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We discuss the problems involved in the mathematical description of systems of a variable
number of physical objects of type k, obeying quantum statistics of ranks s, in the sense that the
number n,, of objects of type k in a quantum state can take values only from 0 to s;. A method is
proposed for constructing the algebras A (K ) with mutually adjoint generators a;" and a,, kek,
which can be interpreted as the creation and annihilation operators for an object of type &. A set of
specific creation-annihilation operator algebras is constructed, a comparison is made with the
algebras already known, and some applications of intermediate (2<s, < o) quantum statistics

are discussed.

INTRODUCTION

The mathematical formalism of the quantum theory of
systems of a variable number of physical objects (particles,
quanta, systems, elementary excitations, and so on) involves
the concept of creation operators T, and annihilation op-
erators @, for each type of object k. Since the action of these
operators is assumed to be defined in the space L of quantum
states |¢) of the system under consideration, the set ¢ 1,
and a;, kek, can be viewed as the generators of an operator
algebra A(K) in the space L, which is naturally referred to
as a creation-annihilation operator algebra.

The algebra A(K) contains the operators correspond-
ing to various physical quantities characterizing the system
of a variable number of objects, in particular, the operators
N,, which are self-adjoint in L, corresponding to the
numbers of objects with integer eigenvalues n; giving the
possible numbers of objects of type & in a single quantum
State.

Already at this stage of our discussion we can formulate
the problem of studying the different types of quantum sta-
tistics for identical (one-level) objects, i.e., objects of fixed
type k: Fermi-Dirac statistics,!’ n, €01; intermediate statis-
tics of rank s, n,e 0, 5, for 1<s, < oo Bose-Einstein sta-
tistics, n,€ 0,00 .

Owing to the physical meaning of the operators a,
(which decrease the number of objects of type k by one
unit),a & (which increase the number of objects of type &
by one unit), and ¥, (which preserve the numbers of objects
of all types), the following identities must be valid in the
Fock space L, C L spanned by the eigenvectors of the opera-
tors V,.:

[[V.’n A";"]_:O, [.Nr;_‘. ahr]_

= '*'Sh):'a.’h [Nhj' Ek']_ = a,‘;},'&h. {1)

Since N,/ = N,, the relations (1) allow us to assume that
the operators @ + , and a, are mutually-adjoint in L, i.e.,
al =at  andet, =qa,.

Other features of the algebra 4 (K), the type of statistics
of the objects in question, the explicit form of the operators
Ny, and so on, are determined by the system of identity rela-
tions for the generators ¢ 7, and a, .
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In present-day quantum theory (see, for example, Refs.
1-5) two types of identity relation are commonly used for
the generators of the creation-annihilation operator algebra
related to two types of quantum statistics, namely,

+ +
N;, = Qpdpy, [a,{. ah’]:i: == ISH(*, [ﬂ!h, ap-le = 0. (2)

Here the * 4 * sign corresponds to the Fermi algebra 4. (K)
and the Fermi-Dirac statistics (5, = 1), and “ — ” corre-
sponds to the Bose algebra 4, (K) and the Bose-Einstein
statistics (5, = co). In general, it is assumed that all the
objects in real physical systems are either fermions or bo-
sons. Here K = K| + K, and the creation and annihilation
operators satisfy the relations (2) with the  + * sign for %,
k= k'K, andthe* — " fork, k 'eK,. Thisleadstosome prod-
uct 4(K) of the Fermi algebra 4. (K,) and the Bose algebra
AgK,). The additional assumption'~® that the generators of
Ap commute with the generators of 4, makes this product
specific and leads to the standard algebra 4., (K). However,
throughout the development of quantum theory there have
been numerous proposals and studies of nonstandard alge-
bras 4, (K) of creation—annihilation operators. Examples
of 4, are anomalous algebras,*® algebras of para-Bose op-
erators,"*~'* algebras of para-Fermi operators,'*'® ““supero-
perator” algebras,'®** u algebras.*2° 4 algebras,2026:27
algebras,”**>" and M algebras.?®>>33 The mathematical
formulations and possibilities of such nonstandard algebras
can be found, for example, in the brief review of Ref. 34.
From the viewpoint of the statistics of identical objects
of fixed type, of greatest interest are the para-Fermi algebras

1 # 1 B .
Ny=—5las, )+ pi a5= 2 b (3a)
j=1
[b(ﬁ“’ 551{)]*»:6}\’.’;'; [bls:j)1 b:"i{)]i‘:U; (3b)
B, Bl = R, tl=0, jo~7, (3c)

and the superoperator algebras {according to the terminol-
ogy of Ref. 19)

+ + +
pt1 3
N, =apay, [ag. a]—1— i alals (4a)

la, &k']_z[ﬂ;,, ap]_=0, Fks=k. (4b)
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In both of these algebras p is an integer,
al+t'=at 2% =0 and n,€0,p. Therefore, both algebras
decribe objects obeying intermediate quantum statistics of

rank p.

The fact that two different creation—annihilation opera-
tor algebras corresponding to the same intermediate statis-
tics exist naturally leads to the problem of seeking all possi-
ble algebras A(K) suitable for describing physical systems
with a variable number of objects of type &k, k,,...€K, obey-
ing statistics of rank sy ,5y_,...,es(K), respectively.

Some aspects of this problem have been studied for the
case of identical (one-level) objects in Refs. 20, 27, and
35-37.

In the case of non-identical (or many-level) objects
obeying different statistics, the general problem of con-
structing the corresponding nonstandard creation—-annihila-
tion operator algebras has hardly been studied at all. The
only exceptions are the M algebras, ¢ algebras, and special
cases of them related to the so-called fractional statis-
tics?3 28313839 where the subalgebras of the algebra 4(K)
are linked by relations of the form

* —iGppe F 07,
ayay =e a0, auap =€ M apay, k=k (3)

with real numbers 9, .

It should be noted that the interest in intermediate sta-
tistics and the related nonstandard creation—-annihilation
operator algebras has increased significantly in the last dec-
ade in connection with the quantum Hall effect,”® the theo-
ry of exotic field quanta,”®3*?*?* charged excitons,”’" and
monopoles,” and also in connection with the possible
(weak) violation of the Pauli principle**~**

Here we shall describe mainly the method of construct-
ing algebras 4 (K) of creation operators a + . and annihila-
tion operators @, which are useful in the formal description
of quantum systems of a variable number of objects of var-
ious types keK obeying given guantum statistics of rank
s,€s(K). The method is based on the use of a priori intuitive
definitions related to the fundamental concepts of the alge-
bras under construction.

Inlater sections of this paper we compare the construct-
ed algebras with algebras already known in the literature and
discuss some specific applications.

1. INITIAL PROPOSITIONS

For constructing and studying possible mathematical
formalisms applicable to the quantum description of systems
of a variable number of objects, w shall begin with the follow-
ing intuitive definitions.

Definition 1. The space of states |¢) of a system with a
variable number of objects of types k,, k,,...K obeying
quantum statistics of rank 5., 5.,...es(K), 5, > 1, respectively,
is a complex vector space L[s(K)] with positive metric
spanned by an orthogonal basis of (s; + 1) (s, + 1)... non-
degenerate vectors |¢, .. ), such that

| @uyyna, ) EL (s (K)), 1y €0, 843 (6a)

((Pn;. iR l Py, na. = | | Py, s, ", E2 611;1115:1’”12 coes (Gb)
51 52
[ )= S E g, ng, | g ma ) €L (s(K)) (6¢c)
ny=0na=0
s 82
{0 [ ) == by E coo | Cag e 1P ] @rgymg, 0 |2=0. (6d)
ny=0 ng=>0
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Definition 2. The creation—-annihilation operator alge-
bra for the objects of this system is an algebra 4 (K') having a
representation in L [s(K) ] with mutually-adjoint generators
a, and a + +» which realize motion in the basis {6a) with
change of the corresponding index by cne unit, namely:

ay | ¢, np_q, 0, ftpes ) = 0; (73-)

ahJ Py My, ): L Pousy Mg s )1 Ny E 1v Sk (7b)

ag | ..., o o=l g g o MR ED, 5 — 1, (7c)
g [ F.oo, gy 850 Hpggrod =0y TF 3y <L 80, (7d)

These definitions allow us to prove a series of state-
ments, which below are divided into theorems and corol-
laries. The proofs of all these statements are omitted, since
they are quite elementary. Detailed proofs of some state-
ments are given in Refs. =7,

Theorem 1, In L[s(K)] there exists an orthonormal
basis

| Hy, Ny - . D= {I’ll, Ry o - ') l Gy, g, - >a €U, 83
(8a)
(n;a R;, - . l ny, Hg, - . > = anlulﬁnéug 4 (Bb)

where a(n,, n,,...) are certain complex numbers such that

A | oeeey Maggs Oy Figgq, 2 = O (9a)
Apl o oor gy o) = VWT
woelfhlim M) | e N BT, o (9b)
] o oolice 2 =T Hh e 0 Bt e 21
e 0t mklid 1,0, mg €0, 55— 1; (9€)
f—lh | Proxs Sy Rpgny -2 20 =0, 0F 8 <T oo,

(9d)

where A, (1, 1,,...) are non-negative numbers and &, (n,,
M,,...) are real numbers, henceforth referred to as the param-
eters of the algebra (moduli and phases).

Corollary 1.1. The creation—annihilation operator alge-
bra 4 (K) is uniquely determined by specifying the ranks of
the statistics 5, €s(K) and the parameters of the algebra—
the moduli A, (#,, #5,...) >0 and phases &, (n), n,,...) = 8%,
where keK, n,€ 1,5, and n,.€ 0,5, , for k' #k.

In fact, if the ranks of the statistics and the parameters
of the algebra are specified, then a unique representation of
A(K) in L[s(K)] is specified, since the action of all @, and
gt « and, consequently, of any operator from 4(K) on any
vector from L[s(K)] is uniquely specified by the relations
(9).

Corollary 1.2. A given, fixed quantum statistics [ where
all the ranks s(K) are specified] can correspond to an infi-
nite set of creation—annihilation operator algebras 4(K),
differing from each other in the values of the parameters.

To conclude this section, we note that relations
(6)—(9) provide a basis for the physical interpretation of the
mathematical concepts which we have used and the stan-
dard terminology: the vector | ,#.,...) (or the proportional

~vector |@, , )) is a state with fixed numbers of objects n,,

Ha,...; &, 18 the annihilation operator of an object of type k;
a T is the creation operator of an object of type k; |0, 0,...)
is the vacuum; ||, s,...) is the saturated state, reached only
foralls, < .
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2.THE ALGEBRAS A(1), THEIR PROPERTIES, AND METHODS
OF DETERMINING THEM

Let us consider a system of a variable number of identi-
cal (one-level) objects obeying quantum statistics of rank s
(for simplicity, in this section we drop the index denoting
the object).

According to the propositions of the preceding section,
the states of this system belong to the space L(s) spanned by
an orthonormal basis of 5 4+ 1 vectors, and the creation—an-
nihilation operator algebra, henceforth called 4 (1), has one
pair of generators: a and a + .

The main features and methods of determining the alge-
bra A(1) are reflected in the following set of statements.

Theorem 2. In L(s) there exists a unique basis

[n) €L (s), n€l, s

in which the action of the generators a and ¢ 7 of the alge-
bra A(1) is determined by the system of equations

{n' |H> = 61’1'71, (10)

a|0)=0; ainy=Vin) | n—1), necT s (lla)
Jin):]/k(n+i)!n+1), neo, s—1;
a|sy=0, if s< oo (11b)

Corollary 2.1. For the unique determination of the alge-
bra A(1) it is necessary and sufficient to specify the rank of
the statistics s and the set of modulus parameters A(#) > 0,
nel,s.

Corollary 2.2, To a quantum statistics of any rank there
corresponds an infinite set of algebras 4(1), differing from
each other by the values of the modulus parameters 4(#).

Theorem 3. The generators @ and a + of the algebra
A(1), corresponding to statistics of rank 5, satisfy the identi-
ty relations

§=1

" + R +
at=0, if s<oo;aka?! = \[— s ?“Ham”am, (12)
m={)

where 1<k<k 4 I<sand the relations conjugate to (12) for
I #£0, where the coefficients parereal and are uniquely deter-
mined by the parameters of the algebra A (n) by means of the
recursion relations

n

F[} :17 Fn = 1] l(n},

k=1

b i+ T /T,

(13a)

Ryl _
Mn Hra= ran-H'anPnH

n-1

— N phktyr, I<n<<s—k—141; (13b)

m=(

n-1

phebt= _ ) gk RRUYT, sk I 1 s —1.

—_— m
m=(

(13c)
Corollary 3.1. Any operator of the algebra 4 (1) can be
written in normal-ordered form, i.e., as an expression in
which all the creation operators stand to the left of all the
annihilation operators.
Theorem 4. The first s coefficients of the identity rela-
tion (13b) with k = 1 and / = 0 existing in any A(1),

5

i O By
aa= Y W, a™a™, (14a)

P
7 =0
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are related to the parameters of the algebra A(n) by the re-
cursion relations

n-1

Amy=2 pu'

m=0

Tnay TS

, REIL, s. (14b)

Fn—m—l

Corollary 4.1, The algebra 4(1) is uniquely determined
by the rank of the statistics s and the set of the first s coeffi-
cients ,,' ...me 0, s — 1, of the principal identity relation
(14a) if and only if ( 14b) ensures that A (n) is non-negative.

Theorem 5. In A(1) there exists a unique operator ¥

having the required properties of an object-number operator
Nlr)=nin), n€0,s [N, al.= —a, (15)

and the normal-ordered form of this operator is

N=N*=13Y vkékah; (16a)

h=1

. n—1
o= vn:_lfT_kgi r::’ 2<n<s. (16b)

Corollary 5.1. The parameters A (n) of the algebrad(1)
are related to the coefficient v, of the normal-ordered form
of the operator N by the recursion relations

Mrmy=n (3} v—22)"", neTs (17)

T
k=1

Corollary 5.2. The algebraA(1) is uniquely determined
by the rank of the statistics s and the set of coefficients Vis
kel,s, of the normal-ordered form of the object-number op-
erator if and only if (17) ensures that A (n) is finite and non-
negative.

Corollary 5.3. The algebra 4 (1) has an irreducible ma-
trix representation (the proper N representation) in the
form

(@}nr= 8y, 1y V A_(k)_, (‘;)hl = 5h, I+ Vm:

(M) =8y (k—1), (18)

where &, 1€ 1,5 + 1, 5 is the rank of the statistics, and A (k)
are the parameters of the algebra.

Theorem 6. The object-number operator can be written
in the bilinear form

N=Co+ 3 C, watat + 3 C, ,ata", (19)
h=1 A=1

where the 25 + 1 real coefficients are related to the param-
eters of the algebra by a system of s 4 1 algebraic equations:

Co= =2 Coalis s—Co=3) Coupi, if s<oo;
B=1 h=1 =
(20a)
n—C=2) Cp it e, o, <n<s.
h=1 k=1
(20b)

Corollary 6.1. The form (19) of the operator N is not
unique.
Corollary 6.2. The specification of the rank of the statis-
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tics s and the object-number operator N in the bilinear form
(19) determines a set of (admissible) algebras A(1), each of
which corresponds to a solution of the system (20) for the
parameters A(n) > 0.

Theorem 7. If the states |n) are the eigenvectors of an
operator MeA (1) which is self-adjoint in L{s), such that

M:_,_,Eha at M| n)= ne0, s, (21

k=0

my | n)
then the eigenvalues m,, and the coefficients &, ofits normal-
ordered form are related to the parameters of the algebra by

the system of equations

my ="t A (n)=(m, —my) {

TTM:

1

(22)

Corollary 7.1. The algebra 4 (1) is uniquely determined '
by the rank of the statistics s, the set of eigenvalues m,,, ned,s,
and the coefficients &, kel,s, of the normal-ordered form of
any operator Med (1) commuting with NV if and only if (22)
ensures that A (») is finite and non-negative.

In summary, we again stress the fact that the quantum
statistics of identical (one-level) objects of rank s corre-
sponds to an infinite set of creation—annihilation operator
algebras 4(1) (Corollary 2.2), and each specific algebra can
be uniquely determined by at least four different methods
(Corollaries 2.1, 4.1, 5.2, and 7.1).

3.4(2) ALGEBRAS AND PRODUCTS OF A(1) AND A(1)

Let us consider a system containing two types of ob-
jects, for example, « and obeying quantum statistics of
ranks s, and s, respectively.

According to our initial postulates, the mathematical
description of this system requires an algebra A(a, f),
henceforth referred to as 4 (2), with two pairs of generators
Qs at, and ag,a ™ g, acting in the space of states L(s,,,
5g).

According to Theorem 1 and Corollary 1.1, the algebra
A(2) is uniquely determined by the values of
45,55 + 2(5, + sg) parameters—the non-negative moduli
An(k,n), Ag (k, n) and real phases 6, (k,n), 85 (k,n),and
the action in the space L(s,, sz ) is given by

0,10, Y =0; ag|se k>=0, if s,<<oc; (23a)
te | 1 Y=V g, B) %™ | n—1, &), ne 1, s,
(23b)
ol 7y by =V g (n = L, &) e et [t f, i),
ng0, so— 1 (23c¢)
ag | n, 0)=0; £+I[J, | m, sy =0, if s3<<o0; (23d)
ag | n, k):Vmeieﬁ(”‘ Min, k—1), keT, sy (23e)
ay| n, Ky =V g (m, B 1) e O™ 0 | p gy,
ke0, 55— 1. (23f)

The general study of A(2) algebras is a quite complicat-
ed problem. Therefore, here we shall restrict ourselves to
only three theorems and one specific example.

Theorem 8, The algebra 4(2) contains s, + 1 algebras
A(1) with rank of the statistics equal to s; and parameters
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A(n) = Az (k, n) for fixed keO,s; and 5, + 1 algebras 4(1)
with rank of the statistics equal to s, and parameters
A(k) =4, (k, n) for fixed ne0,sz.

The validity of this statement is obvious. For example,
the relations (23a)—(23c) for each fixed k determine an al-
gebra A(1) with generators a + , and @, acting in the space
L, (5,)CL(s,,ss) and spanned by a basis of (s, + 1) or-
thonormal vectors |n) = |n,k), ne0,s,. According to
Theorem 2, this algebra is uniquely determined by the s,
parameters A(n), ne _IT,, and from the relations
(23a)—(23c¢) it follows that A(n) = 4, (1,k).

Corollary 8.1. In general, the algebra 4 (2) can contain
s, + 5z + 2 different algebras A(1), each of which is the
creatlon—anmhllatlon operator algebra of objects of a given
type for a fixed number of objects of a different type.

Corollary 8.2. In general, the algebra 4(2) cannot be
written as a product of A(1) and A(1).

Corollary 8.3. In general, the algebra 4(2) does not
have any homogeneous (containing creation and annihila-
tion operators of only one type) identity relations.

Theorem 9. The generators of the algebra 4 (2) satisfy a
system of inhomogeneous identity relations:

sg+1

sgt+1 ;
a” =0, if s,<o0; G'[g.ﬁ =0, if sz<<Too, (24a)
s, —1 &
1Lk«[»l D‘Y\ YI? ~h, h+1 m—}—l *n om no
rak 2N W ma apag ap -+ (a, + ap, % “r aﬁ)
m=0 n=0
(24b)
sﬁ_l fo RO AV Tmaiin omon
ag ag 14 NN BBmn Ap dglplg
m*—() n=0
+ +
+ (g < ap, @y ap); (24¢)
S,-P s
p.a \ﬁ' t(‘ mn mep o + &
Aoldp= .. . i*rzbmnaaaﬁaq, ay +(€1a-<—)a|5, aaﬁaﬁ);
m;D n-={l
(24d)
c\;(I S%W—p Tntm nte mto * +
1 Ly f! m
afap= N L qaﬁ nm@elp Oo Paf T (ay > ap, g > dp);
m—0 n=0
(24e)
@~ "|a
N
a{,‘_agf l, ﬂjtag, mna?&g-‘-o o Pap 4 (ag ++ ap, a Haﬁ)
m=0 n=0
(24f)
where l<k<k< +1<s,, 1<k'sk’+I<s5,  1<p<sg,

I<o<s,, and i, &, and N are numerical, in general, complex
coefficients.

The relation between the coefficients in (24) and the
parameters of the algebra is easy to obtain by successive op-
eration on the basis vectors of the space L(s,,, 55 ) with the
identities (24) using Egs. (23).

Corollary 9.1. Any operator of the algebra A(2) can be
written in normal-ordered form.

Theorem 10. The algebra 4(2) with ranks of the statis-
tics equal to s, and s, is a product of the algebra 4(1) of
rank s,, and the algebra 4(1) of rank s, if and only if

he (7, B) =Ry (n), Ap(m, k)= Ay (%), (25)

where A, (n), ne 1,5, and A4 (n), be 1,5, are the param—
eters of the algebra4(1). Here the generators a,, " ias . (the
generators a;, @ + ) satisfy the system of identity relatlons
(12) with the corresponding parameters in the entire space
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L(s,, 55 ), and the mixed (inhomogeneous and nonlinear)
identity relations can be written as

S =0 sg—C 54
agag: En 20 anp, nnlaﬁagtﬂg+ﬂa;‘+p; (26&)
m=0 n=
Sp—P sgc 5. g
a.ga,‘; = "‘?_-'Eo _ln 82% mna;laga;ﬁ"agﬂ: (26b)
= n=
S =P $p—0
ala’ = i}n BZO ML, wmaty St (26¢)
m=0) n=
Sg =0 sg—0 . .
afae= 2 Y WMGE mnal ™ahalagt", (26d)

m=0 n={

where the coefficients € and It are uniquely determined by
the parameters of the algebra 4(2), 1<p<s,,, I<o<s,.

The identity relations (26) make the concept of the
product of algebras 4 (1) specific by ensuring a unique link-
ing in the space of states L(s,,, 55).

Example 1. Let us consider the very simple case of a
system with objects of type a and 8 obeying statistics of rank
L, ie, s, = sg = 1. Then the space of states (1, 1) is
spanned by a basis of four orthonormal vectors ( 10,0, |0,1},
|1,0},and |1,1)), and the corresponding algebra 4 (2) which
is the product of two algebras A(1) is determined by six
parameters [A,,4,,0,(1,0), 0,(0,1),8,(1,1), and 6, (1,
1) ] and has the system of identity relations

+ + + +
Gl = Aoy — 0oy, aay=hy—ayay; (27a)
y + ; Y
—id
Q. ip= elqjaﬁaﬂaa‘ Qgllp=8 ' )aﬁaﬁaa_ {27‘3)

Here the linking (27b) of the algebras A (1) is determined by
a real number ., related to the phase parameters of the
algebra 4(2) as

cl')(.gﬁ:eﬁ(ial)"_‘ﬂi‘. (n. ”“* 92(1 O)ﬁt’-}a([, 1_)

We have actually obtained the ® algebra for fermions,
which was introduced intuitively and used in Refs. 23,
28-31, 38, and 39. In the special case A, =Az =1 and
®,; = m, the algebra (27) is the standard product of two
Fermi algebras.

4.GENERAL PROBLEMS WITH ALGEBRAS A(K)

The set of statements concerning the algebras 4(1) and
A(2) given in the preceding sections shows that, in general,
the algebra A (K) is a rather complicated mathematical ob-
Ject, and a number of problems must be solved before it can
be used in physical theories.

First of all, Theorem 1 and Corollary 1.1 are sufficient,
but not necessary. In other words, the values of the param-
eters Ay (..., ny,...) and 8, (..., n1,,...) uniquely determine the
algebra 4 (K), but the reverse is not true. Different values of
the phase parameters can therefore correspond to the same
algebra [see, for example, Theorem 2 and Corollary 2.1 for
A(1) algebras, and also Example 1 for the algebra 4(2)], so
the problem of isolating the independent parameters must be
solved.

Second, the algebra 4(K) contains the following: a set
of, in general, distinct algebras 4(1), which are the creation-
—annihilation operator algebras for objects of one type with
the numbers of objects of other types fixed, and these alge-
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bras operate in  the corresponding  subspaces
L(s)CL [(s(K)]; aset of, in general, distinct creation—an-
nihilation operator algebras 4(2) for objects of two types
with the numbers of objects of other types fixed, and so on.
Therefore, one of the fundamental problems with the algebra
A(K) is that of its “reducibility,” ie., the question of
whether or not it is possible to reduce 4 (K) to a product of
two or more algebras A (K ') with K*CK.

Third, even when 4 (X)) is “reducible,” it is necessary to
study the possible linkings between the factor algebras. For
example, the bilinear linking (27) and the nonlinear linking
(26) of two A (1) algebras as factors of the algebra A(2) are
binary (the identity relations of the linking involve two pairs
of generators). However, it is also possible to have nonbin-
ary linkings of factors, as, for example, in M alge-
bras,*®323342 where each linking relation contains, in bilin-
ear form, a restricted set of pairs of creation and annihilation
operators.

These problems are purely mathematical and pertain
primarily to the classification of the algebras A(K).

In the use of creation-annihilation operator algebras in
specific physical theories, there arises the additional prob-
lem of admissibility, i.e., determining which algebras 4 (K)
are compatible with the fundamental (imposed a priori or
postulated) propositions of the theory. The problem of ad-
missibility for the case of 4(1) algebras is studied in the
following section.

5.A(1) ALGEBRAS FOR ACTUAL PHYSICAL OBJECTS

In the construction of an actual physical theory of sys-
tems of a variable number of objects, usually only the opera-
tors for physical quantities B are known. In the case of “free”
systems (see, for example, Refs. 1-5) these operators have
the form
(28)

B= E S dkByq, ma:bhcxNkoc'
[24

Here b,,, is the contribution of an object of type ka to the

value of B, and N, is the operator corresponding to the

number of identical (one-level ) objects of type ka, expressed

as a bilinear combination of creation operators a,’, and anni-

hilation operators e, , ;

N = Cy + Cuaa + Cyaa. (29)

In (29) and below we omit the indices, since we are dealing
with creation—annihilation operator algebras 4(1) for ob-
jects of a fixed type.

We note that an operator for physical objects (29) is
written in the bilinear form (19), so, according to Theorem 6
and its corollaries, this operator determines a set of admissi-
ble algebras 4(1) with parameters satisfying the system of
equations (20), which in the case of the operator (29) has
the form

Cot CAM)=0; Cp+Coh(s) =5 if s<oo;
(30a)
CotChn+1)+CA(m)=n, nef, s. (30b)

If C, and C, are given, then for finite s the system of s + 1
inhomogeneous linear equations (30) with the conditions
A(n) >0 either uniquely determines all s + 1 unknown Cos
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A(1),...,A(s),orhasno solutions. In the former case, substi-
tution of A (n) into the identity relations (12) determines an
admissible algebra A4 (1), while in the latter case such an
algebra does not exist.

Let us now consider four different types of identical
(one-level) physical objects (see Refs. 1-5).

1. Quantum systems (or excitations) in second-quan-
tized nonrelativistic quantum mechanics: C, =0, €, = 1.

2. The quanta of relativistic tensor fields: C, = 1/2,
C,= 1£2.

3. The quanta of relativistic spinor fields: €, = —1/2,
C,=1/2.
4, Excitations in spin systems: C; = — 1, C; =0.

The results of investigations of the system (30) in these
cases are for the most part contained in the following theo-
rems.

Theorem 11. For quantum systems (or excitations) in
second-quantized nonrelativistic quantum mechanics, sta-
tistics of any rank with a unique algebra A(1) for each s are
admissible:

Mr)=n, nel, s N=as (31a)
a&:i-}&a—- s—:‘i atsas, if s<<oo0; (31b)
eddon, ¥ =8 (3l¢)

Theset (31) contains only the well-known algebras: the Fer-
mi algebra for s = 1, the superalgebra (4) for 1 <5 < 0, and
the Bose algebra for s = oo.

Theorem 12. For the quanta of relativistic tensor fields,
statistics of finite rank are inadmissible, and statistics of infi-
nite rank are admissible with a set of algebras 4, (1) parame-
trized by a non-negative parameter y:

ARk 1) =2k+ %, A(2R) =2k x>0, kc0, o
(32a)
N=t[a a], —gm aa—nt I et .. (2

In general, the identity relation (32b) contains all the
operatorsa ™ kq*, ke 0,0 , with coeflicients given by expres-
sions (13) with the parameters (32a).

Fory =1, (32} is a Bose algebra.

Theorem 13. For the quanta of relativistic spinor fields,
statistics of infinite rank are inadmissible, and statistics of
any finite rank are admissible with a unique algebra A1) for
each s:

Aip)=n(s—n+ 1), negl, s, 1<s<Coo; (33a)
N:%[Zﬁ, a]h+%s, wa=s+-=2aa+... (33b)

In general, the identity relation (33b) contains all the
operators a + kg ke,s, with the coefficients (13) for the
parameters (33a).

Fors = 1, (33) is a Fermi algebra.

Theorem 14. For excitations in spin systems, statistics
of infinite rank are inadmissible, and statistics of any finite
rank are admissible with a unique algebra 4 (1) for each s:

Am)=s—n+1, nel, s 1 <s<T o0 (34a)
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+ + ﬂ +
N=s—aa, aa=5—-—0a0+ ...

(34b)

In general, relation (34b) contains all the operators
a -t ta* ke 0,5, with the coefficients (13) for the parameters
(34a).

For s = 1, (34) is a Fermi algebra.

Theorem 15. Identical quanta of relativistic tensor
fields (integer spin) can obey only statistics of infinite rank
with the creation—annihilation operator algebra (32), a spe-
cial case of which is the Bose algebra. Identical quanta of
relativistic spinor fields (half-odd-integer spin) can obey
only statistics of finite rank with the creation—annihilation
operator algebra (33), a special case of which is the Fermi
algebra.

The latter statement, the validity of which follows di-
rectly from Theorems 12 and 13, can be viewed as a general-
ization of the familiar Pauli theorem on the relation between
spin and statistics with the a priori assumption that interme-
diate statistics are possible.

6.A{1) ALGEBRAS AND PARA-FERMI OPERATOR
ALGEBRAS

In Sec. 5 we have already pointed out the existence of
the familiar creation-annihilation operator algebras in the
sets of algebras (31)—(34) for specific identical (one-level)
objects: the algebra of Bose operators [the special case (31)
and (32)], the algebra of Fermi operators [ the special case
(31), (33), and (34)], and the algebra of superoperators
(4) of fixed rank [the special case (31)].

In the case of algebras of para-Fermi operators (3) of
fixed rank, according to the form (3a) of the object number
operator in the case of identical (one-level) objects, this al-
gebra must coincide with the A(1) algebra of the corre-
sponding rank from theset (33). However, these algebras do
not coincide for any rank, except rank 1.

Let us demonstrate this statement for the example of
statistics of rank 2. For s = 2 the relations (33), (12), and
(13) for the corresponding algebra 4(1) give

N:%[;, a] 41, a3=0, aéﬂieé—éﬂa; (35a)
aé—:?—%&zaz, a2a? — 4—2aa. (35b)

It follows directly from (35) that N°= 3IN? - 2N, ie,
ne0,2.

Let us now assume that the operators g and @ + from
(35) belong to a para-Fermi operator algebra of rank 2.
Then the Green’s ansatz (3a) is valid, i.e.,

a=b+e, [0, éL:[c, Z-:L:L b, el.=[b, ¢ | =0.

(36)
Substituting the representation (36) into (35), we easily
find that the equations (35a) are satisfied with

N — bt ce. N2— N} 2bcbe, (37a)
while to satisfy (35b), in addition to (36) we must have
(b—2) (b —¢) — 2bcbe = 0. (37b)

Multiplying on the left by b © and on the right by ¢, from
(36) we find b tet be=0. Fxg{n {37a) wethen arriveat a
contradiction: N2 = N, i.e., n€0, 1.

S. A, Balashova and V. V. Kuryshkin 414



Such algebraic contradictions arise for any rank s>2 if
the operators a* and a from the algebra (33) are formally
written as Green’s ansiitze of the corresponding rank from
the algebra (3).

Therefore, an algebra (33) of rank 5>2 formally does
not coincide with the algebra (3) of the corresponding rank
for one-level objects, in spite of the fact that expressions
(33b) and (3a) for the operator N coincide. At the same
time, according to Theorem 13, the set of algebras (33) con-
tains all the creation-annihilation operator algebras for
identical (one-level) objects allowed for the operator N in
the form (3a) and satisfying the intuitive Definitions 1 and
2

The point is apparently that the algebras (3) have var-
ious irreducible Fock representations, even for one-level ob-
jects (see, for example, Refs. 12 and 18). However, for the
creation-annihilation operator algebras discussed in the
present study, the uniqueness and irreducibility of the repre-
sentation in Fock space are actually encoded in the original
definitions. This leads to the appearance of identities of the
type (35b) in addition to the relations (35a), which actually
define'® the algebra of para-Fermi operators of rank 2 for
one-level objects.

The correspondence between the algebras which we
have discussed most likely boils down to the fact that an
irreducible representation of the algebra (33) is equivalent
to the maximal irreducible representation of the correspond-
ing rank of the algebra (3) for one-level objects, in which
relations of the type (35b) and (37b) are transformed into
identities. The existence of such irreducible representations
of the algebra (3) has been demonstrated, for example, in
Ref. 18.

7.AVERAGE OCCUPATION NUMBERS IN INTERMEDIATE
STATISTICS

Let us consider a system of physical objects distributed
among energy levels ¢, >0 and obeying quantum statistics
of rank s, at each level k, respectively.

Let the objects be noninteracting, and the system be
located in a heat bath of temperature § = kT,

If the number of objects in the system is not fixed, then
according to the general rules of statistical physics (see, for
example, Refs. 40 and 41) the probability W(n) of finding
the state |(n)) = |...,n,,...) is written as

W) =exp {5 (24 3 w—e) m)}, 3 Wey=1,
h (1)

(38)

where g is the chemical potential, £} is the grand thermo-
dynamical potential, and », is the number of objects at the
level €., n, € 0,5, . Here the grand partition function

£ -

F= > HE;“"'—“Z(---f By, Spre . .), where & =¢ ©

(n) k&

)

(39)

can be used to calculate all the physical characteristics of the
system, including the average occupation numbers:

ny = > Way =0, In Z. (40)
{n}
The calculation using Eqs. (38)-(40) gives
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L= H Z(EIU Sff)! ‘;?"R:E(Ehl Sk)'l (41)
k

where we have introduced the notation

_ mmeay E(E —1)—s(E—1
Z (g, '?)-*“m, n(E, S)Z_((EE—_T)(ET:‘(E:UJ' (42)

In particular, from (42) it follows that

B D= s B ) =i,
(43)

ie,fors = lands= w theresults (42) become the familiar
expressions for the Fermi-Dirac and Bose—Einstein statis-
tics, respectively, as expected.

We note that for 1 <s < o the results (42) completely
coincide with the corresponding expressions obtained for
parastatistics (see, for example, Ref. 41). However, this
agreement exists only as long as the objects in the system do
not interact and the additivity of the energy is preserved, i.e.,
only nondegenerate eigenvalues +€ 0,5, of the object-num-
ber operators N, are actually involved.

In a quantum treatment including interactions, the sta-
tistical operator Z involves, along with the object-number
operators N, , the creation operators ¢ T « and annihilation
operators @, operators of the algebra 4(K), kekK, corre-
sponding to the given (fixed) quantum statistics ..., s,
-€S(K). Here the results of specific calculations will depend
not only on the ranks s,, as for Eq. (41), but also on the
parameters of the algebra 4(KX) chosen for describing the
system [we recall that, according to Corollary 1.2, the quan-
tum statistics s(K) corresponds to the set of algebras 4 (K) 1.

8. QUANTUM TRANSITIONS IN A THEORY WITH
INTERMEDIATE STATISTICS

Let a quantum system consist of identical (one-level)
objects obeying statistics of rank s.

According to the fundamental rules of quantun theory,
the evolution of a state |} is determined by the relations

La, | ¢) = H ),

1) = 23 ¥ @) 1 n), (44)

H=EN+7V,

where EN is the energy operator of the free system, &V is the
object-number operator, and ¥ is the interaction energy op-
erator (for self-interactions or interactions with other Sys-
tems). These belong to the creation—annihilation operator
algebra 4 (1) uniquely determined (see Corollary 2.1) by
the rank of the statistics s and the parameters A(n)>0,
nel,s.

The operators of the algebra 4 (1) can always be written
innormal-ordered form (see Corollary 3.1). Here the opera-
tor N has the form (16), and the most general form of the
interaction operator V under the natural physical conditions
H™ =Hand (0|H|0) =0is

s * s—1 s—-h +
V= < fka,"a"‘—i— 3 E gunaa™ 4 He. (45)
=1 B=0 n=i

Here f; are real and g, are complex interaction constants
with the dimension of energy.
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Let us study the problem of gquantum transitions
[ny—|n'}).

The probability W, of finding the state |n') ata time
>0 when at ¢ = 0 the state was |n) is, according to (44),

defined as
Wﬂn' (t) == | (n' NJ (I)) l2

= e (@] for 4 (0))

For s = 2 and the auxiliary condition H |0) = 0 on the
Hamiltonian of the system, the problem (44)-(46) can be
solved exactly (the corresponding analytic expressions have
been found in Ref. 48).

With the standard assumption that the constants g;,, of
the interactions not commuting with N from (45) are small,
in lowest-order perturbation theory the probability (46) can
be rewritten as

= |n) (46)

i
W @ = 18pnr —1i S (v (o) | n)de [}, (47a)
i
where v(z) is the perturbation operator in the interaction
representation:

v (t) = elHet (H — H ) et

=EN+2 2 foatat. (47b)

For solving the problem (47) it is convenient to use the
matrix representation (18) for the generators of the algebra
A(1). After calculating the matrices of the operators (47b)
for the probabilities (47a) we finally obtain

. 1
, sin? [7 (Ensi—en) t]
(epe— ER)* 1

(48a)

I
Wi, (0= 41t

h-m

: T
Z Eml T £ ‘
m=(l

where 0<k < k + I<s and we have introduced the notation

ks rn
e, =nE-+2 2 Fri R

m=1

=1, Tp=

H A(n) >
(48b)

Equations (48) show that in a system of identical (one-
level) objects obeying quantum statistics of any rank a per-
turbation (self-interaction or interaction) can give rise to
oscillations between states with given numbers of objects.

The amplitude and period of these oscillations are de-
termined not only by the rank of the statistics and the inter-
action parameters, but also, according to the conclusion of
Sec. 7, they have an essential dependence on the parameters
of the creation-annihilation operator algebra.

9.INTERMEDIATE STATISTICS AND THE PAULI PRINCIPLE

The problem of the theoretical description of a possible
(weak) violation of the Pauli principle has been discussed in
Refs. 43-48. Such studies are based on the assumption that a
system of identical (one-level) objects, which at the present
stage of development of physics are assumed to be fermions,
can in fact be found not only in the vacuum state |0} and the
one-particlestate | 1), but also (although withlow probabili-
ty) in the two-particle state |2).

It has been proposed®*~* that this idea be realized
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mathematically by assuming that the operators a and @ +
related to statistics of rank 2 act in the state space of this
system spanned by the orthonormal basis |0, |1}, and |2).

The authors of Refs. 45 and 47 have studied the algebra
of paraoperators with a small parameter, which is a special
case of the “para-g-operator” algebras introduced and stud-
ied thoroughly in Refs. 17 and 18. In the opinion of the au-
thors of Ref. 45, this algebra ensures a consistent mathemat-
ical description of weak violation of the Pauli principle ina
local quantum field theory. However, in Ref. 47 it was
shown that the small parameter in the paraoperator algebra
leads to violation of the requirement that the metric of the
state space be positive.

In Refs. 44, 46, and 48 special cases of 4( 1) algebras or
products of them were actually used to theoretically describe
violation of the Pauli principle, but only certain special in-
teractions were considered. We shall give a more general
treatment of this problem.

As was shown in the preceding sections, any A (1) alge-
bra with s = 2 is specified by two parameters, A(1) > 0 and
A(2) >0, and contains the system of identities

o A s
aa>=h(2)a T ad =0

b E M2)—nr(1) * A1) +A2(2)—A (1) A (2) *,
aa=h{1)-+ T ag — TR aa?

(49a)

(49b)

a2 =4 (1) A (2)— h(2) aa+ 2EZI) goga (49¢)

A

The object-number operator and the most general form of
the interaction energy operator can be written in normal-
ordered form using the parameters of the algebra and the

“offective’ constants g,,, for the linear, g, and f, = fF for
the bilinear, g, for the trilinear, and f, = f¥ for the quadri-
linear interaction:
S S . e (50)
N=ymy @+ e ©0
+ + +
V== go,a + gt fi0a-+g,00* 4 fra*a®+ H.e (51)

According to the results (48) for the probabilities of
oscillation between states with given numbers of objects, for
the interaction (51) we have

W Ll}lii’“”% E=E-+2r(1)f;  (52a)

W, - %“M:é)mwli sin"’%;

Ey= 2E+20(2) furt 2 (D2 2) (52b)
Wy 2@} Dinl” e B B E, (520)

£

We note that the oscillation probabilities (52b) and
(52¢) involving the state |2) will be small, as required for
weak violation of the Pauli principle, either if the parameter
A(2) is small or if the quantities g,, and gy, + A(1)g,, char-
acterizing the interaction and the algebra are small.

The first case was actually realized in Refs. 44 and 46,
where algebras (49) with A(1) = 1 and 1(2) = 0 were cho-
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sen. However, this choice of parameters leads to serious dif-
ficulties when generalizing to relativistic quantum field the-
ory, as was somehow or other noticed by those authors
themselves (see also Ref. 47).

The second case is realized for finite parameters of the
algebra A (1) = A(2) = 2 and certain constraints on the in-
teraction constants (51), namely, g,,~0 and o= — 2g,,.
Here the relations (49) define the algebra (35), and no diffi-
culties arise in the generalization to field theory. However,
here the weak violation of the Pauli principle is dynamical,
rather than algebraic in nature.

For alater comparison of the results, let us also consider
the problem of oscillations in the case in which g and a*
belong to the Fermi algebra,

1

+ 1 + N + + 5
N=aa=—=|a, a]k 5, da=1—aa, =0, (53)

2

and the state |2) does not exist. Here s — 1 and A(l) =1, s0
from the result (48) for the interaction (51) we have

4 B
W{,‘? _ Algnl i

e '
Besint=l B =E 4 2f,. (54)

It is important to note that the results (52a) and (54)
coincide for (1) = 1 and differ (in amplitude and period)
forA(l) =2.

Since for dynamical weak violation of the pauli princi-
ple A(1) = 2, Egs. (52a) and (54) for W, do not coincide
even when the probabilities W, and W\, vanish (now only
on account of the specific interaction constants g0 and gg,).

Therefore, the transition process |0) = |1) ““feels” the
existence of the state |2) even when it is not involved in the
transitions. This effect apparently can be used for the experi-
mental search for objects obeying intermediate statistics (in
addition to the phenomena suggested in Refs. 43 and 46).

* Translation Editor's Note. The Russian use of a bar over a pair of inte-
gers to denote an inclusive range is retained here and throughout the
article.
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