional quasi-exactly solvable models also
exist for D <N — 2. For example, in the case D=N—3
there exist infinite series of quasi-exactly solvable models if
the condition (39) is satisfied. However, as in the one-di-
mensional case, here it is not possible to construct any new
models. They all reduce to the models with D = N * — 2 stud-
ied earlier, where N' = N — 1. If the condition (39) is not
satisfied, we can obtain finite series of quasi-exactly solvable
models of bounded maximum order

(102}
This is also true for the general case D < N — 3.

All the models obtained by the method described above
are defined on, in general, curved manifolds, For a manifold
to become flat for given D and N, there must be a special
degeneracy taking N — D points a,, to infinity.

The D-dimensional manifolds under discussion are em-
bedded in N-dimensional flat space and can be described by a
system of N — D equations:

N

Eiumwg_ag—D—J: —8, j=1, ..., N—D,
o=

(103)
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where o, are the signs of the expressions 117, (4, —a,)
x5 '(ag—a,) "

Let us now consider a more general method for con-
structing multi-dimensional exactly and quasi-exactly solv-
able models. Including the spectral parameters rp, ..., 'y 4
in the potential, we take the energy spectral parameter to be
an arbitrary linear combination of the parameters 7y, ...,
rp_1,and we identify the remaining D — 1 linear combina-
tions of these parameters as separation constants. As a re-
sult, we again obtain a Schrddinger equation of the form
(88), but in which

N i) n
ii = 4 9
g = H (7\.'* an_) H (}\‘z - 7\'-’:) 1 ;}j 2 €0, (A‘ - (‘I);
a—1 k=1 e
(104)
D
V= — E gii

i=1

N-1 N
><{ P I ey Q) < (%) }

n=1n =D+1
1,

t ii a g 0 kPR
=2 [ (] G2y o yvs, (108)
=1
where
I n N _1
b~ =20 11T (i — (106)
i<h i=1 =1

Here o, (1 — @) are symmetric polynomials of order nin D
variables A; — @, i = 1, ..., D, where ¢ = min, {a,}, and c,
are arbitrary constants. For the Schrédinger equation to be
elliptic it is necessary that: 1) the signs of the physical
intervals alternate; 2) all the constants ¢, be non-negative;
and 3) theinterval [ — oo, @] not be a physical interval. The
Hermiticity of the Hamiltonian on the solutions and also the
]

h

B, =S SaSt S5Sa-t2paSy 5,85+ 26p.Sy
T Ag—0pa1 Gy —Upia
St {(\{" qr))ﬂ(\g o )2—11{9 - (Bl BB é" .
P = Yz =4 (BUper+ 20p4e )(_Su——

. x—1 7= a—1

normalizability of the wave functions are ensured by the re-
quirement that all the physical intervals be quantum-me-
chanically stable. It is easy to show that for D =N — 1 we
obtain exactly solvable models. These models differ from the
ones discussed above in that now the energy spectral param-
eter depends not only on M, but also &;. We therefore obtain
exactly solvable equations with plaited energy levels. Only
the levels pertaining to different values of M are plaited
(owing to the multi-dimensionality of the problem). For
¢, = 0,;,all thelevels become disentangled and we return to
the case of models described by Egs. (89) and (90). Infinite
series of quasi-exactly solvable models arise for D =N — 2,
and for ¢, = &, they reduce to the models (89), (90). As
before, the case D = N — 3 gives nothing new if the condi-
tion (39) is satisfied. However, if this condition is not satis-
fied, then for D< N — 3 finite series of quasi-exactly solvable
models arise, with the maximum order being

K o - 3+[%]

By means of variable substitutions z, =17 | (4,
—a );_ "(az —a,) " and similarity transformations,
for D =N — 1 and D = N — 2 the Hamiltonians of the ex-
actly and quasi-exactly solvable models described by Egs.
(88), (104)-(106) can be written as combinations of the
generators S 7, .5 ., and S of the algebra SL(2) given by
(79). For example, the Hamiltonians of the exactly solvable
models reduce to linear combinations of the operators

(107)

 S3Sat2bpaSy,

Qg —0pney

h _? S’isi
B=1 e

—8z =1, .... D,
(108)

and the Hamiltonians of the quasi-exactly solvable models
(D = N — 2) reduce to linear combinations of the operators

_SO’L

1.
X ba—ﬂf)}
a=1

(g —aps1) (@ —ap..)

We see that the expressions (108) are bilinear in the genera-
tors, while the expressions (109) are trilinear. In addition,
we stress the fact that the operators S, are the generators of
infinite-dimensional representations of the algebra 5L(2).
These features lead to an important distinction between rep-
resentations of the type (109) and the representations used
in the algebraic approach'®*! for the Hamiltonians of quasi-
exactly solvable systems.

The Hamiltenians of all the infinite series of quasi-
exactly solvable models considered in this study can be
rcpresented as infinite-dimensional partitioned matrices

= ||H,z|| of a special form acting on block vectors
@ =1{@,}. (The indices label blocks of the matrices H of
dimension K, X K, and also the block-components of vec-
tors ¢ of length K, .) The matrices H are constructed as
follows:

H— H*

(H¢ —¢) + HY. (110)
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(109)

—
Here A" is a block-diagonal matrix: H %5 =8, ,H 4 H ™

a matrix for which all the blocks located above the ﬁrst
block-hyperdiagonal are equal to zero: H 5, =0 if
a > + 1,and H *isamatrix for which all the blocks located
above the principal block-diagonal are equal to zero:
H®, =0ifa> . We see that the matrix H/ * acts as a raising
operator, transforming n-component block vectors ¢ into
(n + 1)-component ones, while the action of the matrices
H? and H" on the vector ¢ does not increase the number of
their block-components. For this reason, the operator H can
on the whole be treated as a raising operator for which the
spectral problem is, obviously, infinite-dimensional. How-
ever, if the spectrum of the M th diagonal block H ¢,,, of the
matrix H is K, -fold degenerate, and the value of the param-
eter ¢ coincides with the eigenvalue of H },,,, then the opera-
tor H is no longer the raising operator for M-component
block vectors ¢, and the corresponding spectral problem for
@ becomes finite-dimensional. As a result, we obtain quasi-

A. G. Ushveridze 520



exactly solvable models of order K|, + K, + - + K, (Ref.
26).

It is easy to see that all the operators A, described by
Eq. (109) and also linear combinations of them can be
represented in the form (110). Here the role of the space of
vectors @ is played by the space of polynomials in D
variables, the blocks are formed by homogeneous poly-
nomials of identical degree, and the role of the operators H
is played by the operators (Z2_,S2)%+4 (2b,,,)
+2b,,, — 1DEZ_ 8%, Itis easy to see that the most gen-
eral form of the operator H on the space of polynomials
which is consistent with the requirement that H be a second-
order differential operator is

H = (extn + 1} la (6:0:)* + b (t:9;) — el

+ P (1) 9,0, + Q4 (2) 9, (111a)

or

H = (Cnln + dnmhtnzmah +f + gmhtméh + hhak)
X {atiai - g) + fa?z) (1) aiah -{- Q,l (I) a‘ (Illb)

(there is a summation over repeated indices). Here g, b, f;
Cos @i s Bmi» and A, are arbitrary parameters, and P {2 (1)
and Q{’(¢) are arbitrary polynomials of second and first
order, respectively. The allowed values of the parameter e
for which the problem becomes finite-dimensional are, re-
spectively, e=aM? + bM for (11la) and e =aM for
(111b). Here M is the degree of the polynomials in whose
class the solution is sought.

The quasi-exactly solvable spectral equations for the
operators (111) are equations with two spectral parameters.
One is the “energy” parameter, and the other is the “poten-
tial” parameter. It is easy to see that the scheme described
above can also be used to construct equations with many
spectral parameters. Let w, . .., 7,20, r=1, ., R, bea
sequence of finite-dimensional linear spaces. With each set
m,, ..., Mg Weassociate a space W,, . which is the linear
envelope of the spaces w, . withn,<m,, r=1, ., R.
Obviously, for all finite m,, ..., m the spaces W,, i, ATE
finite-dimensional. We denote the infinite-dimensional

space W by W. We consider the following operators in
W-

) H,'" r=1, .., R, acting from W, _ ity 1O
Wn._,,n,+}v ..... nR;

2) H{, r=1, .., R, diagonal in each of the spaces
.0 and possessing the property H%p = £, (n,)q if
pew, ., ., (theeigenvaluesof H{ are determined only
by the number #,;)

3) H", which transform the spaces W,

selves.
We now construct the new operator

w

F7 P .

1, Into them-

R
H=H'+3 H;'(Hi—e})
r=1

R

S HP(HI—e) (Hi—-e})+ .. .,

r—1

acting from W to W. It is easy to see that the spectral prob-
lem for this operator is, in general, infinite-dimensional.
However, if e, = f,(N,), e =f,(N, — 1), and so on, the
operator H acts inside the space Wy, .. and the spectral
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problem for it becomes finite-dimensional. We obtain a qua-
si-exactly solvable spectral equation. The numbers e!, é2,...
play the role of the “potential” spectral parameters. The op-
erators H * ¥, H?, and I ° can be constructed from the gen-
erators of the Lie algebras. As an example, let us consider the
case of a semi-simple Lie algebra G of rank R with the gener-
ators X, e*, r=1, .., R, satisfying the commutation rela-
tions

[ef, 51=0, [e}, ef]=kAer, [ei, €5]1=8;e)

(here we have written the commutation relations only for
the generators related to the simple roots of the algebra G;

vector of the infinite-dimensional representation of the alge-
bra G:

< n — e
eiwy, .0 =0, ewy, o =Emw, . 5 i=1,..., R

We define w, , as a linear space spanned by vectors ob-
tained from the vector

(i) (i)™ ... (eR)"R wy, ...,

as a result of all possible permutations of the
Hy + n,+ -+ + ng operators e,". It is easily seen that

R 1
egwm. M. | (Ez -+ 2[1 Aijnj) Woo ooy ngt
=
Multiplying both sides of this equation by the matrix B,,, the
inverse of the Cartan matrix, we find
R R
(Et B,—jeg) Wy, .. g (E{ B?'.r'Ei“"nr) Wy, ..., ngt
i= j=

from which it follows that the operators H ¢ can be defined as
R
Hi=Y B, .

P

=

The operators H *and H ,* ¥ can be represented as polynomi-
als in the generators ¢ and €.

Let us take the case of the algebra SL(3) as an example.
The generators e and el can be realized as first-order
differential operators:

d ] a
b _g—9p i -
el =a—2x ¥ 3y i

oz
i a a
L S A P S
= ﬁ o oz ¥ a 2z az ’
a 2 a
eizax—xza——xy-a?+(zz+y)?z;
2 f? -
ei=Prty—-—z25-;
_ @
€1= dz ?
_ ad g
a=rg

The parameters a and £ characterize the infinite-dimension-
al representation of the algebra SL(3). The constant plays
the role of the vector of lowest weight. From the general
equations it follows that

a d d
M= (o) ni= (v 4o ).

Requiring that the operator H be a differential operator of
order no greater than two, we find that
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H=H{"(H}—e)+H; (H —e)) +H,
where
H'= Atef+ ) Bied+ 2 Clei;
i i

H}' = Ares+ 3} Bie)+ ) Clei,

2

and H° is a sum of terms of the form
T e . I
eiey, eien, €ien, €ien, €1, €.

We note that the spectral equations for the operators (111)
can sometimes, by obvious transformations, be reduced to
quasi-exactly solvable equations of the Schrodinger or Pauli
type on, in general, curved manifolds. The question of the
Hermiticity of the Hamiltonians involved in the resulting
equations obviously requires special consideration (see the
Conclusions).

9. QUASI-EXACT SOLVABILITY AND COMPLETE
INTEGRABILITY

In Sec. 7 we discussed the relation between the exactly
and quasi-exactly solvable models generated by the multi-
parameter spectral equation (33) and completely integrable
quantum models of magnetic systems based on the algebra
SL(2). 1t was pointed out that Eqgs. (35) and (36) determin-
ing the spectra of quasi-exactly solvable models coincide
with the Bethe-ansatz equations for spin models with the
Hamiltonians (78). However, it was not explained why this
is so. In this section we attempt to give this explanation,
using the statement of Sec. 1 that to each exactly solvable
spectral equation with A spectral parameters and commut-
ing weight functions there corresponds a system of N com-
muting operators with exactly calculable spectra. It is easy
to show that the operators L, have the form of second-order
differential operators in the variables A4,. Changing to new

. N / ey
variables ¢, =T[", (1, —a )0}_,"(az —a,)~", we ob-
tain25,42,43

N + K o
I - <’ S&Sﬁ—l—SaSﬂ—ZS&Sg
a— )
B=1

— Sz, (112)

dg —ap

where the operators § * and S2 are given in terms of the
variables 7, by (79) and therefore are the generators of infi-
nite-dimensional representations of the algebra SL(2). The
commuting operators L, can thus be viewed as integrals of
the motion of a completely integrable model of a magnetic
system based on the algebra SL(2). We see that the opera-
tors L, differ from the Hamiltonians H, studied in Sec. 7
only by terms of the form .5, , which act as lowering opera-
tors, Therefore, the spectra of the operators L, and H,, coin-
cide (the equations for these spectra also coincide )}, as was
pointed out in Sec. 7. Here it is helpful to use the fact that the
operators L, can be obtained from a generating function—
an operator of the form

S2() =82 () — 8- (A).
Introducing the new operator functions
S (M =8 (2), S ()=8(A), & (A)=5*(A)—1,

it is easy to verify that they satisfy the same commutation
relations as S ~ (1), 5°(4), and § " (1) and allow the gener-
ating function § (1) to be written as
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B =5 B WFH+5 W m—28mF M),

in complete analogy with (82).%

In Sec. 1 we have already mentioned that the phenome-
non of quasi-exact solvability is a consequence of the pres-
ence of a degeneracy in the system of spectral parameters.
For example, the degeneracy of the spectral parameter ry _,
[see Eq. (38b)] relative to the other spectral parameters
leads to the existence of quasi-exactly solvable models of
order equal to the degree of degeneracy. The parameter
ry_, is the eigenvalue of the operator R, _, =Z,a,H,;
therefore, to find the symmetry which is related to this de-
generacy we should consider operators which commute with
Ry ,,but not with each of the #,, separately. To find such
operators we note that R, _ , commutes with all the opera-
tors H, = H, (a,,...,ay ). On the other hand, owing to (78),
this operator has the form Ry _, = (2,5.)% so it is
independent of a,, ..., ay. Therefore, it will also commute
with all operators of the form H,(x,,...xy), where
X,, .-, Xy are arbitrary parameters. Here if N3, the sets of
operators H, (a,,....ay )} and H, (x,,...,xy ) will, in general,
not commute with each other. Therefore, the operators
H, (x,,...,x5 ) can be viewed as generating functions for the
generators of the algebra associated with the hidden symme-
try responsible for the degeneracy. Attempts to make this
algebra closed convince us that it is infinite-dimensional.>®

The relation between quasi-exactly solvable models and
completely integrable systems can also be used to construct
quasi-exactly solvable equations. In fact, if Ry, ..., Ry _, is
any set of commuting operators with an exactly calculable
spectra, an operator of the form

H=Ry+ U (B —e)+ ... +Uny (Byq —exa)
(113)
where U,, ..., Uy _, are arbitrary operators, will be an oper-

ator of a quasi-exactly solvable equation if the spectra of the
operators R, ..., Ry_, are degenerate relative to the spec-
trum of the operator R,. For R, we can take, for example,
linear combinations of the operators

N, owogich
_Ha:“—.z M, (114
|’5:1 am——aﬁ

which can be interpreted as the Hamiltonians of magnetic
systems based on a Lie algebra with generators 5., (K, is the
Killing—Cartan tensor).” Since, in general, the generators
of infinite-dimensional representations of Lie algebras can

be realized as first-order differential operators, the operator

H can take the form of a second-order multi-dimensional
differential operator, with arbitrary functions chosen for the
operators U, ..., Uy _ . Requiring that for certain a the
operators 5., be the generators of finite-dimensional matrix
representations of the Lie algebra and taking matrix func-
tions as the U,, we can obtain H in the form of a second-
order matrix differential operator. Finally, taking the S, to
be the generators of graded Lie algebras, we can construct
supersymmetric generalizations of quasi-exactly solvable
equations.*

We note that it is not at all necessary to use operators of
the type (114) to construct the commuting operators R, .
For example, the R, can be taken to be second-order differ-
ential operators of various variables 4, which commute with
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each other in an obvious manner. If the spectral problems for
each of these operators are exactly or quasi-exactly solvable,
we obtain finite or infinite series of quasi-exactly solvable
equations of finite or infinite order. It is easy to show that
such equations can always be reduced to equations of the
Schrédinger form on certain curved manifolds if the func-
tions U, (4), ... _ 1 (4) are assumed to have a factorized
form: U, (i) = ual (A XXty _1 Ay 1), a=1,
N —1 (Ref. 27).

10.SOME OTHER RATIONAL EXACTLY AND QUASI-
EXACTLY SOLVABLE MODELS

Up tonow we have used only one very special method of
discretizing the spectrum of the 2N-parameter spectral
equation (28), which in the rational case has the form

5
o2
{8_12"_2 (l—aa)z—i_z A—

a=1

}m(k) (115)

In this method we fixed the parameters ¢’ and declared the
remaining parameters e'" to be spectral parameters. This
method allowed us to obtain the set of exactly and quasi-
exactly solvable models studied in detail in Secs. 4-9. How-
ever, as was noted in Sec. 3, this is not the only possible
approach, since any N linearly independent combinations of
the parameters e/?’ and ¢!’ can be fixed. This greatly en-
larges the set of exactly and quasi-exactly solvable models
associated with Eq. (115). We note that, since the change
from one system of parameters .7, e’ toanother 77, 8 is
effected by a transformation of the group GL(2N), each way
of fixing N parameters &>’ and defining the other N param-
eters &, to be spectral parameters can be uniquely charac-
terized by elements of this group g.

It is easy to see that, owing to the identity
el 4+ ...+ ey’ =0, all the solutions of Eq. (115) for any
choice of g are [NV /(N — 1) ]-fold degenerate. According to
Theorem 3 of Sec. 1, this leads us to a set of (N — 1)-dimen-
sional exactly solvable equations of the Schrédinger type,
which can easily be constructed using the explicit equations
of Sec. 2. In particular, for N = 2 we obtain a family of one-
dimensional exactly solvable models, including both the
models listed in Sec. 4 and models of a more general type
related to the hypergeometric equation. The Coulomb,
Kratzer, and Eckart potentials and many other potentials
found in Ref. 44 are special cases of these models. A special
choice of the element g can lead to an even greater degener-
acy in the system of parameters. For example, we know that
fixing all the ¢'>’ ensures a [N /(N — 2)]|-fold degeneracy
for the (M + N — 2)1{M (N — 2)!} ' solutions at each M.
This leads to the large class of (N — 2)-dimensional quasi-
exactly solvable models of any order described in Secs. 4
(N=3) and 8 (N>3). A different choice of g corre-
spondmg to fixed e, a=1, .., N—1, and vanishing

EN (a,el’ +el?) ensures [N /(N —2)]-fold degener-
acy for all the solutions of Eq. (115). This leadsto (N — 2)-
dimensional exactly solvable models. In particular, for
N =3 we obtain one-dimensional exactly solvable models,
which in Ref. 19 were erroneously attributed to a class of
quasi-exactly solvable models with a finite number of un-
plaited equations. Actually, all the levels in these models are
disentangled and can be obtained explicitly. However, it is
not easy to show this using the algebraic approach of Ref. 19.
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Furthermore, it is easy to show that the vanishing of the
expression 2 _, (a,el + &) is equivalent to imposing a
condition analogous to (39) on the parameters of the prob-
lem. This reduces all the exactly solvable models arising for
N = 3 to the above-mentioned exactly solvable models cor-
responding to the case N =2 and completely described in
Ref. 44,

Let us now consider finite series of quasi-exactly solv-
able models with finite maximum order. We recall that ear-
lier we obtained quasi-exactly solvable models of order X for
N > 3 by choosing some combination of the parameters 7y, ...,
7p_ | tobe the energy spectral parameter, and requiring that
the N — D — 2 potential parameters rp, ..., ¥y _ 3 coincide
for the K solutions, thereby imposing (K — 1) (N — D — 2)
conditions on the 2N — 2 parameters of the system. Now we
make use of the possibility of transforming from one system
of parameters to another by mixing them via transforma-
tions from the group GL (). Obviously, it is meaningless to
mix the parameters rp, ..., Fy _ 5, since thisdoes not lead to a
change in the potential. However, we can mix each of the
potential parameters with all the energy parameters. As a
result, the number of free parameters of the system increases
from 2N —2 to 2N — 2 4+ D(N —2 — D). We then easily
find that

Kmax_D-l-B—{-[l”“—z]. (116)

We shall discuss this equation later.

11. TRIGONOMETRIC AND ELLIPTIC QUASI-EXACTLY
SOLVABLE MODELS

Up to now we have been exclusively concerned with
models related to rational solutions of the scalar triangle
equation (25). However, as was shown in Sec. 3, this equa-
tion also has trigonometric and hyperbolic solutions which,
asin the rational case, can be used to construct multi-param-
eter spectral equations of the type (115). The spectra of
these equations become discrete when any ¥ linear combina-
tions of the parameters €', ¢'", and &' are fixed. If (as in
the rational case) we fix the parameters e'’’, the system of
spectral equations takes the form

Ji%4 N
RE pcot o (EL—_Ek)_}' 3! bmp cot o (EL _“aa) = 0!
=] =

b=, _.u5 MG (117)
M
e = Eibapcot o0(—a,), a=1, ..., N; (118a)
N
em=3( 3 n+M). (118b)

=1

From the general theorems of Secs. 1 and 2 it follows that
each exactly solvable multi-parameter spectral equation can
be associated with various families of exactly and quasi-ex-
actly solvable equations of the Schrédinger type. The higher
the degree of degeneracy in the system of spectral param-
eters, the richer are these families. Therefore, since we have
at our disposal a trigonometric multi-parameter spectral
equation with a sufficiently degenerate spectrum [see Eq.
{118b), and also the identity e{"’ + ... + e}’ = 0], it is natu-
ral to ask the question of what new exactly and quasi-exactly
solvable models arise from this equation. The answer is nonel
This is true because the trigonometric spectral equation with
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N = n can, by means of variable substitution, easily be re-
duced to a rational equation of the same type with
N = n + 1. The reverse transition from a rational equation
to a trigonometric one is possible only when the parameters
b, of the rational equation satisfy any of the N conditions

N
b+ M—1=—}

=1

N (119)

The fact that the trigonometric models are equivalent to
rational ones does not mean that they are not worth studying
in detail. In fact, from the trigonometric form (117), (118)
of the spectral equations for these models it follows that they
possess a series of special properties which are not character-
istic of rational models in general. For example:

1. For trigonometric models there are simultaneously

two types of analog Coulomb problem. On the one hand, the
problem of the spectrum of a trigonometric model of &
order is equivalent to the problem of the equilibrium of M
particles with unit charge in the field produced by ¥ + 1
stationary particles with charges b,, .., by and b, _,
= —W(ZJ_,b, + M —1). On the other hand, this same
problem is equivalent to the problem of the equilibrium of
infinite one-dimensional periodic lattices with unit charges
at the vertices, located in the field of N stationary lattices of
this type with particles of charges b,, b., ..., &, located at the
vertices.

2. Trigonometric models also admit two different for-
mulations in the language of spin systems. A trigonometric
model of order NV is equivalent, on the one hand, to a model of
a magnetic system based on the algebra SU(2) @ ... 8 SU(2)
(N + 1times),characterized by the “spins” — b, ..., — by
and — by, =4ZY_ b, + M~ 1). On the other hand,
this model is equivalent to a model of a magnetic system
based on the algebra SU(2)®..8SU(2) (N times),
characterized by the “spins” — b, ..., — by . Here the first
(N + 1)-vertex magnetic system is isotropic and possesses a
global SU(2) symmetry conserving both the total spin and
its z projection. The second magnetic system is anisotropic,
and the remaining global symmetry group (1) conserves
only the z projection of the total spin. We note that the aniso-
tropic magnetic system, like the isotropic system, is com-
pletely integrable, and the Bethe-ansatz equations for it co-
incide with the system (117), (118). All of what we have
said for one-dimensional problems remains valid also in the
multi-dimensional case.”>*

In conclusion, we note that the elliptic models associat-
ed with elliptic solutions of the generalized scalar triangle
equation can be studied in a similar manner.?® Tt can be
shown that these models can be systematically reduced to
the trigonometric and rational case, but again there are a
number of features peculiar to the elliptic case. For example,
these models are equivalent to Coulomb systems describing
the interaction of two-dimensional lattices with charges at
the vertices. In addition, the Hamiltonians of these models
can be rewritten in terms of the Hamiltonians of completely
anisotropic magnetic systems with no continuous global
group.

12. THE NUMBER OF QUASI-EXACTLY SOLVABLE MODELS

In Sec. 10 we derived Eq. (116), from which it follows
that there exists an infinite set of D-dimensional quasi-exact-
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ly solvable models of order D + 3. Thereisa simple explana-
tion for this fact. Let us consider the most general form of the
Riccati equation:

YA Fae®py ) FoR)yR) 4+ c @)+ ed ()
F e el 81 = I (120)

in which a(A), b(4), c¢(A), and d (1), a =1, ..., D, are
certain functions and e, & = 1, ..., D, are numerical param-
eters. We arbitrarily choose the D - 3 sets

dO), e, eB, ., ed, i=1, ..., D4+3  (121)

and require that each of these satisfy Eq. (120). Substituting
(121) into (120), we note that the resulting equations can be
interpreted as a system of D - 3 linear equations for D 4 3
unknown functions a{i), b(A),c(A),andd, (1), a=1,...,
D. By solving this system and finding these functions, we
obtain the Riccati equation with D spectral parameters hav-
ing D + 3 exact (obvious) solutions. After the substitution
y=(1/a)(¢'/@ +L(a'/a — b)), this equation becomes a
linear D-parameter spectral equation with D + 3 exact solu-
tions. According to the results of Sec. 1, this equation is
equivalent to a D-dimensional quasi-exactly solvable model
of order D + 3. We therefore have obtained even more than
we wanted. In fact, from the arbitrariness of the functions
belonging to the specified set (121), it follows that there are
not just infinitely many, but furctionally many quasi-exactly
solvable models of order D + 3. From this it follows that, in
particular, in the one-dimensional case there exist function-
ally many quasi-exactly solvable models of order 4 (Refs. 27
and 34).

Curiously, in the one-dimensional case for constructing
quasi-exactly solvable models of order 3 it is sufficient to
specify only one arbitrary function. Let us assume that the
Schrodinger equation — ¢¥" + Vi = Ev has three explicit
solutions (¢, E; ), i = 1, 2, 3. Transforming to the logarith-
mic derivative of the wave functions y; = ¢//1;, we rewrite
the equation for the three solutions in the form

y;'{"y?"’_Ez:V- 121}253
We subtract the first equation from the other two:
(i — ) 4+ e — ) e +y) + B — By =10,

(122)

i=2,3 (123)
and introduce the functions
=Y —Y, &=VYi+¥h i=23 (124)
Substituting (124) into (123), we find the relations
fmEETE oy —
from which, using (124), we obtain
pi= g [a— 2HEE) oy 9 (1262)
(126b)
Introducing the function
b= z4/2,, (127)

we rewrite (126b) as
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(Es—Eq)

t—Na+rn+ B g _E)=0 (128
from which we find
LV (F) se—n (B )
= 2(i—1) ¥
(129)

We see that the specification of a single function of t formally
solves the problem. In fact, knowing ¢, from (129) we can
find z,, and then from (127) we can reconstruct z;. Then,
after finding the functions y; from Egs. (124) and (125), we
can construct the solutions (#,, E;) of the Schrodinger
equation with the potential reconstructed using (122). The
constraints on the function of # allowing the construction of
stable quantum-mechanical models with three exactly cal-
culable states with a priori specified numbering were derived
in Ref. 45.

We conclude this section by describing a simple method
allowing every quasi-exactly solvable equation of a given or-
der to be put into correspondence with another quasi-exactly
solvable equation of the same order. The method is based on
the use of the form-invariance of the Riccati equation under
a linear-fractional substitution of the unknown function. Let
us consider a Riccati equation

¥ 4 ay® +2by + ¢ + Ed =0,

having a certain number of exact solutions. Let y,, £, be one
of these solutions. Transforming to a new function j via the
equation y = — (E — E,)/(y — y,), we obtain a new Ric-
cati equation of the form
Y +ayt+ 2y +e+Ed=0,

in which a=d, b=5b +ay,, ¢ = —E,, and d=a. If
y=y,,E=E. i=0,..,K, are exact solutions of the origi-
nal equation, then =0, E=E, j= — (E, — E)/
W —yo), E, = E,,i=1,...,, K, will be exact solutions of the
new equation. The linear quasi-exactly solvable equations
associated with the old and new Riccati equations obviously
do not reduce to each other as the result of the homogeneous
substitution of the function and the independent variable.
The question of whether or not the solutions of these equa-

tions are normalizable obviously requires special considera-
tion.

CONCLUSIONS

This concludes the exposition of our approach to the
problem of quasi-exact solvability in quantum mechanics.
Here we summarize a number of important features.

The approach is based on the interpretation of quasi-
exactly solvable Schridinger equations as exactly solvable
equations with several spectral parameters, one of which is
identified with the energy, while the others are included in
the potential. To construct nontrivial quasi-exactly solvable
models of order higher than the first it is necessary that there
bea degeneracy in the system of parameters, i.e., that a single
set of “potential” spectral parameters correspond to several
values of the “energy” parameter. The allowed values of
these parameters can be interpreted as the eigenvalues of
commuting operators with exactly calculable spectra. The
degeneracy responsible for the quasi-exact solvability is
present because of a hidden symmetry in the problem under
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which the “potential” operators are invariant, while the “en-
ergy’’ operator is not. The full set of “potential” and *“‘ener-
gy” operators can be thought of as the integrals of the motion
of some completely integrable system. In this sense, almost
all the quasi-exactly solvable models considered here are
equivalent to completely integrable models of magnetic sys-
tems based on the algebra SL(2). The Bethe-ansatz equa-
tions for these systems exactly coincide with the equations
determining the spectra of the quasi-exactly solvable sys-
tems. These equations also coincide with the equilibrium
equations for a system of Coulomb particles in an external
electrostatic field, so that the problem of the spectrum in
quasi-exactly solvable models can be posed in purely classi-
cal language. If the order of a quasi-exactly solvable model
tends to infinity, a non-exactly solvable model arises. There-
fore, the equivalence between the problems in nonrelativistic
quantum mechanics, the theory of completely integrable
quantum spin systems, and multi-particle Coulomb prob-
lems of classical physics, discussed here for the example of
quasi-exactly solvable models, is also preserved in the non-
exactly solvable case.

The construction of one-dimensional and multi-dimen-
sional quasi-exactly solvable models is equally simple in our
approach. We therefore think that a generalization of our
approach may be applicable to the case of systems with an
infinite number of degrees of freedom and, ideally, to the
case of field theory.

In this review we have only briefly touched upon other
methods of constructing exactly and quasi-exactly solvable
models. The methods which by now have reached a high
level of development are: a) the Turbiner—Shifman method,
described in the Introduction (see also Refs. 21 and 22),
which is based on the use of differential realizations of finite-
dimensional representations of Lie algebras; b) the method,
described at the end of Sec. 8, using differential realizations
of infinite-dimensional representations of Lie algebras; c)
the method, discussed at the end of Sec. 9 (see also Refs. 39
and 43), in which the construction tools are sets of commut-
ing operators—the integrals of the motion of completely in-
tegrable models of magnetic systems based on Lie algebras.
Each of these methods naturally splits into two stages. In the
first (constructive) stage a definite algorithm is stated which
allows the construction of second-order N-dimensional
spectral differential equations

{ S Puw e Z 0 (@) 5+ B (@)} 0 (2)= By (2),
A (130)

having a finite or infinite number of exact solutions in a cer-
tain class of functions. In the second (nonconstructive)
stage attempts are made to reduce Eq. (130) to exactly or
quasi-exactly solvable equations of the Schrodinger type

{VP(:I‘) 2 69:,( b (5]

dz;
i, k=1 VP (@) ¢

L)V @} v @ =E¢ @)
(131)

on N-dimensional manifolds with the metric |gg||
= ||[Pg||™" [P(x)=det||Py (x)||]. Unfortunately, not
every equation of the type (130) can be reduced to an equa-
tion of the type (131). For the substitution of ¢@(x)
={P(x)}~VYHU(x)}""*(x) into (130) to give Eq.
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(131), the function U(x) must satisfy the equations

()

Z P:h (‘T’) U (z) dzp, + 2 axh cR (:l‘} Q: (‘r)

i=1, ..., N. (132)

Obviously, the main difficulty is to solve this over-deter-
mined system, the compatibility requirement for which im-
poses quite stringent constrainis on the allowed form of the
functions P, (x), @, (x), and U(x) (see Refs. 21 and 22).

However, it is remarkable that all these difficulties can
easily be avoided by dropping the requirement that the di-
mensions of the spaces in which Egs. (130) and (131) are
formulated coincide. It is possible to develop a simple proce-
dure which allows each N-dimensional equation of the type
(130) to be put in correspondence with an (N + 1)-dimen-
sional equation of the type (131). In fact, we can write Eq.
(130) inthe (N + 1)-dimensional form, while preserving all
the solutions of the N-dimensional equation:

N P
2 Pulz, z) Ty oy
iy k=0

‘|"$1 Q: (x, ru)

i=0

+R(r xo} ¢ (2)=Ep(z). (133)

Here Py (x, xy) =Py, (x) and Q; (x, x,)=Q; (x) for all /,
k=1,..,N,R(x,x,)=R(x),and Py (x, x,) and Q; (x, x,)
are arbitrary functions of x = (x, ..., x5 ) and of the newly
introduced, extra variable x,,. Since Eq. (133) has the same
form as (130), but is formulated in (N + 1)-dimensional
space, it can be reduced to the (N + 1)-dimensional Schro-
dinger equation if a function U(x, x,) is found for which the
(N + 1)-dimensional analogs of (132) are satisfied:

5
U (z, xy) d
20 Pun (2, 20) gripanti b O e P (22 20) = Qs (=2 o),
k=0 k=0
i=0,1, ..., N (134)

In contrast to (132), the system of equations (134) can al-
ways be solved, since the components Py, (x, x,) and @,(x,
x,) are arbitrary. The solutions depend on two arbitrary
functions, for which it is convenient to choose the function
U(x, x,), which a priori ensures the normalizability of the
wave functions, and the function Py, (x, x,). In this case the
other unknown functions Py, (x, x,), i =1, ..., N, and Qy(x,
x,) are found explicitly.

Thus, we see that every equation of the type (130) can
be reduced to the Schrodinger form. We then can use any of
the second-order exactly and quasi-exactly solvable differ-
ential equations obtained by the three methods listed above
to generate exactly and quasi-exactly solvable quantum-me-
chanical models.

In conclusion, we would like to express our special
gratitude to V. G. Kadyshevskii for his interest in this study.
We also take this opportunity to thank T. I. Maglaperidze
and A. V. Turbiner for their interest and fruitful collabora-
tion, and also P. B. Vigman, N. M. Gel’fand, V. I. Man’ko,
A. A. Nersesyan, V. M. Savel’ev, L. A. Slepchenko, V. Ya.
Fainberg, E. S. Fradkin, G. A. Kharadze, and M. A. Shif-
man for useful discussions and valuable remarks.
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APPENDIX 1.EXPLICITLY TRIDIAGONALIZABLE
HAMILTONIANS AND QUASI-EXACT SOLVABILITY

In this appendix we study models with Hamiltonians of
the form

A 72 o
B=—gg+or+itu, (Al)
which possess a unique property: the squares of these Hamil-
tonians admit explicit tridiagonalization for all values of the
parameters «, /3, and . For simplicity, we shall demonstrate
this for the special case of the model { A1) with the Hamilto-
nian

a1 4 1
“EE T e T e,

(A2)
which can be interpreted as the operator of the radial Schro-
dinger equation for a two-dimensional spherically symmet-
ric anharmonic oscillator with centrifugal barrier. Let us
consider the trial function, 4,(r) =r%e~""/*, and also the
operator S=H%and sequence generated by it:

Y (r):Sﬂ'll"u (r). (A3)

We orthogonalize the terms of this sequence by the standard

Gram-Schmidt procedure. The resulting orthonormalized

functions ¢,, (#) have the form
4

On ()= 0n (5 ) 1T, (A4)

where (), (¢#) are certain n-th order polynomials. Since these

polynomials (by construction) are orthogonal with weight

e, (AS5)

they are Laguerre polynomials. The explicit form of the
functions @, (¥} is thereby determined. According to the
well-known Lanczos theorem (Ref. 40; see also Ref. 41), the
operator S in the basis (A4) has a tridiagonal form. The
nonzero matrix elements of the operator 5 are easily calcu-
lated using the familiar properties of the Laguerre polynomi-
als. The result has the form

Spn =32 [LG+ ) (,14_&)“2”4)2 n] ; (ASa)

1).

(A5b)

Spymar=—32 (2n+1—v) @n+2—w) ]/(n+ 1) (n+ £

Obviously, if v is a natural number,
n—1
v :[ ) ] 1

the matrix S, is block-diagonal. One of the blocks is finite,
so that we arrive at a quasi-exactly solvable problem of finite
order. We go from the operator S to the original operator H
by discarding the extraneous solutions which do not satisfy
the condition that A be Hermitian. The details of the calcu-
lations and also the explicit form of the solutions obtained
are given in Ref. 6.

(A6)

APPENDIX 2. QUASI-EXACTLY SOLVABLE MODELS OF
FINITE ORDER

For the explicit construction of quasi-exactly solvable
models of order K with the potentials described by Egs. (53)
and (54) when the condition {39) is not satisfied, it is neces-
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sary that for the K solutions {£*}, (k=1,..,K)
the values of the symmetric polynomials s, (&%)
=3" (£)" of order n =1, ..., N — 3 entering into the
potential be made independent of , and the entire & depend-
ence be concentrated in the polynomial sy _, defining the
energy of the sysiem. To do this we multiply Eq. (35) by
EMIYN_ | (& —a,), sum over i, and use the expression
M n

! a1 !
2 ’é?” (Ei_gfi)_.l: - P Sp— T Z Sp-18-
i, h=1 =0

As a result, we obtain a system of equations expressing s,
with n>N — 2 in terms of 5, with a<N — 2. A different
system of conditions on the polynomials s, can be obtained
by noting thats, with » > M are expressed in terms of s, with
n<M. Assuming that M > N — 2 and combining these two
systems, we arrive at N — 2 algebraic equations of the form

K, K.-1 ;
SN!_2 + .flile_g +---‘|‘f;(ii:0c i=1, ..., N-2,

where K, = [(M <+ )/(N — 2)]. The coefficients in these
equations depend explicitly on the 3NV — 5 quantities a, ...,
Ay _5,b, .., by ands, ..., sy _ ;. For each equation to have
at least K different solutions for a fixed set of these quanti-
ties, it is necessary that the inequality [(M + i)/
(N — 2)] =K be satisfied for all i = 1, ..., N — 2. This leads
to a restriction on M: M>K(N-—-2)—1. If M
= K(N — 2) — 1, the degree of all the equations is the same
and equal to K. For all the ¥ — 2 equations to be compatible,
it is necessary to require that the coefficients of identical
powers of 5y _, coincide. This is possible when K (N — 3)
conditions are imposed on the 3N — 5 quantities. From this
we find the limit K<3 + [4/(N — 3)] on the order of the
quasi-exactly solvable model.

As an example, let us construct a second-order (K = 2)
quasi-exactly solvable model characterized by a degenerate
function (49) of theform B(A) =ad ' —f— i — A% In
this case N = 4, so that M = 3 and, therefore, we obtain a
system of two quadratic equations in s,. The coefficients in
these equations depend on a, 8, ¥, and s5,. We have at our
disposal a sufficient number of parameters; therefore, for
definiteness we can set 5, = 0, reducing this system to the
form

20 P+t =0
oy BT, 3 18
ss+-5$|:2l5v_v“—7a—i] gy (P —Blle+0)—=0.

Equating the coefficients of identical powers of s,, we find
that @ = (8/27)y° — 2/3 and B = — (2/3)7". The poten-
tial of the corresponding model has the form

2
v (:r)=43:1“—|—8y.r3——g~ vaxu_q(:%s_ Y3+%) e

16 68\, (46 . ALy AL o AT\ 4
—(gr+zr)et(mr—5) (Tr—v)e
and the solutions are given by
B2 B0 ;s
B, =—of V4o WLV

Using the clectrostatic analog, it is easy to show that the
levels found in this way describe the first and second excited
states. It is also easy to verify that this model does not reduce
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to the models obtained using the algebraic approach of Ref.
19.
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