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A relativistic quark model with confinement is proposed on the basis of certain assumptions about
hadronization and confinement. Hadrons are regarded as collective variables that arise as a result
of quark—gluon interactions. The confinement mechanism is based on averaging intermediate
quark states over the nontrivial QCD vacuum. Itis shown that at small momenta the model
reproduces the low-energy relations of chiral theory. Numerous effects of the low-energy physics
oflight mesons are treated in the framework of the model. Thus, calculations are made of the
widths of strong, weak, and electromagnetic decays of mesons, of form factors and slope
parameters, etc. The results obtained are in good agreement with the experimental data.

INTRODUCTION

Considerable efforts are currently being made in order
to obtain a description of low-energy hadron physics from
the fundamental ideas of QCD (see, for example, the review
of Ref. 1). The main difficulty is, of course, that QCD per-
turbation theory, based on asymptotic freedom, is not valid
at large distances or at low energies. No answers have yet
been found to fundamental problems such as hadronization,
i.e., the formation of colorless hadrons as a result of
quark—gluon interactions, and confinement, i.e., the absence
of quarks and gluons in the observed hadron spectrum.

This situation has led to the development of various
approaches and models that, on the one hand, are based on
ideas taken from QCD, while, on the other, they use certain
assumptions in order to calculate the properties of hadronic
interactions at low energies.

It appears that the closest connection with QCD is cur-
rently achieved by the QCD sum-rule method,* which is
based on the duality principle. This method makes it possible
to relate chromodynamic quantities to hadronic properties.
Nonperturbative effects are determined by the nontrivial
vacuum structure of QCD and are taken into account phe-
nomenologically by means of quark and gluon condensates.
The agreement with experiment is impressive. However, the
problem of confinement is in no way attacked.

Existing bag models,” based on a quite definite picture
of confinement, have made it possible to describe a number
of static properties of hadrons (masses, magnetic moments,
widths of radiative transitions, etc.). The systematic de-
scription of hadronic interactions in these approaches is a
very difficult task.

Great popularity has been achieved by approaches
that are dubbed QCD bosonization and are regarded as the
low-energy limit of QCD, and in which a particular under-
standing of the mechanism of formation of hadronic states in
QCD is formulated. The aim of such approaches is to obtain
phenomenological chiral Lagrangians that describe low-en-
ergy hadronic physics.

In the studies of Refs. 4-7, hadron fields appear as the
phases of chiral transformations, and the constants which
appear in front of the corresponding terms of the nonlinear
chiral Lagrangian can, in principle, be related to chromo-
dynamic quantities { Agcp, values of vacuum condensates,
etc.). The hadrons are described by local fields, and their
internal quark structure is in no way manifested.
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More heuristic approaches, based on the ideas of
Nambu and Jona-Lasinio,® proceed from the idea of obtain-
ing chiral dynamics from effective four-fermion quark La-
grangians. In this approach, one can trace the formation of
hadrons as bound states in quark systems. Moreover, the
spontaneous breaking of chiral symmetry finds here a natu-
ral dynamical explanation. Such an approach leads to phe-
nomenological meson Lagrangians in which the meson ver-
tices are determined by quark loops. Allowance for and
parametrization of only the principal divergences of these
loops and also of the terms quadratic in the meson momenta
leads to a good description of the experimental data at low
energies for the basic properties of the mesons. ' In the cited
studies, the problem of quark confinement is not discussed,
and, as a consequence, a possibility does not exist for the
description of more subtle effects associated with manifesta-
tion of the quark structure of hadrons.

It is now widely accepted that at low energies the com-
plicated structure of the QCD vacuum plays an important
part. Very popular and well known in this respect are instan-
ton solutions.'*"” By means of them it is possible to explain
some features of the low-energy physics'*'* and to obtain a
foundation of the bag model.?® Instanton contributions ex-
plained the values of the gluon and quark condensates that
are used in the method of QCD sum rules.”? However, the
instanton vacuum does not ensure quark confinement.

Vacuum self-dual gluon fields, which lead to confine-
ment of all colored objects, are also known. We have here
fields with constant field strengths'*'® and stochastic gluon
fields.'® The investigation of the properties of colorless ob-
jects in such a vacuum is an extremely difficult problem.
Moreover, methods have not yet been developed that permit
the use, for example, of the propagators of quarks in external
confining fields'” in low-energy phenomenology.

Thus, we see that basic ideas of quark-hadron physics
such as confinement, hadronization, and low-energy pheno-
menology have not yet been unified into a theory of hadronic
interactions at low energies. In this paper, we shall formulate
amodel in which an attempt is made to relate these ideas. We
propose a relativistic quark model with phenomenological
allowance for confinement. This model makes it possible to
describe the quark structure of hadrons (both mesons and
baryons) at low energies from a unified point of view. The
model, which we shall call the Quark Confinement Model
(QCM), is based on the following physical picture. It is as-
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sumed that there exist vacuum gluon configurations that en-
sure confinement of colored objects. Hadrons, as colorless
states, appear in the form of collective excitations in
quark—gluon interactions. In this point, we follow the ideas
of Ref. 10. The hadron-hadron interactions are described by
means of corresponding quark diagrams, averaged over the
gluon vacuum fields. The hypothesis of quark confinement
means that such averaging ensures the absence of constitu-
ent quarks as physical particles in the observable hadron
spectrum.

At small momentum transfers, the QCM reproduces
the low-energy theorems of current algebra but, in contrast
to phenomenological chiral Lagrangians, enables one to take
into account the quark structure of the hadron-hadron ver-
tices. Thus, the QCM permits a description of not only the
decay constants of the hadrons but also more subtle proper-
ties of them—slope parameters, form factors, etc.

The paper is arranged as follows. Section 1 describes the
scheme of the transition to colorless collective variables in
the generating functional of QCD. The conditions for the
appearance of mesonic states in colorless quark systems are
discussed. An equivalent formulation of the proposed ha-
dronization scheme that can be readily generalized to the
case of many-quark states is proposed.

In Sec. 2 we formulate requirements on the procedure
for the averaging over the vacuum gluon configurations of
the quark diagrams that describe the hadron—hadron inter-
actions. The most important requirements are: first, the con-
finement postulate, which reduces to the requirement that
there be no cuts corresponding to production of quarks in
the matrix elements of physical processes, and, second, the
requirement of ultraviolet convergence of the Feynman inte-
grals. The connection between the quark confinement postu-
late and the hypothesis of quark-hadron duality is dis-
cussed.

In Sec. 3 we formulate the rules for calculation of the
higher approximations for the matrix elements of physical
processes. These rules are based on the 1/N, expansion and
lead to the appearance in the matrix elements of cuts asso-
ciated with allowance for intermediate hadronic states.

In Sec. 4 we discuss questions related to the fulfillment
of gauge and chiral invariance in the QCM, and we derive an
anomalous Ward identity. The parameters of the QCM are
determined by means of a fit to the main decays of the light
mesons. The connection between the results of the model
and the well-known low-energy relations (Goldberger—
Treiman relation, Adler anomaly and PCAC, universality of
vector mesons, etc.) is shown. The breaking of the group
8U, is discussed, and the main decays of strange mesons are
calculated.

In Sec. 5 we calculate the slope parameters in Dalitz
decays (P—y! *1~, V—PI "] ), the pion form factorin the
Euclidean and pseudo-Fuclidean domains, the ratio of the
axial and vector form factors in the decay 7~ — evy, the elec-
tromagnetic radii of kaons, and the parameters of K7, decay.
The results obtained are in agreement with the experimental
data. The part played by the quark structure of the hadrons
in the calculation of these quantities is shown.

In Sec. 6 we consider scalar 0"+ mesons and discuss
their role in low-energy meson physics. Using the Adler con-
dition for the w7 — 77 and 7y -7y amplitudes, we deter-
mine the parameters that characterize the scalar mesons as
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two-quark systems. We calculate the s-wave oo scattering
lengths, the pion polarizability, and the strong and electro-
magnetic decays of scalar mesons. We compare the results
obtained with existing experimental data and with other ap-
proaches.

Section 7 is devoted to the study of nonleptonic decays
of kaons. As effective Hamiltonians of the weak interactions
that describe AS = 1 transitions, we use the Hamiltonians
obtained in the standard Weinberg-Salam model with
allowance for QCD corrections.”'

We calculate the widths of the decays K — 7w, yy. We
make a comparison with experiment and with the results of
other approaches.

1.HADRONIZATION AND HYPOTHESIS ABOUT THE QCD
VACUUM

As we said in the Introduction, we shall understand the
mechanism of hadronization as a transition to collective
variables in the generating functional of QCD. Following
Refs. 8 and 9, we demonstrate the procedure of hadroniza-
tion by the example of the transition from quark-gluon vari-
ables to hadron variables in the vacuum QCD functional.

The QCD functional integral is expressed in the stan-
dard form

P L E T TP

where A; [ B] is the corresponding Faddeev—Popov determi-
nant associated with the choice of the Lorentz gauge (8*
B, =0):

1t

S[B]= S dr ¥ qcp (),

1 —.a

Zoco {I)Zgh'Fﬁv*Pq(la‘f‘B)(lr (2)
Fuv'_: aqu_avBu -}'[Bv: B“]‘,
B, = Biyht?,  (r (t987) = 28",

where 7, (@ = 1,...,N2 — 1) are the generators of the group
SU(N.). B, are the gluon fields, and g(x) = g#(x) are the
quark fields.

The Lagrangian (2) is invariant with respect to the
transformations
B, — B =0B,0™ + (6,0) 07,

g— q®=u0yq.

In accordance with the hypothesis of a nontrivial struc-
ture of the vacuum, we decompose the gluon field B into
vacuum configurations B, .. (x, ¢,,. ) characterized by the
set of parameters {o}, and quantum fluctuations 5# (x). A
detailed decomposition was made in the study of Ref. 14, and
is as follows. We represent the field B, (x)in the form

B (x) = (BYac (2, 0yqo) +b" (2))™,

For the field 4 (x), we choose the Lorentz gauge in the
external field B¥ . (x,0,,. ):

D, [Bygol B (x) =0,

where D, [ B, ] is the covariant derivative. We insert unity

in the functional integral®:
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S 8b S 80 { d0yse8 (B—(Byoo+8)°) 6
X(Dy [Bygol b*) D [B) = 1.

Here, ®[B] = ®[B”] is determined by the given equation.
After simple manipulations, we obtain

Zoeo = { 8¢ § 87 { dov,,
xexp {i § dzq (10 +Beo) g} W, (3)
W (71— { 858 (D* [Bygel b) © [Bygy -+t
xexp {i { dr—g 0 Py (Brao+0) +1 § dabirt}, (&)

where J* = g7 1° ¢ is the colored quark current. Recalling
the definition of the connected Green’s function of a gluon in
the external field B

vac?

1.

St In W [J]
ok v [

z |B c):
noe 8751 (@) .- B, (20)

5

J=0

we obtain

W [J]=exp {2 v (anm e

Ju (yn)Gul . (y! "‘yn, Bvac)' (5)

Substituting (5) in (3), we finally obtain
Zocp = Sﬁqg&jgd(’vac
xexp {i { dzq(id+Byae) ¢ + 2 La}
- Y (6)

1 o =
L"=J'l_! S dyj e S d‘yu ']l-l} (yl) et J“:(yn)

X Gyl (Ur < Ua | Brac)- )

It should be emphasized that the representation (6) is
completely equivalent to the original expression (1). To
make further advance, we must know the structure of the
vacuum do,,. and B, (x, O, ), and also the connected
gluon Green’s functions G 1 i ! (x,B,,. ). Since all these prob-
lems are as yet unsolved, we make a number of assumptions
about the structure of the QCD vacuum.These assumptions
will provide the basis of the QCM.

We consider the term L, bilinear in the colored quark
currents J;, in (6); it is responsible for the formation of
mesons. The dynamics of meson formation is determined by
the behavior of the two-point gluon Green’s function G 2%

Fapty
(x,,%,|B,,. ). We shall assume that
G;]i(l?z {"rh Lo ! Bvaﬂ) = T igilﬂlaaﬂlaza ('T! o xz) GO' (7)

This assumption is the basis of the Nambu-Jona-Lasinio
model® and has been used in a number of studies.’' We
substitute the representation (7) in L, and go over to color-
less quark currents by means of a Fierz transformation. We
obtain

e { de sy @7, ). (8)

Here
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I75 (@) = q (@) Tjhsg (2),
cp=1ctg =Gy ¢y = ¢, = — 112G,
§p = 65 = 1, =8, = -1,

U, =Ly, iy, vy forJ =58, V,P, 4: A, are the Gell-Mann
matrices of the group SU(3).
‘We use the representation

exp {i % S dx g2 J? (J.)}
—_ S SM exp {?-2— S dx M2 (x) | ig S de M (2) J (1‘)} 2

(€&))]

The next step is to interpret the field M(x) as a colorless
hadronic state with quantum numbers of the quark current
J(x). Thus, the hypothesis (7) leads to the appearance of the
lowest nonets of pseudoscalar, vector, scalar, and axial-vec-
tor mesons, since only such quark currents are present in the
representation (8).

Before we proceed further, we comment on the assump-
tion (7). This ansatz should be regarded as a first approxi-
mation in the method of collective variables. We shall show
how the next step can be made in the generalization of the
assumption (7). We turn to L, in (6):

L= § do, { de, s 2) G238 (21s 22| Brao) T2 ().
(10)

We assume for simplicity that
Byac)- (11)

We substitute (11) in (10) and go over to colorless quark
currents. Making the substitution x, =x- /2, x,
= x — p/2, we obtain

LZ:% S d.L’S dyz CJ'I-"J‘ (r’ y)G(.r, y !Bvac)JJ](I’ '_y)=
Jf

(12)

G(lillr;laz (‘Th Ty l Bvac) = ignluzéﬂlﬂzG (Iiv o 1

where
= g {z + y/2) Thyg (x — y/2).

We introduce an orthonormal system of functions
{Rnl(y'Bvac)} (nu 120! 1: 21 "')' {13)

Here, the number / determines the orbital angular momen-
tum, and # is the radial quantum number. For example, this
system could take the form

Jj (.‘L‘, Tj)

Ry (U | Byae) =P (32 | Byac) Tlfu...u! (1),

where 7, , (v) is a tensor completely symmetric with re-

spect to the interchange p, <, and for which

Tfmun...ut (n)=0.

Strictly speaking, this system of functions (13) must be
found by solving equations of Bethe—Salpeter or Schwinger—
Dyson type for the bound states in the quark-antiquark sys-
tem (see, for example, Ref. 23).

If we believe that the transition to the collective vari-
ables in the functional (6) is a transition to physical ha-
dronic states, then the system (13) must satisfy conditions
of the form
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§ dyRut (v 1 Broo) G (@ 9) | Boao) Buowr (0 1 Brao)
= 6nn’6il' {_)!- (14)
In this case, introducing the expansion
J(z, y)= 2 Toi () Bry (3 ] Boag)
T (@)= { dzJ (2, —2) Rui (2] Byao) 6 (=, 7| Byao)

and substituting it in (12), we obtain

:212 2 (—=)es S dz J5} (2) J7} (x). (16)

Jf ni

Thus, the currents J {x) can describe mesons with all me-

sonic quantum numbers (arbitrary spin and all possible ra-
dial excitations).

We turn to our main hypothesis, i.e., to the representa-
tions (7) and (9). We substitute them in (6) and omit all
higher terms L, (n3>3), and we obtain

2@y = dovae { 87 { 87 EI oM gexp| —4 % 8, M3 |
¥
xexp {i { daqlid+ Bupot M (@)g).  (17)

Here

M (z)= % §sM 1 (x) Trhye
Integrating over the quark fields, we obtain

2@ =[] 805pexp {— § dx 3 6,013,

Jf Jf

pe S do .. exp {——; % S iy o s g dx,

AT [M (20) S (24, 25| Boge) .-« M (x,) S (20, 24 | Bvac)]} ,

(18)

where

8 (2, Y| Byag) = (10 +Byae (1)) 8 (z— ).

Our next assumption is that the expression (18) can be
written in the form

Z& :S Hw”e\p{_—
# exp {—Z 1: S dry ...

Xt [M (x)) 8 (zy, %5 | Byae) - - -

S dx 6, M ”}

!

S dx, S A0yqe

M (x,) 8 (xq, x| Bvac)]} .
(19)

This assumption means that at low energies the couplings
between the quark loops through the vacuum gluon fields
can be ignored. Averaging over the vacuum configurations
do,,. in (19) must lead to quark confinement. Assumptions
about the measure do,,. will be made in the next section.
The further program consists of separating the free La-
grangian describing ficlds M, with masses m5 and the La-
grangian of the interaction of these fields in the representa-
tion (19). This program is carried out in complete analogy
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with Refs. 8-11. In this way spontaneous breaking of the
chiral symmetry occurs, the constituent quark acquires
mass, and a Goldstone particle appears in the pseudoscalar
channel. In this paper, we shall not dwell in detail on these
questions, but merely show how the Lagrangian describing
the bosonic fields M, with masses m} arises in the represen-
tation (19).

Inthe sum (19), we separate the terms that are diagonal
in the mesonic variables (for simplicity, we shall omit the
flavor index f):

_%S dx, S dzy D) 6, M, (x) [6(3«"1_%)
7

-+ (gf.gz I, (xi—xz)] My (25)

=_17§ 8, § dp 1, () [ 1+ g 10 (9] B (1),

where
Iy (2y—x,) =1 (2m)2 8, S d0yaotr (D78 (24 @5 | Byye) T
X 8 (x5 Ty | Byae)ls
i, (p9) = { deetri, (2).

(20)
We represent II, (p?) in the form
I, (p%) =115 (p?) + 1L, (m3) + 115 (m3) (p2— m3)
and require fulfillment of the condition
-fagte (2 )z 2, (m¥)=0. (21)

In principle, Eq. (21) gives a connection between the mass
spectrum m? of the mesons, the expansion coefficients of the
total gluon Green’s function (7) at large distances, and the
universal confinement functions that arise on averaging over
the measure do . of the vacuum gluon field.
With allowance for Eq. (21), we go over in the repre-
sentation (19) to the normalization
M (z) = M, (3) [ — o0 T (m3) |

(2m)*

1/2

We have
ch)n == S H SM;
xexp {5 § dz 3} 8,M, (=) (0 —m3) M, ()}
J
X exp {— E

e M (2,) S (24, 25| Byye) -

ro§n

— S diy won g dz,, S d0yac

M () 8 (&ny 4| Byac)l} +
(22)
where

Z TzM 5 (z)
Ne Tir omny
J ]/ (231 0z (m%)
The prime on the sum in (22) means that ﬁffg must be sub-
stituted in the quadratic terms diagonal in M.
The representation (22) does not contain in explicit

M (2) =
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form G, which determines the behavior of the gluon propa-
gator near p*> = 0.

The generating functional Z §;, in (22), which deter-
mines the interactions of the mesons with each other
through the quark loops, is the basis of our model. However,
in practical work it is more convenient to use a different
representation, which is completely equivalent to (22). We
shall show that the functional Z 2y, in (22) can be rewritten
in the form

7 = S T[ 64, S 8q S 558 0 yae
J
xcexp {4 3\ 8, { dz a1, () (O —mi) M, (@)
J

+i { deg () (0 Byac) ()
+ 3 it { 42 M, @ 7@ Tog ()} (23)
J

provided that the renormalization constant M, of the meson
wave function is zero.

Tothis end, we integrate (23) over the quark fields with
the same assumptions about the action of the measure:

za = ] 6Myexp {5 { dz 3 8,01, (O — mis)aria))
J J

',(e_\;p{-——-zi::—gdxi... Sd.‘rn g d(}",a{.

n

X e [M (2) 8 (31, 2 | Byac) -+« M (20) S (s 21| Byac)l} .

(24)
Here,
M (2) =2 g Ty M ; (2).
J
Similarly, in (24) we separate the quadratic terms diag-
onal in M,:

i

= § dp 35 (p) (02— m3— oy T, (p%) 31, (p)
= { o 31, (p) (02— m3) 31, (p) 75"
— 5§ ApM 5 (p) ko, TIF® (%) 31, (),

where
hoy =N, gis/(2m)2;
my =miy -+ hos XL, (m3);
Z3* =1 —ha, 005 (m3).
Making in (24) the substitution M, — Z }>M, and introduc-

ing the renormalized constant b, = Z,h,,, we find that (24)
is identical to the representation (22) if
oy 1

hy=Z;hy= & = ——
L —hoyIl}y (m%) [—105 (m3)]

The last equation is possible as %,; - w0, i.e., for

1

£ =14 h, 11} (m3) =0, (25)
1—ho 105 (m3%)

Z;=

and this is the condition of compositeness of Ref. 24. Thus,
the representation (23) with the condition (25) is complete-
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ly equivalent to (22) and is the basis of our model.

Baryons and other many-quark states can be intro-
duced similarly. These states, described by the method of
collective variables, must arise from the terms L , with n33.
By means of Fierz transformations, we can separate in L, a
product of colorless n-quark states, which are then identified
with the corresponding hadron. Technically, the procedure
is the same as when mesons are introduced as two-quark
states. However, this program has not yet been realized,
since the n-point Green’s functions of confined gluons are
not known. Therefore, in formulating our model we use an
idea that follows from the equivalence of the representations
(22) and (23). We shall proceed from the mass spectrum
and quantum numbers of the actually existing hadrons and
make a natural assumption concerning their quark composi-
tion. It is then possible to write down a Lagrangian for the
interaction of a hadron with quarks, and the coupling con-
stant is determined from the compositeness condition. Such
an approach permits the description of all possible hadronic
interactions.

2. MODEL OF CONFINED QUARKS

In this section we shall formulate the model of confined
quarks (Quark Confinement Model, QCM), in the frame-
work of which we shall describe the physics of low-energy
hadrons. The model is based on the following assumptions.

1. The spectrum of hadrons with masses m, and quan-
tum numbers J" is chosen in accordance with the experi-
mental data. It appears to us that in the framework of the
assumption (7) the complete spectrum of hadrons cannot be
found theoretically, although, in principle, relations
between different meson masses can be established.'' To cal-
culate the complete spectrum, it is necessary to know the
gluon Green’s function (11) and solve equations of Bethe—
Salpeter type.

2. The quark composition of the hadrons is postulated.
The Lagrangian of the interaction of the hadrons with the
quarks is constructed on the basis of the principle that in the
nonrelativistic limit the quarks that form a hadron must be
in the state with the lowest orbital angular momentum. This
assumption follows directly from (7) and, to all appear-
ances, is valid only for the lowest nonets of hadrons (with
masses not greater than 1 GeV). The assumption (7) is not
sufficient for the description of hadrons with higher spins
and radial excitations, or for many-quark states.

3. Theinteraction between the hadrons is described by a
generating functional of the form (23), in which the hadron-
—quark coupling constants are determined from the compo-
siteness condition (25).

4. The action of the measure do,., which realizes the
averaging over the QCD vacuum, ensures confinement of
the quarks and convergence of all quark loops.

We consider successively the assumptions of the model.

Suppose that there is a set of hadronic fields A with
masses m,, and quantum numbers J°. We consider succes-
sively the mesons, baryens, and many-quark states.

Mesons (two-quark states)

We construct colorless two-quark currents with meson
quantum numbers

Jo@) =g () T,q (2), (26)
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where the matrix I', ensures the necessary quantum
numbers. In general, there may be several such matrices. In
particular, the current g(x)I", (d,d, )g(x) has the same
quantum numbers as (26). We write the coupling of the
meson field M, which has mass m,, to the quark currents in
the form

L= g My (&) X e (2)- (27)

The sum in (27) is over all two-quark currents that have the
necessary quantum numbers. The coefficients ¢; satisfy the
condition £,¢; = 1and are otherwise arbitrary. To construct
the Lagrangian (27), we shall proceed from the principle
that only currents with the lowest derivatives contribute to
%" ,. This means that mesons consist of quarks having the
lowest orbital angular momentum. Such a state is unique for
the majority of the mesons in which we are interested.

Baryons (three-quark states)

The three-quark currents that have the baryon quan-
tum numbers J° have the form

J 5 (@) = B {0) ¢ (1) o () €™, (28)

where R, is a product of ¥ matrices, derivatives, and flavor
matrices A, that act on the quark fields and determine the
necessary baryon quantum numbers. The coupling of the
baryonic field B, which has mass mp, to the quark fields is
described by the Lagrangian

£p (@)= gpBsY e, Ri" 0 + e, (29)

where g, is the coupling constant, and the sum is taken over
all possible three-quark currents (29) that have the neces-
sary quantum numbers. As in the case of mesons, the explicit
form of the Lagrangian (29) must be determined by the
three-point gluon Green's function G775 (xxX4| B, )
(6). Since we do not know this function, we shall, as in the
case of mesons, proceed from the principle of the lowest or-
der of the derivatives in the Lagrangian (29).

Many-quark states are constructed similarly. The main
difficulty here is that there are many ways in which many-
quark states with the necessary quantum numbers can be
formed. Therefore, we shall not give here any specific ex-
pressions.

The interaction between the hadrons is described by a
generating functional completely analogous to (23).

For the calculations, we shall in what follows use the .§
matrix

S:S do,,. T exp {i S d.r[Z Ly (2)+ D) £ (I)]}. (30)
7 B

Here, the time ordering is understood as the ordinary Wick
time ordering for the hadronic and quark fields, and the pro-
pagator of the quark field has the form

02 0 (&) = Bype (1B Brae ()18 (2 —2)  (31)

and after the transition in (30) to normal ordering the quark
fields must be set equal to zero. The measure do,,. acts in
exactly the same way as in (22). In what follows we shall use

this representation for the S matrix (30).
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We turn to the discussion of the confinement hypothesis.
This hypothesis concerns the definition of the action do,,. of
the gluon vacuum field B,,. on the quark fields. This action
determines both the mechanism of quark confinement and
the dynamics of hadronic interactions at low energies, but at
the present time we know least of all about it from the point
of view of exact results of theory. Qur confinement hypothe-
sis is that quarks in the confinement region do not have a
definite value of the mass but are transformed into certain
quasiparticles that carry quark quantum numbers but do not
exist as ordinary particles. Our ansatz is that in the func-
tional integral (22) the integration of the quark loops over
do,,. can be replaced by the simple integral

vac

{ doguetr [M (2) S (21, 24 | Byge)- - -M (24) S

X (Tn, Ty | Bvac)]
— S do, tr [M (27) S, {3y — z0). « M (2,) S, (@n — 2],
(32)

where

pip(xp—x3)

(33)

dip
Sulxi =7y S (2m)*i Afl‘—F:
The variable v is dimensionless and varies in the range
— ® <V < co. The parameter A, which has the dimensions
of mass, depends on the quark flavor and characterizes the
size of the region of confinement of the quarks with flavor f.
One can also say that A, has the significance of the effective
mass of the constituent quark g,.

Thus, what the confinement ansatz (32) means is that
we go over from the functional integral over the vacuum
gluon fields in (19) or (24) to the single-parameter integral
(32), which effectively takes into account the action of the
gluon vacuum on the quark fields.

In the subsequent determination of the measure do,, we
wish to solve two problems: first, to ensure quark confine-
ment, i.e., to guarantee the absence of singularities in the
elements of the S matrix associated with the production of
quark pairs; second, to achieve ultraviolet convergence of all
the integrals that determine all elements of the § matrix.
This will enable us to limit the number of independent pa-
rameters that occur in the model. The determination of the
action of the measure do, consists of two parts: the deter-
mination of the algebraic nature of the action of the measure
in the color space and the determination of its analytic struc-
ture.

Algebraic structure of the measure

After the transition to normal ordering in (30), the §
matrix is, with respect to the quark variables, a collection of
closed colorless quark cycles for mesons, and of more com-
plicated structures in the case of baryons and many-quark
states, to which the hadronic fields of the mesons and bar-
yons are joined. Our first assumption is that all these color-
less cycles are averaged over the measure do,, independent-
ly, as we discussed in the derivation of (19) from (18), and

3
do = ][ dot. | doi=1.
a=1

G. V. Efimov and M. A. Ivanov 484



FIG. 1. Quark loop that describes the meson—meson interaction (a) and
quark diagram that describes the meson-baryon interaction (b).

The action of the measure do, in the quark loops that arise
only in the meson-meson interactions (Fig. 1a) is written as

S davar ir [M (ri)f"‘”“&' (x4, 2y IBva(‘)
P f” (J'n) Iq“ﬂls (-i'm 171 I Bvat')] -
- 3 S do, te [M (2,) Sy (2y—2p) ... M (2,)8, (z, — )]

(34)

We define the amplitudes with the participation of a baryon
and mesons (Fig. 1b) as

. R ’ 3
S o, e80T g (21, 3 | Byge) gt (24, w9 | Byye)
3
S (s, | Byae) e > 6 [] §%P (ay, 1),
=1

(35)

where

S(k) (xl, nrg) = S dy]_ L S dyh S douSrJ (‘Il - yl)ﬁf (yl)

X8, Wy — ¥ - M (y)S, (yn — x3)- (36)

In the diagrams for more complicated processes with the
participation of baryons and many-quark states we shall fol-
low the rule that every line with given color is associated
with the function (36).

Analytic structure of the measure

The confinement ansatz consists in the determination
of the analytic structure of the measure do,, i.e., in the defin-
ition of the integral

{220 =6 () = a(—20) + b (— ). (37)
We shall call the function G(z) the confinement function. It
is assumed that G (z) satisfies the following conditions:

1. G(z) is universal, i.e., it does not depend on the color
and flavor [at least for the flavor group SU(3)]. In other
words, the function G(z) is the same for all quark structures
determining the interaction of mesons, baryons, and other
many-quark hadrons.

2. G(z) is an entire function, analytic in the plane of the
complex variable z. This condition ensures quark confine-
ment and unitarity of the .S matrix in the hadronic sector of
the state space.

3. G(z) decreases faster than any polynomial in the Eu-
clidean domain, i.e.,

Jim (—=3Y | G(z) | =0
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for any N> 0. This condition ensures convergence of all
quark diagrams.

4. The explicit form of the function G(z) cannot yet be
found from any general arguments. Therefore, the choice of
the confinement function also belongs to the ansatz of the
model. However, as calculations showed, for satisfactory de-
scription of low-energy processes with the participation of
mesons and baryons it is the integrated properties of the
function G'(z) that are basically important. The series of cal-
culations made in the study of Ref. 25 used the function

G (z) = exp (a + bz + 2%). (38)

Below, we shall discuss other possible choices of the function
G(z).

5. In the calculation of the elements of the S matrix, all
the calculations must be made in the Euclidean metric, with
a subsequent transition to the physical domain of the mo-
mentum variables by analytic continuation of the elements
of the § matrix with respect to the invariant momentum vari-
ables.

The functions corresponding to the quark loops calcu-
lated in accordance with the rule (32) with a confinement
function G(z) that satisfies the conditions listed above are
entire analytic functions in the external momentum vari-
ables. In other words, the quark loops do not contain singu-
larities associated with the production of quark pairs. The §
matrix (30), constructed in accordance with all the rules
listed above, belongs to the class of theories with nonlocal
interaction investigated in the book of Ref. 26. It is unitary
and macrocausal in the hadronic sector in each order of the
expansion in powers of the interaction Lagrangian.

Thus, the compositeness condition and the confinement
ansatz have the consequence that in a system of hadrons and
quarks described by Lagrangians of the form (27) and (29)
only the hadronic degrees of freedom are physically observ-
able, and the quarks appear as auxiliary virtual particles that
determine the hadronic interactions and thereby describe
the internal structure of the hadrons. From the point of view
of quark-hadron duality, we are in the hadronic sector, and
the quarks that occur in the Lagrangians (27) and (29) have
the meaning of constituent virtual particles that are absent as
observable objects in the space of the physical states.

3. AMPLITUDES OF PHYSICAL PROCESSES IN THE QCM

The representation (30) gives the § matrix which de-
scribes all possible hadron-interaction processes. When the
§ matrix is expanded in powers of the interaction Lagran-
gians, matrix elements representing quark loops coupled by
hadronic lines arise.

The hadron—quark coupling constants must be calcu-
lated from the compositeness condition (25), which, in es-
sence, is a condition of strong coupling. Thus, our theory
describes strong interactions, and therefore perturbation
theory in the coupling constant is not valid in calculations.
How shall we make the calculations? We first recall that the
derivation of the compositeness condition® presupposes the
validity of successive subsummations of classes of diagrams
of chain type for the hadron Green’s functions and of the
matrix elements of hadronic processes in a perturbation-the-
ory series. Therefore, our calculations will also be based on
approximations associated with the summation of definite
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classes of diagrams for the hadron Green’s functions. We
shall make these approximations in the framework of the so-
called 1/N, expansion. In the representation of the § matrix
as a sum of Feynman diagrams, the quarks appear only in the
form of closed loops. It follows from the compositeness con-
dition (25) that the effective strong coupling constant is

hy = 4N oghl (4ev): = 3g3/ (2%, 6323

where N, = 3 is the number of colors.
Therefore, the perturbation series can be represented as
an expansion in two parameters: 7, and

gc = 1IN, = 1/3. (40)

Qur approximations will be associated with the expansion
with respect to the parameter £,. Thus, we shall estimate the
theoretical error of the model at around 20-30%.

We shall consider in detail the first two approxima-
tions.

First approximation

We shall call this the single-loop approximation. We
consider the Green’s function of a hadron (to be definite, we
shall speak only of scalar or pseudoscalar mesons). In the
zeroth approximation in £, the Green’s function is deter-
mined solely by single-loop quark diagrams of chain form,
shown in Fig. 2a, and can be expressed with allowance for
mass renormalization in the form

1 zZ
mt— by (11 (p2)— 1L (m®)] =

D(p?) =

p2rm2

(41)
1

L= —n——.
14— ho IT* (m?)

The meson mass operator ﬁ(pz) in (41) corresponds to a
single-loop quark diagram. The renormalized coupling con-
stant is determined by the relation

h = Zh,,

whence
Z =1 hIl’ (m?)
and from the compositeness condition (25) we have

ho=1/[— 11" (m)]. (42)

For the Green’s function we obtain

O+ OO+ OO+ ;
A KB AR,

FIG. 2. First (single-loop) approximation in 1/N,: a) Green's function;
b) amplitudes of physical processes.
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. Zhy 2
D (p*) = ~ ~ =hD, (p*),
Z (m2— p?) 4 Zhy [T (m?) — T (p?)]
D, (p?) =) (43)
II (m2) —I1 (p?)

We shall say a few words about the analytic structure of
the Green’s function (43). The mass operator I1(p?) is an
entire analytic function in the p* plane and does not contain
any threshold singularities. The Green’s function of the sin-
gle-loop approximation has on the real axis of p? only a single
pole at p* = m*, which determines the mass of the meson. In
the complex p® plane, the function D, (p*) has poles corre-
sponding to the complex zeros of the function
I1(m?) — [1(p*). These poles are unphysical and are due to
the expansion in g, that we are using. It is important that as
P — — o, the function behaves as D, (p*) - @(1). Thus, the
single-loop approximation correctly reproduces the behav-
ior of the hadron Green’s functions only near the mass shell
of the hadrons, i.e., in the infrared limit at low energies.

We note further that the first approximation corre-
sponds in the representation (24) to unification of the free
Lagrangian of the meson with the mass operator in the sin-
gle-loop approximation:

D;t (p?) = m?® — p2+ hlLeq ()

= mt— p— —— {0 (p?) — IT'(m2) — 11" (m?) (p> — m2)]
Il (m?)
_ Ty T
il (m?%) .

In the single-loop approximation, the amplitudes of the
hadronic processes are described by single-loop quark dia-
grams, which are tree diagrams with respect to the hadronic
lines. Examples of such diagrams are shown in Fig. 2b. With
each internal hadronic line there is associated the propaga-
tor of the hadron of the single-loop approximation (43).

The quark loops shown in Fig. 2b are entire analytic
functions in the external momenta of the hadrons and, there-
fore, do not have any threshold singularities. On the one
hand, this corresponds to complete quark confinement; on
the other, it shows that the single-loop approximation is val-
id for not too high hadron energies, i.e., as long as the influ-
ence of the possible intermediate processes can be ignored.

Thus, the single-loop approximation completely corre-
sponds to the tree diagrams of chiral theory. However, an
important difference is that in the chiral theory the hadron—
hadron vertices are structureless points, i.e., they corre-
spond to a local interaction of hadrons, whereas in our model
the hadron-hadron vertices are described by quark loops,
which determine the structure of the hadrons—form factors,
slope parameters, etc.

Second approximation

The corrections linearin g, = 1/N, to the hadron mass
operator are determined by the diagrams shown in Figs. 3a
and 3b, in which the internal meson lines are associated with
the propagator (43) of the single-loop approximation:

Wfie (o) =h § kT (o, ) ——

IT (m®) —1II (k)
: : 1
+5 {§ dkidiy 0 (s ey p) [T et 0
jmy m3) —TT ()
X(p— kg — ky). (44)
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FIG. 3. Second approximation in 1/¥,: a), b) Green’sfunction; ¢) ampli-
tudes of physical processes.

Here, the first term corresponds to the diagrams in Fig. 3a,
and the second to those in Fig. 3b. The functions T, (p,k)
and L', (k,, k;, p), which determine the quark loops, de-
crease in the Euclidean domain as O[1/( — k*)] when k2
— — oo, while the hadron propagators (43) of the single-
loop approximation tend to constants. Therefore, the inte-
grals in (44) diverge quadratically.

We renormalize the hadron Green’s functions in such a
way that the hadron mass and the coupling constant are de-
termined by the equations of the single-loop approximation.
We obtain

A N— S
T () — i (o) — "2 T, (o)
HI ( 2 o
where
1, (p2) = T1@ (p2) — 11 (m2) 11" (m2) (p2 —m2).
As p’—m?,
. 1
Dy (p?) = <=
ASPE_) — 00,
# const
D, (P = ==

The Green’s function (45) of the second approximation
has on the real axis of p a pole at the point p? = m?and two-
particle threshold singularities corresponding to intermedi-
ate two-meson states. In addition, there are unphysical sin-
gularities associated with the use of the expansion in ¢,.

In this approximation, the amplitudes of the hadronic
processes are described by diagrams of which examples are
given in Fig. 3c, in which the internal meson lines are asso-
ciated with the propagator (45). These amplitudes have
two-particle threshold singularities with respect to the exter-
nal momenta of the hadrons. This approximation is valid at
higher energies than the single-loop approximation.

The diagrams of the second approximation of the form
shown in Fig. 4b diverge logarithmically. The divergence
can be eliminated by a renormalization of the coupling con-
stant in the diagram shown in Fig. 4a. Thus, we have

Pi Fr FIG. 4. Renormalization of
coupling constants in the
second approximation in
I/N...

a b
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T (pi, ..

) = T;mz(Pﬂ c)=T@ (ph

Ve )=TO (m2, .. ).

The rules which we have formulated completely determine
the second approximation of the 1/N, expansion in our
model.

The following expansions in the parameter £, = 1/N,
can be constructed similarly.

4. THEQCM AND LOW-ENERGY RELATIONS

In the QCM, the hadronic interactions are determined
by the quark structure of the hadrons and the quark behavior
at large distances. It is important that the model permits
calculation of not only the static properties (lifetimes, mag-
netic moments, electromagnetic radii, etc.) but also the mo-
mentum dependence of physical matrix elements (slope pa-
rameters, form factors, etc.).

In this paper, we shall consider only low-energy meson
physics. For application of the methods of the QCM to nu-
cleon physics, see Ref. 27,

We write the meson—quark interaction Lagrangian in
the form

s
;= ‘;}I 4._ M T . (46)

Here, M, are Euclidean fields related to the physical fields of
the mesons in the standard manner®®; A, are Gell-Mann ma-

trices (4, =+2/37I ); T}, are the corresponding Dirac matri-
ces; iy” is for pseudoscalar mesons P(w, K, 7, %'); 7 is for
vector mesons F( fr, K* &,9); "y’ is for axial mesons 4 (a, ,
ki, fi);and I — iHJ / A is for scalar mesons Slag, ko, fo,€)-
The role of the additional term with the derivative in the case
of scalar mesons will be discussed in detail in Sec. 6.

The mixing angles for the octet and the singlet state are
defined as follows:

uu- |-dd

n', v, &)—cosd —sssin §;

(47)

M. ¢, fo)—> —bmﬁlu?)di——;scosﬁ §=0—0,.

The coupling constants g,, are determined from the
compositeness condition (25). It is convenient to introduce
the effective coupling constants

har = 3gir (2m).

We first discuss the choice of the basic parameters of the
model and obtain the connection between its predictions and
the well-known low-energy relations.?® The basic phenome-
nological quantities in the QCM are the confinement func-
tions a(u) and b(u) (37} and the dimensional parameters
A, which characterize the confinement region of the quarks
with flavor fIA=A, = A,, A,). The functions a(u) and
b(u) must satisfy the requirements listed above, and their
form must be analogous to that of the functions shown in
Fig. 5. For the actual calculations, we choose (%) and b(u)
in the simplest form:

a (u) = ay expl(—u® —
b(u) =

2au); (48)
by exp (— u? 4+ 2b5u).

We determine the parameters a,, by, @, 6;, A, and A, by a fit
to well-established experimental quantities, which are the
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FIG. 5. Confinement functions
a(u) =2expl —u* — u), b(u)}
=2 exp( — u’ + 0.4u).

T T B A

1
=F 0.8 7 Tl i u

input parameters of the main widely accepted phenomeno-
logical approaches.

We make some remarks concerning descriptions of the
well-known low-energy relations® in the framework of the
QCM.

It is important that the procedure for integration with
respect to do, defined by Eq. (37) preserves gauge invar-
iance at all stages of the calculations. For example, the
expression for the two-point diagram that describes the vec-
tor—vector transition (Fig. 6a) has the manifestly gauge-in-
variant form

S d*k
4m2

Sdcvtr [‘yu 1 — v { :l

vA—k

R, (i), (49

@ =~

=[p"p* — p*g""] -

where w = p*/A? and

Ry (1r) = By+ - i dub (—u ) VT=u (14 5).
0

TABLE L. Structure integrals.

:I:QT
k+ "%
i
7\}&
K k-u;a
==:q
a b 7’ 2

FIG. 6. Two-vertex (a) and three-vertex (b) quark loops.

The expression (49) is finite and does not contain an imagi-
nary part corresponding to quark production.

For the quark diagram describing the axial-axial tran-
sition (T, = u*y"; T, = ¢")"; see Fig. 6a), we have the
expression

sk 1 ; 1
{ o § doetr[ e Ly —— ]
vA—k vA—k—p

2A%

= [p*p"— pg*] 5 Re(w) + g 25 (50)

Ry (w).

The explicit form of the function R ,(w) is given in Table 1.
As one would expect from the ansatz (37), chiral invariance
is broken, and the measure of its breaking is the parameter A.

Further, we consider how the anomalous Ward identi-
ties are obtained in our approach. To this end, we calculate
triangle diagrams: 1) I', =9, [, =94, T, =+ 2) T,
=", T, = ¢, T; = %" (see Fig. 6b) in the limit of small
pion momenta.

We have

w) (1—ui2)
11—u

Vi—u

w ) (1—u/2-4-u?'4)

Rpyv (w)=

,_‘
—
2y
-
=1
iy
L
.'.\|s5
B
i
.

1+|/T—?)

i 1—V1—u

RvPP(w):BO-F—ZL S dub ( —u—'zk) Vi=u

1
R, {w):BJ-—-(% )2

]

duub ( —u —?) Vi—u

x
By= S dub (u)=2.26;

A= S dra (1) =1.09;
0 {

By= S duub (1)=1.45
o
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ik " A A A A
1pv={ g § dou tr (8, (B v, (449 1S, b+ )

1 S
SRR TY, O | g t+Vi—u
= ighvaaagFigl Hgdua( u 4)111[?1/1?__!:*:,

“0)]. on

To obtain the anomalous identities, we calculate the convo-
lution

w
p“TgM"zs 4021::' Sdc,tr

~ lsu\'alagqm,q

—| a(0)+w (—-

X [PY'Sy (k) y2S, (k+4)) y* S, (k + )1

f PR——
eV ity ; —ij A+Vi—u
fxsmalu.g;xqf;nguub( u4)ln[1_VmJ

—iewveagmgn b ()12, (52)
Comparing (51) and (52), we obtain
prTEny = 27 [ — o (U) ] e
— 2ignVorta gtagts [ ‘_%0{_[;(20)1] . (53)

If the identity (53) is to be completely identical to the usual
anomalous Ward identity,* it is sufficient to require the fol-
lowing conditions on the behavior of the functions a({u) and
b(u) at the origin:

Condition (54) leaves only two coefficients b, and b, free;
these characterize the form of the function b(u).

We fix the parameters by, b,, and A by a fit to the fol-
lowing quantities: first, the pion weak-decay constant f,
= 132 MeV, which is a fundamental constant in chiral theo-
ries”®; second, the constant of the transition p—7%, which
determines the vector-dominance model; third, the con-
stants that determine the decays 7 -9 and @ —my. These
constants are usually determined by the Adler anomalies.?
Finally, we have the strong-decay constant for p— 77, which
in the vector-dominance model is directly related to the con-
stant of the transition p—y.

It was found that the best description of the experimen-
tal data is achieved in the case

Ay = bﬂ = 2; ay = 0-5;

by —=0.2; A =460 MeV.(55)

The results of the fit are given in Table II. The structure
integrals that determine the physical quantities are given in
Table 1. We have used the notation w,, = m?,/A” It can be
seen that there is good agreement with the experimental
data.

We also give expressions for the physical quantities in
the case of vanishing meson masses. It is readily seen that in
this case the QCM reproduces with an error of 4—5% the
well-known low-energy relations: the Goldberger-Treiman
relation, the hypothesis of p universality, and the relations
between 8myandf g ..., and 8.+ Obtained from the anom-
alous identities and PCAC.”°

We fix the parameter A, which characterizes the con-

0 (0)=—a (0), a(0)=2 finement region of the strange quark, by a fit to the main
Hence decays of the strange mesons: K — uv, K*- K, K* Ky,
@—K 'K ", p—eTe . The best agreement with the experi-
ag = 2, by = —4a,. (54} mental data is obtained for
TABLE II. Main low-energy quantities in the QCM.
Process Observed quantity Value of constant for m =0  |Experiment™®
o 3 A
il i _A V3R (w“} =132 MeV A9 =0.96 — 132 MeV
" T V2Rpp(wa) fa
¥
Lo fv=— o4 £8=1.07/2n 0.20
A VBRyv )
Y
' 1 Rpvy (wa) 9p — ) 3 FE (0) o
Eavyv = —————=0.26 GeV ! 4 =0.96/(2 ) 2 n2 0.276 -t
) e e e gy [V En’) 76 Ge
= 1 V6 Revy (wa)
) g = —_— g —=0,94.3 gt 258 G i
; WLy = ]/-RPP wn)RVV (ww) Wy Yy 54 GeV
2.10 Gev—!
T V&R (wy) 1
i n w, 4
I o= TPP 3 =60 g‘p":n] = o 6.1
. Bpp (w3) V Ryv () oY
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“TABLE III. Main processes with strange quarks.

Process Observed quantity QCM \ Experiment’®
E »p | fx 160 MeV | 157 MeV
@ <y 1 B 0.0901 | 0.0758
K* - Ky ' ER&KY 1.47 Gev~! | (1.294:0.07) Gev—'
K* — En | — 4.22 | 4.65
o — KE £ % 4,04 | 4.4T£0.14
A, — 506 MeV. (56) study of processes with the participation of two photons,

The results of the fit are given in Table ITI. It can be seen that
there is good agreement with the experiments.

It is interesting to note that the parameters A; and
A=A, = A, were found to have nearly equal values. This
is explained by the fact that in the considered approach the
SU(3) symmetry is broken mainly through the difference of
the masses of the mesons that contain strange quarks and the
masses of the mesons that contain nonstrange quarks; these
occur in the structure integrals that determine the matrix
elements of the physical processes.

Thus, all the parameters of the model are fixed.

5.FORM FACTORS, RADII, AND SLOPE PARAMETERS

The next step in testing the basic assumptions of the
model is to study the momentum dependence of the matrix
elements of the physical processes that is due to the quark
structure of the hadrons. In this section, we consider succes-
sively the slope parameters in the Dalitz decays
Pyl 1= (P=7"%m"), V- Pl "]~ and the widths of the
raredecays P—/ *1 ~;thebehavior of the pion form factor /.
(¢*) both in the Euclidean (¢°<0) and in the physical
(g*>0) domain; the ratio of the axial and vector form factors
y = f4 /fy in the electroweak decay 7 —evy,; the electro-
magnetic radii of kaons; and the parameters of K; decay.

The Dalitzdecays P-y/*/~ and V- P/*/~ and therare decays
P-ItI-

The investigation of the electromagnetic structure of
the neutral particles (P = 7% %, 7', V= p° w, @) involves

P yz*
- ”
a i~
P B
v + +
1 13
L <o
7N _
b 4
£
— 1"

(o4

FIG. 7. Quark diagrams that describe Dalitz decays: a) of pseudoscalar
mesons, P—yl 1 ~; b) of vector mesons, ¥— Pl 7/ ~; ¢) rare decays
Pl
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Poyy,P—yl 1~ ,P-1"1" orofprocesseswithachangeof
the C parity of the hadrons in the initial and final states:
VPl ]~ and P-VI*I ™.

We consider decays of neutral pseudoscalar mesons,
Pyl ™1~ (Fig. 7a). This decay is described by an anoma-
lous triangle diagram and a resonance diagram with inter-
mediate vector mesons (p, @, ¢ ). The corresponding struc-
ture form factor can be represented in the form

Gpyy (P ¢ 03 =Epp (P 45, G3)
+§ gvpy (D% @3, 02 8wy (€ Dy (@) 43 (57)

The slope parameters in the decay P9/ *[~ are de-
fined as™'

1 Gpyy(mb, 0, 0)
Mp Gpyy(mp, 0,0) °

(58)

The slope parameters in the decay V'— P! *1~ (see Fig. 7b)
are calculated similarly. Numerical results are given in Ta-
ble TV. For comparison we give the results obtained in the
vector-dominance model (VDM).

It can be seen that the contribution from the resonance
diagrams is somewhat reduced in comparison with the VDM
results. This is due to the allowance for the dependence of the
function gy, (g*) on the momentum of the vector meson. At
the same time, for the light mesons (7°and %) an important
part is played by the contribution from the triangle diagram,
so that the total values are close to the VDM predictions. For
the heavy mesons (7', @), the contribution from the triangle
diagram is negligibly small.

Experimental measurements of the slope parameters
were made in Ref. 32 for 7°— ye*e™ and in Refs. 33 and 34
fory, 7' —»yu*u~ and @ — 7%+ 1~ . The numerical values
are given in Table IV.

We note that in the determination of the slope param-
eter in the decay 7°— yete™ (Ref. 32) an important part is
played by the radiative corrections, allowance for which in-
creases the value of the slope parameter by more than a fac-
tor 2.2' The theoretical values for this parameter, obtained
both in the QCM and VDM and in a number of other mod-
els,?! are given without allowance for radiative corrections.
In the case of the decays 1, ' —»yu "~ andew—7u *u~ the
radiative corrections are negligibly small.”!

It can be seen from Table IV that the value for the slope
parameter in the decay 77—yu "~ obtained in the QCM is
in good agreement with experiment,”' whereas the values of
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TABLE IV. Numerical values for the slope parameters 1/M? in GeV ~2.

Process VDM Experiment
T pete 0.394-1.18 1.57 1.67 5.5:1.6 (Ref. 32)
- 0.334-1.81=2.14(—11°) |2.6(—11°
Ve | GETIETEECI (R0 | cesosnen
by e | —0.08440.82=0.77 (—11°) | 1.1 (—11°)
el —0.0414-0.73—0.69 (_18°) |0 o8 187y | LTE0.4 R 3D
@ -~ autps 0.0894+1.21=1.30 1.69 2,44-0.2 (Ref. 31)

the slope parameters in the decays ' —yu ™ p "and @ —7#°
g p~ are about 2 times less than the existing experimental
values.”' In the case of large meson masses ( m, =958 MeV,
m,, = 780 MeV) it is evidently necessary to take into ac-
count the heavy vector mesons (p',...), and also two-particle
intermediate states (27,...). In addition, a higher accuracy is
also required in the experimental measurements.

Experimentally rare decays P—/ I ~ have been discov-
ered®*® in which the lepton pair is coupled to the hadron
vertex by two virtual photons. To describe the rare decays
P[], itis necessary to know the behavior of the transi-
tion form factor G, (p°, 43, g3 ) bothin the spacelike region
¢;<0 and in the timelike pre-threshold region 0<gi<dms.
Using unitarity relations, one can relate the imaginary part
of the P— /!~ amplitude to the P—yy process and, thus,
find a lower bound for the width of this decay, which is called
the unitarity limit*":

. 1-+ vi—&im?,’mﬁ: 2
2m;'mp

I
T (P 1) o J
T = 2 (s )

Vi—éng,‘mf:

The corresponding values of the unitarity limit for various
decay modes are given in Table V. However, the total proba-
bility is determined by the contributions of both the imagi-
nary and the real parts of the amplitude.

Inthe QCM, the decays P~/ *I ~ are determined by the

diagram of Fig. 7c, and the corresponding matrix element
can be written in the form

M P 1) = etetor § s Ty (0%, (=R, B9

v (p) Y myE—p) 77 v (py)

where p is the momentum of the decaying meson, and p ,
and p_ are the momenta of the final leptons. Expanding the

integral (59) in a series in the small parameter m;/mb, we
obtain

M (P — I'I") = ogpy evipou (p_)yiy™yvo (p,)
x [qe=I—@eumN], (60)

where

Epyy = &pyy (MmB, 0, 0);

2
I=:1n ":: — T2 —r—im;

r— S dt In#[# (t+1) — 1/2] a (£) = 0.018;
0

N:[ZI;ﬂ%JrGln mt-8]—in [21n 2 1 3],

np

Calculating the P—1 *] ~ decay width in the standard man-
ner, we finally obtain

PP—U'm) 1 amp \25 079 LA
T =2 (mr) BOUEHBINE

+6p2[ReI Re N—Im I Im N]},
B= V1—4mim5.

(61)

The results of the calculations are given in Table V. The
predictions of the QCM are close to the mean experimental
value in the decay 77— g ~, although the experimental er-
rors are still large. The experimental value of the relative
probability of the 7°—~e*e™ decay has large statistical er-
rors, which are given at the 909 confidence level. The values

3% (59) . i - ;o
k2 (k—p)* (mi—(k—p?]  ’ for the remaining quantities are predictions of the model,
TABLE V. Value of the ratio I'(P—! "1 7 )/T (P-yy).
Process Experiment?*>*® [Iij:][it;;lty QCM

70 = ete 22137.10-8 4£.6.10-8 5.4-1078

- | (.7£0.5)-105 ] 1.2-10-5 2,410

M - etem — | 5.3-10-9 9.9-10-°

o - e - | 410 8.1-10-6

W - etem | = | 1.0 4.9-107
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and an experiment in which they were measured with suffi-
cient accuracy would therefore be of interest.

The pion form factor

At the present time, the pion electromagnetic form fac-
tor has been measured in the interval — 10 GeV?<#<10
GeV? (see, for example, Refs. 39-42). In recent years, a
large number of very accurate data for F, () have been ob-
tained in the timelike region in experiments at the facilities
with colliding electron—positron beams at Novosibirsk *°and
Orsay.*! Moreover, in recent experiments on elastic scatter-
ing at energy 300 GeV the NA-7 group working on the pion
beam of the SPS at CERN have obtained new reliable data
for the pion form factor in the spacelike region at small val-
ues of the momentum transfer.*” These very accurate experi-
mental data make it possible, on the one hand, to determine
more accurately the mass and width of the p meson, the pion
mean-square radius {72 ), the scattering length a;, and the
behavior of the phase curve 81 (1), and also to determine the
parameters of heavier resonances, for example, p' (1250)
and p" (1600). On the other hand, the reliable experimental
data for F_(¢) permit the testing of various theoretical mod-
els.

We consider the behavior of the pion electromagnetic
form factor in the QCM in the spacelike region =g’

= — <0, where g is the momentum transfer. The corre-

sponding diagrams are shown in Fig. 8. The contributions
from the triangle quark diagram of Fig. 8a and the resonance
diagram of Fig. 8b can be expressed in the form

o H g
FO 0= e
F? ey Rypp (w} wRy ()
5 ()= Rypp0) wpky (wp)—why @)’ (62)

where w =t /A%, w, = m? /A*. The functions R ., (w) and
R, (w) are given in Table I. The pion form factor is de-
scribed by the relation

wo By (wp)
wplly (wp)—wRy (w) -~

(63)

Rypp (w)
Rypp (0)

Fa(t)=F 9 (1) +FP (1) =

In the case in which the quark loops do not depend on the
momentum, the expression (63) is identical to the corre-
sponding expression for the pion form factor in the VDM.

It is of interest to compare the contributions from the
diagrams of Figs. 8a and 8b to the pion electromagnetic radi-
us:

Rvep (0) 6 [ wp 5 R2

2NE) = ff ——— . — — :

rae =6 = [ 55, |=045 7
iy =15 Br® _ o5 (64)

)

(ry = (rd) @) - (r})© = 0.43 F*.

7 7
19 tg FIG. 8. Quark diagrams that
describe the pion electro-
T s X P T magnetic form factor.
a b
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mﬂ - foars = 1
t,GevV2 -8 -§

FIG. 9. Pion form factor in the spacelike region. The continuous curve
corresponds to the QCM, and the broken curve to the QCD sum rules*®
the points represent a compilation of experimental data from Ref. 44.

Thus, owing to the allowance for the quark structure of the
pion, the resonance diagram gives a value smaller than the
VDM prediction ({72 )ypy = 0.39 F?). However, the con-
tribution from the triangle diagram plays an important part.
Our result is in good agreement with recent experimental
data®: (#2) = (0.439 + 0.030) F~.¥

The behavior of the pion form factor in the spacelike
region (0<Q*= — <10 GeV?) is shown in Fig. 9. It can be
seen that the experimental data are described fairly well.
Note that the diagram of Fig. 8b is dominant at large values
of the momentum transfer, Q> 2 GeV?,

To describe the behavior of the form factor in the time-
like region £ > 0, it is necessary to take into account the next
approximation in 1/N_, which leads to the appearance of an
imaginary part in the pion form factor, corresponding to the
two-particle threshold singularity. In the present paper, we
restrict ourselves to the simplest case, namely, to obtain the
total propagator of the p meson we shall sum not only the
single-loop diagrams (see Fig. 6a) but also the imaginary
part of the diagram of Fig. 10. On the mass shell of the p
meson, the imaginary part of the diagram of Fig. 10 is direct-
ly related to the p — 7 decay width. Therefore, for the pion
form factor we have the modified Breit—~Wigner formula

__ _Byvpp (W) wpRv (we)—iJ (w) :
Fau ()= Rypp(0) wpBv (lp”o)—"';?" {w)—iJ o) (69
_ o _ dwg 32 Rypp (W) T2
Jw= g [1=5] v [ w60
Accordingly,
_ _Bypp(w)
ReFx(t) = Rypr0)
X [wpBRvy (wp) (wpRy (wp) —wBvy W)+ J w)] | (67)
[woRy (wp) —wRy (w)]2-+J2 (w) ?
_ Rypp(w) why () J (w)
Tm Fa ()= Rypp ()  [wpRy (wp)—wRy (w)]2+J2 (w) (68)

The results of numerical calculations in accordance with
Egs. (67) and (68) are given in Fig. 11. For comparison, we
give calculations with the modified function (66):

FIG. 10, Diagram that describes the mass op-
erator of the p meson in the second approxima-
tion in 1/N,.

p< P
4
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FIG. 11. Realand imaginary parts of F_(¢). The continuous and
broken curves represent the calculations with J(w) in the form
(66) and (69), respectively; the black circles are the results of
dispersion approaches*’; the dotted curve is the restilt of analysis
of the experimental data in the Gounaris-Sakurai model.*®

T ()= (2 ) T ().

I

(69)

Note that the expressions (66) and (69) differ in the behav-
ior off the mass shell of the p meson:

m, Ly (o)~ VT, (V1);
m, T, (m,) —m, (%) T, (V7).

In this paper, the expressions (66) and (69) are regarded
only as the simplest possibilities for taking into account the
imaginary part of the pion form factor. The final result must
be obtained only after calculation of all the diagrams in the
first approximation in 1/N,.

Thus, although we have restricted ourselves here to just
the single-loop approzimation and the simplest approxima-
tion for the propagator of the p meson, our calculations
agree quite well up to #=0.8 GeV? with the results of the

1l

T T T TT17

1

1

0

1

T

—C= :

——x
-

0.1 1 1 1 1 L L 1 1 L 1 1 1
0.3 a5 8.7 0.9 1.1 .3 VE, GeV

FIG. 12, Behavior of | F, (¢)|? in the interval 0.3<+/7 <1.6 GeV. The con-

tinuous curve represents the QCM, and the experimental points are taken
from Ref. 40.
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analysis of the experimental data on F_ (¢t) in the framework
of dispersion relations*® and in accordance with the im-
proved model of Gounaris and Sakurai with allowance for
p—o interference.*®

In Fig. 12 we compare the numerical calculations for
|F, (#)|* with recent experimental data.*® The predictions of
the QCM for |F (1) |? agree quite well with the experimental
data of Ref. 40 up to /¢ =1.3 GeV.

It is known that by virtue of the unitarity condition the
phase 8., (¢) of the pion electromagnetic form factor
Tm Fq (8
Re F (1)
is exactly equal to the phase shift 8] of elastic 77 scattering
in the interval 4m?2 <t< 16m2. However, because the inelas-
ticity parameter 7, (¢) differs little from unity up to ¢=2
GeV?, we can assume that

tan 8y () = (70)

&y deg.

750

120 —

1/ o

501

Jo0—

a W? L L A
2.4 a.6 J.8

S |
VZ, GeV

FIG. 13. Phase shifts §} of wascattering. The continuous curve represents
the QCM, and the points are the experimental data: Ref. 47 (open cir-
cles), Ref. 48 (open triangles), and Ref. 49 (black circles, triangles, and
squares).
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1.0

G.5

0[ | %ﬁ *"‘ r~-+-—f___{__

t, GeV?

FIG. 14. Behavior of |F ()| for 1<z<10 GeV?2 The continuous and
broken curves represent the calculation with J{w) in the form (66) and

(69), respectively; the points are a compilation of experimental data from
Ref. 40.

85 (1) = 6 (1

in a wider interval of ¢ (see, for example, Ref. 45). We shall
use (70) and, in accordance with (67) and (68), calculate
the phase shift 8] (¢) of elastic 7 scattering. The numerical
results are shown in Fig. 13. One can say that the QCM gives
a completely satisfactory description of the experimental
values for 8! () up to 1 ~0.8 GeV.

Tt is interesting to note that in the case of (69) the pre-
dictions of the QCM for |F, (t)| agree remarkably well with
experiment up to = 10 GeV? (Fig. 14).

We regard these results as preliminary. First, it is neces-
sary to make systematic calculations in the second approxi-
mation in 1/N, and, second, the treatment must include hea-
vier resonances, for example, the p’ meson. Such work is
planned for the future.

(71)

Thedecayn —evy

The electroweak decay =~ —evy is interesting above all
because the structure-dependent part of the amplitude is
characterized by two form factors:

MED (p, q)=1£""pq — p*q"1 {4 (¢¥) — iem*® prgPfy (),
(72)
where p and ¢ are the momenta of the pion and photon,
respectively. The experimentally measured quantity is

v =14 0)/fv (0)- (73)

Until recently, the experiments gave with equal probability
two values for ¢ with opposite signs>°

p = 0.44 = 042 or y = — 2.36 + 0.12.

Recent experiments made at SIN*"* and at LAMPF have
permitted the choice of the positive value of ¥ (see Table
XI).

The process 7~ —evy has been considered in many
theoretical studies (see the review of Ref. 55). The predic-
tions for the values of ¥ are varied, and at times contradic-
tory. A particular situation has arisen in relativistic quark
models.**?"% It has been found that if a restriction is made
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FIG. 15. Diagrams that describe the structure-dependent part of the
7—evy decay amplitude.

in the description of the decay #— —evy to a diagram like
that of Fig. 15a, then ¥ = 1, Additional assumptions are re-
quired in order to obtain a different value of 7. In our view,
the most natural assumption from the physical point of view
appears to be that of the need to take into account an inter-
mediate @, (1275) meson®*% in the description of this pro-
cess. Allowance for the @, meson in the relativistic quark
models leads to the appearance of an additional diagram of
the type shown in Fig. 15b. It should be emphasized that the
quark loop corresponding to the transition a, —ev contains
in the local limit a quadratic divergence, in contrast to the
diagram of Fig. 15a, which contains only a logarithmic di-
vergence. Therefore, the standard prescriptions for taking
into account divergences that are adopted in the relativistic
quark models®®*” are not valid in their direct form.

In the QCM, the calculation of the diagrams of Fig. 15
does not present difficulties. As a result of the calculations,
we obtain

y=1—2a[ 2k _pl_78. (74)

It can be seen that this value is in agreement with the recent
experimental data and with the results of Ref. 58 (3 = 0.7).

In connection with the important contribution of the
intermediate @, meson to the axial form factor in 7~ —evy,
it is of interest to calculate the observable characteristics of
the @, meson. We consider the strong decay ¢, —pm and the
radiative decay a, —7y. The corresponding diagrams are
shown in Fig. 16. The matrix element of the decay a, —p7m

can be expressed in the form
Mw¥ gy, q.) —g*vg\ {’*"A) + [g¥vg,9o—qiqi] g'? (wy, wy),

(75)
where

[ - S
g{] (wa)=A ;n—, VhAhphrr Rp(w,);

waRpyy (wa)—woeRpvv ()
Vhahha pftn g .

1
g2 (wA1 p)_ A ]/*

Experimental measurements have been made both of the g,
— pr decay width and of the ratio G, /Gy, which character-
izes the relative contributions of the D and § waves. The
quantities G, and Gy are related to g7, in (75) in the stan-
dard way.*® It can be seen from Table VI that the a, —p7
decay width is somewhat greater than the present experi-

a, : %
P
FIG. 16. Diagrams that describe the decays a, —pw (a) and @, -7y (b).
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TABLE VI. Widths of the decays a, »pr and a,
form factors in the decay w— evy,

— 7y and ratio of the axial and vector

Process Observed quantity QCM E,’;‘iiﬂ,fg‘f“‘ Grtfsenons:ix smape
T, MeV 498 345445 [38]
G~ pn D=Gp/Gs 2.6:1073 | ~Q [61]
ay -y T, keV 518 B40-= 246 138]
T evy v=14 (0)/fv (0) 0.78 0.524-0,06 [51]
0.7+0.5 [52]
0.39+0,06 [53]
0.6720.090.16 [54]

mental value. The small value of the ratio G, /G agrees
with the experimental data,®" indicating the absence of a D-
wave contribution to I'(@, — pr). It should be noted that in
the description of the decay @, —pm an important part is
played by nondiagonal 7—a, transitions,”® which we do not
consider in this paper. Allowance for them will evidently
reduce the a; —pm decay width.%*%

The matrix element of the decay a; —my is determined
by the diagrams of Fig. 16b and has the gauge-invariant
form

asny
2
ma,

?

M (a,— ny)=:e* (p)e* (q) i e 1g"* pg— p ¢"]

where the constant g, ., is related to the functions g7, in
(73) (see Ref. 59). The result of the calculations for the a,
—my decay width is given in Table VL. The existing experi-
mental data are not at all accurate, and therefore this result
can be regarded as a prediction.

Electromagnetic radii of kaons and parameters of the K,
decay
The electromagnetic form factors of the charged and
neutral kaons are determined by the diagrams of Fig. 17 and
can be expressed in the form
Frs () =FL ()~ Fo () + F, (1) — Fy (2),
FK"(t): ?A(i)_Fp(t)'l'Fm (t)_Fm(t)v

where ¢ = ¢° is the square of the momentum transfer q.
Values for the electromagnetic radii of the kaons, calcu-
lated in accordance with the standard relation

rk) = 6 Fg (0),

are given in Table VII. It can be seen that there is agreement
with the experimental values.

The decay K —mlv (K, ) is determined by the diagrams
of Fig. 18 and can be expressed in the form

Mw(py, ps)=F,(t) (ps4ps)*-+ F_{t) (py— po)*

? v
K K+ > K K

F=ptsp

FIG. 17. Diagrams that describe the kaon electromagnetic form factor.
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Using the standard parametrization for the form factors,*”

Fi(t)=Fi(0)|:'1+kt ],

we determine the parameters of K, decay:

t
3
my

m
I
l

& =WF:_'- {0,
E(0) = F_(0)/F 4 (0).

Their values are given in Table VIL. 1t is of interest to verify
the Callan-Treiman—Okubo-Pandit relation?;

Fo(m%)+ F_(m%k) = fg/fa. (76)
For this, it is sufficient to calculate the values of the form
factors F, (t) at the point nry. It was found that

Fo(mi)+F_ (mi)=0,9 fg/fa,
i.e., the relation (76) holds with 10% error.

6. THEPART PLAYED BY SCALAR MESONS IN LOW-ENERGY
PHYSICS

The scalar 0" mesons play an important part in low-
energy hadron physics. Linear realization of chiral symme-
try required the introduction of o particles,? and this proved
to be very convenient for the construction of phenomenolog-
ical chiral Lagrangians describing the low-energy relations
of current algebra. Phenomenological analysis and model
studies'"** of processes that admit the existence of interme-
diate scalar states (7 scattering, pion polarizability, the
decays K —2m, K2y, etc.) showed that the description of
the experimental data required the introduction of an £ me-
son (or o meson) with mass 600-800 MeV. Reliable experi-
mental data indicating its existence are as yet absent. The
existence of the following low-energy scalar states has up to
now been experimentally established: a,(980), f,(975), f;
(1300), KF (1350). For some of them the partial widths
have been measured.

From the point of view of their quark composition, the
assumption that the scalar mesons are two-quark states does
not conflict with modern experimental data, although there
are investigations® in which scalar mesons are treated as
four-quark systems. In addition, one cannot rule out the pos-
sibility that the singlet 0" * states are mixtures of quark and
gluon states.®

In the approach which we have developed, we shall re-
gard the scalar mesons (a,, f5, & K ¥) as two-quark states
described by the Lagrangian (46).
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TABLE VII. Electromagnetic radius of the kaon and parameters of the K, decay.

QCM
Quantity Contributions of individual diagrams SE;lF;r;r;l::;kEé;efercnces in
A o @ e i Sum

g F? | 0410 0.078 | 0.026 | —0.,027 0.18 0.26+40.07 [38]
{r% e, F2 | 0.009 | —0.078 | 0.026 | —0.027 | —0.07 —0.05+0.026 [88]
0.08£0.05 [89]
s 0.037 0.029-0.00% [90]
. 0.0034% 0.0032--0.0099 [38]
E (0} —0.39 —0.35:£0.14  [38]

In accordance with the low-energy phenomenology, we
shall regard the mass of the £ meson and the mixing angle as
free parameters.

We discuss in more detail the choice of the matrix
Ts=I—i(H(d/A), which determines the 0™+ quantum
numbers. To this end, we consider the diagram of Fig. 2b (in
which I', = [y, I'; = I'; = #°), which describes the decay
§— PP. The corresponding structure integral, calculated for
zero masses of the final states and normalized to unity at m

= 0, can be expressed in the form

Ty (ws) =1, (wg) —AHT, (we))/ T (0); h

1

Iy(w)=4,—w S dua (_u %)

x[ 4t VI ey,

21—V >(77)

1

Figure 19 gives graphs of I; (w) as a function of the mass
my for different values of H. It can be seen that in the case
H =0 the function I;(wg) vanishes at my=~1070 MeV.
Such a dependence for H = 0 has the consequence that the
theoretical value of the f, (975) — 77 decay width is much
lower (I'=~1 MeV) than the g¢xperimental value
Cep = 26 + 5 MeV.

This result, corresponding to the simplest choice of the
scalar two-quark current with I'y = 1, apparently indicates
a more complicated structure of the scalar mesons. It is en-
tirely possible that a four-quark component of the quark cur-
rent plays an important part in the scalar mesons (for a de-

bra 4

K K
i +* "o 4
v v

FIG. 18. Diagrams that describe the decay K —miv.
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tailed analysis of this problem, see Ref. 63). We intend to
make such an analysis in the future. In the present paper we
restrict ourselves to inclusion of the additional two-quark
interaction with a derivative as expressed in (460), and we
shall regard H as a free parameter.

As a basis to fit the parameters H, &5, and m,, which
characterize the scalar mesons as two-quark states, we take,
first, Adler’s self-consistency condition,” which requires
vanishing of the 7w —7m and 7"y 7"y amplitudes in the
limit m,, -0 (Fig. 20), and second, the experimental values
of the a, — 77 decay width and of the s-wave 77 scattering
lengths: a) and aj. The self-consistency condition can be
expressed in the form

Sby=2A2cos §ga, [4,— 4HB,)
X(5 cos 85— V' 2sin 8g) h.D, (0);
By = 2A% cos? 85 [Ay— 4HB,J? heD, (0),

(78a)
(78b)

where a,, by, 4, By, and B, are parameters of the model
[see (55)]. To make the fit, it is convenient to use the quo-
tient of Egs. (78b) and (78a), which does not contain the
mass of the £ meson, and to consider the ratio

UL L I e

—0.1|100 500 500 700 300
-0.3
=0.5

T T

FIG. 19. Graphs of the dependence of the structure integral I, (m%/A%),
which determines the decay S— PP, on the mass m ; of the scalar meson for
different values of the parameter H.
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- 7?78 7 ¥ 70
¥ v Mg =0
b
FIG. 20. Adler’s self-consistency condition.
5b, cos bg [4,—4HB,]
e Sl Sl el (79)
Bya, (5 cos §g— V2 sin bg)

which contains only the parameters H and 8.
The matrix element corresponding to the decay fy — 7r
is

—
Efynn=45in85AR, ]/—é“— [ (wg) — 4HI, (wg)]

and, accordingly, the decay width is

S
T (fy—nm) =0 my, 1/1—“"1—“_5’&%. (80)

mi,  mi,
Figure 21 shows graphs of the quantities

I'th (fy — ain)
I8P (fy — )

R (H, sindg)and Q (H, sing)=

as functions of H for different values of sin 5. The optimal
values of the parameters  and sin &, at which the values of
R and Q are near unity, are

H = 0.55; sin 6z = 0.3; 85 = 17°. (81)

We determine the mass of the £ meson from the condi-
tion of best fit of the s-wave 7 scattering lengths a5 and a2
to the existing experimental data.® The 77 scattering ampli-
tude is described by the diagrams of Fig. 22. Figure 23 shows
ag and aj as functions of the mass of the £ meson. It can be
seen that the best agreement with the existing experimental
data is achieved when

YL sind=0z  |®F[ sns=a7 g|%R[ snd=0s
L3 L3t 13

72 LOF

L1k i 1
e e [ e— -]

a8 291 0.9

0.8 -

2.7k o7} a7

0.6+ -

2.5 AT 0.5
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FIG. 21. Graphs of R(H, sin §5) and Q(H, sin §5) as functions of the
parameter H for different values of sin §.
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FIG. 22. Diagrams that describe 7= scattering.

mg = 600 MeV.

It should be noted that the experimental measurement of the
scattering lengths and phase shifts of 77 scattering is a com-
plicated problem, since direct study of 77 scattering is not
possible in a direct experiment, and therefore the informa-
tion is extracted indirectly from other processes [for exam-
ple, from data on the decay K—evrm (Ref. 65) or on
7N —mmN inelastic scattering®].

The difficulties in the direct experimental measurement
of the 77 scattering lengths and phase shifts stimulate the
search for other possibilities of measurement of these quanti-
ties with smaller errors. One such experiment is the genera-
tion and measurement of the lifetime of atoms formed from
7" and w~ mesons, A,,, as was proposed in Ref. 68. The
probability of decay of the 4,, atom into two 7° mesons is
determined by the expression®®

2 — Mo 2
W1 dyr — mtnt] = 250 [ 200 T T2 0 ooy (o),

where a and a} are the s-wave 77 scattering lengths with
isospin 0 and 2, respectively, and ¥ (0) is the value of the
wave function of the ground state of the atom at the origin.
In the experiment of Ref. 68 independent measurements
could be made of ¥(0) and of the lifetime of the 4, atom,
and this made it possible to determine directly the difference
of the 7 scattering lengths. The basic possibility of a mea-
surement of the shift of the 25-2P levels was also demon-
strated.

As was shown by the calculations of Ref. 70, the value
of the wave function at the origin, ¥(0), differs little from
the corresponding Coulomb value. Therefore, the lifetime of
the 4,, atom is determined by the difference of the s-wave
i scattering lengths. Table VIII gives the values of the life-
time calculated both in the framework of the QCM and in
other approaches. Measurement of the lifetime of the 4,
atom permits more accurate determination of the mass of the
intermediate £ meson. The widths of the strong and radiative
decays of the scalar mesons are given in Table IX. They were
calculated with the values of the parameters H, sin 8, and

@i e
2
0.8
0.7
2.6
a5k
0.4
A oo BRSPS R PR ST DRT
0.2~ ———— — ===
0.1 510 53T~550 590 610 630 me,MeV|
f A R 1 1 _l-_-.l._;l 1 1 ] il _‘.l;_J 1!
——————— “———_""'—-T.::___%:
| p

FIG. 23. Graphs of the s-wave 77 scattering lengths as functions of the
mass of the £ meson.
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TABLE VIII. The s-wave 7 scattering lengths and the lifetime of the 4, atom.

Experiment Migdel oF
supercon-

Property C]url:nt ducting cur-[ QCM

Ref. 65 Ref. 66 ABEDIE | rent (Ref.

91)
al (mgy=1) 0.264-0.05 0.234-0.03 0,20 0.29 0.28
a? (my=1) —0,02840.012 | <0.06=0.07 | —0.06 | —0.025 | —0.054
T (Apn), 1078 ¢ 2.64-0.9 2.5+1.3 3.1 2.1 4.9
m, obtained above. Among the considered decays, only the Fy (mk, 0)--F, (mk, 0)
O = —

decay f, — 7 was used to make the fit. The width of the
decay a, — 7 agrees well with experiment,

We now turn to the calculation of the electric and mag-
netic polarizabilities of the 7+ and #” mesons. The values of
these parameters are extracted from the amplitude for
Compton scattering of a photon by a 7 meson. The matrix
element of the process 7y — 7y on the photon mass shell is
expressed in general form as follows™":

2
M, (g — auy) = —uﬂ_i TivFo (s, 1), (82)

where
Thv=(21Py) BouPav -+ (0202) QivPry — Euv (P191) (P02
— PwPoy (00D
T = Buvt1%2 — G1vlas

F\, (s, t) are form factors determined by the internal struc-
ture of the w mesons; ¢, and g, are the momenta of the initial

and final photons; p, and p, are the momenta of the initial
and final 7 mesons; and

s=(p + 9)* = (P2 + 72)%

L= (py — p)* = (@ — q2)%

It can be shown’" that the electric and magnetic polarizabili-
ties of the 7~ mesons are connected to the form factors F , by
the relations

TABLE IX. Widths of strong and radiative decays of scalar mesons.

My

Pr=F,(m%, 0)/my. v

In Table X we give diagrams that determine the ampli-
tude of the process my— Y. Besides the box diagrams, we
take into account diagrams with intermediate scalar, vector,
and axial-vector mesons. Note that only the diagrams with
intermediate vector and axial-vector mesons contribute to
F,. The form factors F,, (m2, 0) can be expressed in the
form

Fy(m%, 0)=FV (m%, 0)-FA(m%, 0);
Fy (m, 0)=F5OX (m2, 0)+FS (m4, 0) (84)
+ F&(m3, 0)—FV (m%, 0).

Substituting (84) in (83), we obtain the values of the electric
and magnetic polarizabilities of the 7+ and 7° mesons. Table
X gives the contributions to them from the various diagrams
and the total values of these parameters for m, = 600 MeV.
The main contribution to the 7 polarizability is made by
the diagrams with intermediate scalar mesons. The small
value of the electric polarizability of the 7° meson is due to
the mutual cancellation of the contributions from the box
diagram and the diagrams with intermediate scalar mesons,
in accordance with the self-consistency condition (78).
However, complete cancellation does not occur because we
take into account not only the £(600) meson but also the f;
(980) meson. Besides the scalar intermediate states, we also
considered vector and axial-vector intermediate mesons.
The intermediate w(780) and £, (1285) mesons play an im-

Process QCM Experiment?®

fo — nm 22 MeV (2645) MeV

a; — NN 56 MeV (54+£T7) MeV

E — mm 360 MeV —

fo = VY 0.37 keV < 0.8 keV

2 - 1y 0.41 keV (0.19£0.075]- 1) keV
g — 7 0.33 keV —
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TABLE X. Polarizability of pions, in 10 cm?.

Diagram [ o B+ Bro
—0.615 —6.15 0,615 6,15
S _
:D-=-< 6.55 6.55 | —6.55 | —6.55
e————s
v — — 0.26 1.7
A —0.163 —1.46 0.115 1.5
Result 9.77 —1.06 —5.56 2.8
Experiment™ 6.841.4+1.8 — — —
Experiment®? - < 35 — —

portant part in the description of the #° polarizability.

The value that we have obtained for «_ . is close to the
value of Ref. 72. We obtain a positive value
a,. + B, =0.21x10" **cm’ inagreement with the result
obtained in the approach based on the use of dispersion sum
rules.” The nonzero value of this quantity is due to the con-
tribution of the pseudovector and vector states.

Thus, we have calculated the electric and magnetic po-
larizabilities of the #* and 7° mesons in the Quark Confine-
ment Model. In the calculation of the matrix element of the
process my — 7y we have taken into account diagrams with
intermediate scalar, vector, and axial-vector states. We have
found that the diagrams with an intermediate £(600) meson
play the main part in the calculation of @, and £ .. Our
results are in satisfactory agreement with the experimental
data and do not conflict with the results obtained in the
framework of other approaches.

Our analysis of many-particle processes with the parti-
cipation of intermediate particles has shown that scalar 0+ *
mesons, in particular the £(600) meson, play an important
partin their description. We have found that when the scalar
mesons are treated in the framework of the QCM as two-
quark states some nontrivial questions arise. For example,
the choice of the two-quark current with quantum numbers
0" " in the simplest form without derivatives, J,, |

= — glg, does not permit us to obtain the correct value for
the width of the observed decay f, — 7. Therefore, we have
considered a more general form of the scalar 0" current

with a derivative, J, . . =gl — iHJ /A g, where H is an

499 Sov. J, Part. Nugl. 20 (5), Sept.—Oct. 1989

additional free parameter. By means of this form of the sca-
lar vertex, we have obtained a description of the experimen-
tal data for the s-wave 7 scattering length, the pion polari-
zabilities, and the widths of the observable decays of scalar
mesons, and we have also verified the main low-energy rela-
tions of chiral theories for the amplitudes of 77 and 7y scat-
tering.

Naturally, the introduction of the additional term with
a derivative in the case of scalar mesons cannot be regarded
as the final solution to the problem of the scalar mesons. In
particular, similar terms with a derivative also arise in the
case of other mesons (for example, when allowance is made
for nondiagonal 7—a, transitions''). One can hardly hope to
achieve a complete description of low-energy meson physics
by the approximation of the total gluon Green’s function in
(10) by the & function (7). This approximation leads to a
Lagrangian of Nambu-Jona-Lasinio type. It is necessary to
consider the more general form (11) for the gluon Green’s
function and use it to solve equations of Bethe-Salpeter type
for the bound states of quarks. We plan such work for the
future.

Thus, our analysis has shown, first, that to describe
many-particle processes (77—, 7y — #y) in the QCM we
require the light scalar £(600) meson. This is in agreement
with other approaches."' ™% Second, the results obtained
for the decay widths of the scalar mesons and for the mixing
angle can be regarded as an indirect indication that the sca-
lar mesons have a more complicated nature than that of the
simplest two-quark state.
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7.NONLEPTONIC DECAYS OF K MESONS

Kaon physics is exceptionally rich in interesting phys-
ical effects. Among them, the nonleptonic decays of kaons
are particularly interesting. Study of these processes leads to
a deeper understanding of the structure of the weak interac-
tions, and also of the connection between the weak and
strong interactions of quarks. In addition, the empirical
ATl = 1/2 rule does not have a complete theoretical explana-
tion, although rather a lot of studies®' have been devoted to
this problem. The rule states that the transitions in which the
isospin [ is changed by 3/2 are strongly suppressed in com-
parison with the Al = 1/2 transitions. At the present time,
two approaches have crystallized in the physics of weak in-
teractions in explaining the Al = 1/2 rule.

1) Terms that are products of quark currents are intro-
duced into the Lagrangian in such a way that nonleptonic
decays with Al = 3/2 are suppressed (see, for example, Ref.
74). This is a purely phenomenological approach and can
hardly give information about the weak and strong interac-
tions of quarks.

2) The weak interactions of quarks are described by the
standard Weinberg-Salam model with allowance for QCD
corrections. Allowance for the strong interaction of the
quarks at short distances enhances the Al = 1/2 amplitude.
However, this enhancement is not sufficient to explain the
AI'= 1/2 rule. One seeks an additional dynamical mecha-
nism to enhance the Al = 1/2 transitions; this mechanism is
associated with the calculation of the matrix elements of ha-
dron—quark transitions at large distances.

We shall follow the second path. We consider in more
detail the weak quark-quark interaction. The effective
Hamiltonian of this interaction is obtained in the Weinberg—
Salam model with allowance for the gluon QCD corrections
associated with the strong interaction of the quarks at short
distances and is expressed in the form™

6
sin B, cos 6, 2| ¢,0;, (85)

i=1

e B

2y2

where O, are four-quark local operators.” The coefficients
¢; depend on the masses of the W boson and the ¢ quark, and
also on QCD parameters: the value of the running coupling
constant ag = g*(u) /47 and y, the normalization point.”
The main problem is in the calculation of the matrix
elements of the operators O, at low energies. To this end,
various models of the strong interactions are used.?! For ex-
ample, the nonleptonic decays of kaons have been studied in

K=

4
T 0 7 0 7
00| =00 v=00"
bl ¥ ¢ Y
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FIG. 24. Diagrams that describe the decay K—27.

various quark models,”®"® in dispersion approaches,” and

in approaches based on the 1/N, expansion.**' In a number
of approaches,””®® the method of current algebra has been
used to calculate the matrix element of the two-particle de-
cay K—27. In the studies of Refs. 81 and 83, the method of
vacuum insertion was used to calculate the matrix elements
of the four-quark operators. However, the use of this method
has recently been criticized, for example, in Ref. 84.

A subject of separate discussion is the operator Q5. This
operator, which contributes to the amplitudes with
Al = 1/2, contains not only “left” but also “right” quark
currents, in contrast to 0,-0,, which consist solely of “left”
currents. There are two opposite points of view with regard
to the part played by O; in the explanation of the Al = 1/2
rule. In Ref. 83 it is asserted that the operators O and O,
play the main part in the enhancement of the corresponding
amplitudes. In the pioneering study of Ref. 75, and also in
Ref. 76, it is noted that the main part is played by the pole
contribution from these operators, i.e., the contribution
from an intermediate scalar (o or ) particle. In contrast, it
is shown in Refs. 79 and 85 that the operators O; and O,
cannot give the necessary enhancement of the Al = 1/2 am-
plitudes.

In the quark-loop model,” the enhancement of the
AT = 1/2 amplitudes is due to the large contribution of the
diagrams with an intermediate £(770) meson, The results
obtained in Refs. 78 and 83 depend on a large number of
parameters and on the method of calculation. In Refs. 78
and 80, reasonable agreement with experiment is achieved
by the introduction of phenomenological corrections to the
matrix elements. In Ref. 82, the agreement with experiment
is associated with the choice of a correction parameter for
the coefficients ¢, —c,. In Ref. 86 the introduction of a new
neutral interaction is proposed in order to obtain the ampli-
tudes of the nonleptonic decays. The result depends on the
choice of the constant of this interaction (4g, = 30).

It should be emphasized that the enhancement of the
amplitudes of transitions with A7 = 1/2 in Refs. 78, 80, 82,
83, and 86 is achieved by the introduction of additional phe-
nomenological parameters. Therefore, despite the reasona-
ble agreement with the experimental data obtained in the
cited studies, the problem of the AJ = 1/2 rule cannot be
regarded as solved.

We shall also proceed from the Hamiltonian (85), re-
garding it as an effective Hamiltonian of weak nonleptonic
interactions and describing transitions with AS=1. We
shall assume that the coefficients ¢; are determined by the

FIG. 25. Diagrams that describe the decay K —27.
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TABLE XI. Values of the coefficients {c,}.

i e ey e " -
QCM 5szg:§§ GeV ~1.97 | 0.115 | 0.093 | 0.47 | —0.03
Ref 2172 50 oy ~2,38 [ 040 | 0,08 | 0.42 | —0.047
Ref. 943523'1eev -3.06 | 0,32 | n.22 1.23 | —0.13
Ref. 8295~ 1 1'33:‘-,1 -5.11 | 0,02 | 0.04 0.2 | 017
€ Cgp €q — % {e2) €5, ¢4) | —2.538 | .0.0205 [ 0.02 0.1 0.24
RESD o o 3 o)

relations of Ref. 21, and we shall choose the parameters u
and o by a fit to the experimental data.

The diagrams that determine the amplitudes of the de-
cays KS—mtn~, K5—7%7% K*—7+7° are shown in
Fig. 24.

The matrix elements of the AT = 1/2 decays K S -+
7~ and K % - 7%7° are determined as the contact diagrams
shown in Fig. 24a and also as the pole diagram with an inter-
mediate £ meson shown in Fig. 24b.

The diagrams that determine the amplitudes of the elec-
tromagnetic decays of neutral kaons are shown in Fig. 25. It
should be noted that intermediate states play an important
part in these decays. The parameters i and a; were fitted on
the basis of the well-established values of the widths of the
decays KS -7 7", K+t 57 7, and K9 »yy. The nu-
merical values of the coefficients {c,, i = 1,..., 6} obtained as
a result of the fit are given in Table XI. For comparison, we
give the coefficients used in other approaches. The set of
coefficients that we have obtained is closest to the set pro-
posed in Ref. 21.

In Table XII we have collected together the results of
the calculations of the K — 277, 2¥ decay widths in the QCM

TABLE XII. Widths of the decays K— 27 and KX —2y.

and in a number of other approaches. Our results are in good
agreement with the experimental data. It should be noted
that the K § — ¥y decay width has been calculated with the
parameters already fixed and is therefore a test for the as-
sumptions that were made. The value obtained for the width
of this decay is in agreement with the recently measured
experimental value.

It is of interest to elucidate the part played by the var-
ious operators in enhancing the amplitudes of the AT = 1/2
processes. In Table XIII we give the relative contributions to
M(K§—n*n~) from the various operators O, with
allowance for the coefficients c,: M, _, is the contribution
from the operators 0,-0,; M §_is the contribution from the
contact diagram with O;; and M §,_is the contribution from
the pole diagram with O; (the diagram with an intermediate
£ meson). As we have already noted, there are two opposed
points of view with regard to the part played by the operator
O; in the enhancement of the amplitudes with AT = 1/2. In
Ref. 83 the contact diagrams with O are given the main role
in the explanation of the AT = 1/2 rule, while in Ref. 76 it is
asserted that the contribution of M, , and M,, are negligi-
bly small compared with the contribution from the pole dia-

T (K% -+ o),

T (I+ > ntn0),| T (KD —+ 99), | T (K - v),

Approach 1072 GeV | 107 GeV | 1078 Gey ik GeV
Model of chiral quark loops A
(Ref, 76) 5.94 1.8 6.7 1.75
MIT model (Ref. 78) 5.14 1.27 s —
Harmonic-oscillator method 6,27 1.14
(Ref. 78)
Vacuum-insertion model 4,98 0.21
(Ref. 83)
Current-algebra methods with| 5.1 1.2 — —
continuation to the physical
tegion (Ref. 82)
1/N_ expansion (Ref. 80) 5.34 1.89 6.20 o
Model with new neutral inter- 5.58 2.19 — —
action (Ref, 86)
Method of chiral Lagrangians 4.85 — - —
(Ref. 74)
QCM 5.38 1.24 7.18 1.53
Experiment 5.06--0.03 | 1.132-0.01 | 7.68+0.21 | 1.84:0.92

(Ref. 38) (Ref. 38) (Ref. 95) (Ref. 95)
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TABLE XIII. Relative contributions to the K $ — 77~ decay amplitude.

Mg _ o Mg MmE

" . s 0.
B (RY ~ mtnm) — + O
38.2-1078% GeV 0.23 0,02 0.75

gram with the intermediate £ meson. On the other hand, in
Ref. 79 it is shown that the contribution from O;, with
allowance for the pole terms, is only about 10% and that the
operators O,—0; play the main part. It can be seen from
Table X111 that in the QCM all three contributions to M{ K %
— g7+~ ) are important. The enhancement of the Af = 1/2
amplitude due to the operators 0,—0, is associated with the
coefficients ¢,—c,, and the important contribution from O;
is associated with the intermediate £ meson.

Thus, it can be assumed that the intermediate scalar
meson £(600) plays the main role in the explanation of the
Al =1/2 rule.
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mov, A. B. Govorkov, Yu. A. Gol'fand, M. K. Volkov, A. V.
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Petrun’kin, and E. P. Shabalin for fruitful discussions and
helpful comments.
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