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The transition from regular to random motion is studied for collective nuclear processes with
large amplitude. The connection between the features of the dynamics and the geometry of the
potential-energy surface is studied. Some two-dimensional dynamical systems, including
quadrupole surface vibrations of nuclei and induced nuclear fission, are studied in detail. Some
quantum manifestations of classical stochasticity are investigated, in particular the connection
between the statistical properties of the quantum energy spectra and the nature of the motion—
regular or random—in the classical limit. For potentials with a localized region of negative
Gaussian curvature there is found to be a triple transition: regularity—chaos-regularity, and its
influenice on the statistical properties of the spectrum is investigated.

INTRODUCTION

Collective nuclear motions of large amplitude, leading
to a radical rearrangement of the ground state, yield impor-
tant information about the structure of nuclear matter and
the interaction of the nucleons in it. However, to describe
such collective motions theoretically it is necessary to go
beyond the traditional methods, which are based largely on
linear approximations. In addition, the overwhelming ma-
jority of the problems that can be solved in nuclear physics
are one-dimensional or are artificially reduced to such prob-
lems by the use of an approximate symmetry of the problem
or the separation of some dominant degree of freedom (such
as the fission coordinate in the description of fission) and the
neglect of “secondary” degrees of freedom. It is assumed
tacitly that allowance for the neglected degrees of freedom
cannot radically change the results of the one-dimensional
problem.

The treatment of the nucleus as a multidimensional
nonlinear dynamical system (described, in particular, by
Hamiltonian equations of motion) permits the existence,
under certain conditions, of not only the well-studied regu-
lar solutions of the equations, of motion but also fundamen-
tally new dynamical regimes for which the motion of the
nuclear matter is indistinguishable from a stochastic motion
even though there is absolutely no external source of sto-
chasticity."™ Using for the epithet random the synonyms
chaotic and stochastic, we can assert that for the nucleus, as
for any nonlinear dynamical system, these concepts ade-
quately reflect certain fundamental intrinsic properties
which represent an important and interesting subject of in-
vestigation.

Collective excitations of nuclei are traditionally de-
scribed in the framework of phenomenological models,>® in
which nuclear matter is treated as a fluid possessing definite
properties of inertia, elasticity, and viscosity. Each such
model is adapted to the description of just a few experiments
and requires the introduction of a set of parameters whose
relation to the original nucleon—nucleon interaction is out-
side the scope of the model. The assumption that the collec-
tive motions are adiabatic, i.e., that the collective velocities
are small compared with the single-particle velocities of the
nucleons in the nucleus, permits an expansion of the total
energy in a series in which a restriction is made to the terms
quadratic in the collective velocities and, thus, a casting of
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the Hamiltonian into the form that is usually postulated in
phenomenological models:

Hp, 0)=L 4+ U ), (h

where q is the collective coordinate, and p is its canonically
conjugate momentum. However, in contrast to phenomeno-
logical models, the parameters of the adiabatic collective
Hamiltonian are directly related to the original effective in-
teraction of the nucleons in the nucleus. The dynamics of the
collective motions is determined, in general, by a nonlinear
nonseparable collective potential U(q). By means of a ca-
nonical transformation (p,q)= (P,Q), the Hamiltonian
(1) can be reduced to the form

H(P.Q =H,y (P.Q + eV (P.Q)e<1, (2)

where H, is an integrable Hamiltonian, and Fis a nonlinear
and nonintegrable correction.

The classical concept of integrability, which derives
from Poincaré, relates this property to the existence, along-
side the energy, of additional single-valued integrals of the
motion, which correspond to a “hidden” symmetry of the
problem. More rigorously, Liouville’s theorem” states that a
Hamiltonian system with &V degrees of freedom is integrable
if there exist & single-valued integrals of the motion in invo-
lution. In other words,” the property of integrability is tanta-
mount to the possibility of decomposing the motion into ele-
mentary components. In the integrable case, motion on a
torus is an elementary dynamical component, and it can be
conveniently described in angle-action variables. In these
variables, the Hamiltonian (2) takes the form

H (1, 0) = Hy (1) + ¢V (1, 0). (3)

The prediction of the behavior of a nonlinear system
described by such a Hamiltonian (Poincaré regarded this
problem as the main problem of dynamics’) was traditional-
ly based on one of the following two versions. According to
the first, the weak (as measured by the small £) perturbation
leads merely to a smalil shift of the frequencies and to the
appearance of small combination harmonics. In this case, as
in the exactly integrable case, the system is characterized by
N integrals of the motion, though admittedly they are now
approximate. But the second version supposes that even a
weak perturbation can lead to a significant distortion of the
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unperturbed motion, destroying the corresponding integrals
of the motion and transforming it into stochastic motion.
While the first approach appeared natural, the adoption of
the second, at least for systems with a small number of de-
grees of freedom, encountered difficulties. The last 30 years
has witnessed the difficult recognition that stochastic mo-
tion is as common a phenomenon in systems with more than
one degree of freedom as is ordinary quasiperiodic motion.
Examples of stochastic motion have been found in practical-
ly all branches of physics,”™ and their number is increasing
steadily all the time.

The mechanism which ensures the existence of stochas-
tic regimes in strictly deterministic systems is local instabil-
ity. This has the consequence that initially neighboring tra-
jectories separate exponentially in the phase space:

d (t) = d (0) eht, (4)

where d is the distance between two points in the phase space
belonging to different trajectories. More precisely, by sto-
chasticity one can understand the appearance in the system
of statistical properties on account of local instability.

Let f{z) and g(z) be two arbitrary functions of the coor-
dinate z(¢) = [g(¢), p(1)] in the phase space. The evolution
of the system is determined by an operator T,

Ta(y=z(t+T) (5)

and the evolution of an arbitrary function of z can be repre-
sented in the form

fet+D=87f(@8=FfT¢1. (6)
We define the correlation function

R(fe| D)= (S;+7, 2)— (), (7

where { /') = jf(z)dpdq. One can show' that from the local-
instability property (4) there follows the property of mix-
ing—the destruction of the correlations:

Lim R (f, g | T)~ et (8)
T-—+o0

Moreover, the growth rate (% ) of the local instability deter-
mines the correlation decoupling time:

he~ (R}, (€))]

This relation establishes the connection between the dynam-
ics of the system and its statistical properties.

The local instability of the trajectories makes the prob-
lem of specifying the initial conditions in classical mechanics
as fundamental as the uncertainty principle, i.e., the problem
of measurements in quantum mechanics. The traditional de-
terminism of classical mechanics, based on identification of
the physical world with a mathematical continuum, presup-
poses the possibility of specifying initial conditions with ab-
solute accuracy, a manifest nonsense. “Tt has always seemed
to me remarkable that there should exist a domain—me-
chanics—and a classical physics formed in its image in
which everything is absolutely exact and free of the uncer-
tainties that usually control life and human thought. There-
fore, I see the elimination of the imaginary accuracy realized
by modern physics as progress in the effort to achieve a uni-
fied view of the world... . Tt would be sensible to formulate
classical mechanics too in a statistical form from the very
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beginning.™ For systems subject to local instability a statis-
tical description is the only one possible.

The foregoing general considerations are confirmed by
direct observation of random regimes in the mathematical
modeling of nuclear reactions with heavy ions'’:

*He 4 YC; 2C 4 12C (0%)); *He -+ **Ne,

T

The authors of Ref. 10 succeeded in dividing all their solu-
tions of the time-dependent Hartree-Fock equations into
three classes: periodic, quasiperiodic, and stochastic. To
classify the solutions, they analyzed the multipole moments
of the nuclear density:

My ()= ey oy () os (v, ), (10)
where

LU Mo v
The anticorrelation function

Cre()= | o€t | My, (o) |2 (12)

-0

is rapidly damped for the isoscalar quadrupole mode
(L =2, T=0), so that the collective motion described by
this mode can be classified as stochastic.

Chaotic dynamics, which represents one of the most
general forms of evolution of a nonlinear system, is realized
only in definite regions of the parameter values. This circum-
stance makes it necessary to answer the following questions:

1. Can one observe dynamical chaos in processes char-
acteristic of collective nuclear dynamics?

2.Ifitis possible, at what critical energy does the transi-
tion from regular to random motion occur?

3. What features of stochastic dynamics are manifested
at energies above the critical value?

In this review we attempt to find at least partial answers
to these questions.

THE CRITERION OF NEGATIVE CURVATURE

Understanding by stochastization the appearance in a
system of statistical properties due to local instability, we
acquire the attractive possibility of identifying the param-
eter values at which local instability arises in the system with
the transition to chaos. Unfortunately, the situation is in
reality more complicated; for all existing criteria of stochas-
ticity based on investigation of local instability have a well-
known'' shortcoming—Iloss of stability of regular motion
does not necessarily lead to chaos. Instead, a transition to a
different and more complicated type of regular motion is, in
general, possible. Moreover, the very assertion that local in-
stabilities determine the global dynamics of the system is
controversial. Objections are also brought against individual
details in the derivations of specific criteria of stochasticity.
Despite these serious limitations, present experience '™ per-
mits the conclusion that criteria of this kind give an impor-
tant indication of transition from ordered to chaotic motion
and in conjunction with numerical experiment greatly facili-
tate the analysis of multidimensional nonlinear motion.

Numerous criteria of stochasticity are based on direct
estimation of the rate of separation of neighboring trajector-
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ies in the phase space. We investigate® the behavior of two
initially neighboring trajectories {q, (¢), p, ()} and {q, (1),
p, (). The linearized equations of motion for the devia-
tions

E@) =q (t) — gz () n ()
have the form
B =mn)=—3@®)5 (14)

where § (¢) is the matrix constructed from the second deriva-
tives of the potential F(q), calculated along the fiducial tra-
jectory q, (¢):

=p (@) —p: () (13)

a2V
dg; 3¢5 |g=qu(t)’

Si; ()= (15)

The stability of the motion of the dynamical system de-
scribed by the Hamiltonian

Hp, q)=p/2+V(q), (16)

is determined in the N-dimensional case by the 2NV X 2¥ ma-
trix

(17)

where 0 and I are the zero and unit N X N matrices. One can
find a time-dependent transformation 7 such that

(IT (1) 7155 = & (1) 835 (18)

If at least one of the eigenvalues A, is real, then the separation
of the trajectories grows exponentially, and the motion is
unstable. Imaginary eigenvalues correspond to stable mo-
tion. In general, the eigenvalues and, therefore, the nature of
the motion change with the time.

To diagonalize the matrix I"(¢), we must first solve the
original equations of the motion, and this makes it difficult
to carry out the task. The problem can be 51gn1ﬁcant1y sim-
plified by assuming that the time dependence S(t) can be
eliminated by replacement of the time-dependent point q,
(¢) of the phase space by a time-independent coordinate g.
This reduces Egs. (14) for the variations to a system of au-
tonomous linear differential equations:

E=m n=—S(9& (19)

in which the coordinate q is regarded as a time-independent
parameter. The problem of investigating the stability of the
motion is then greatly simplified. Thus, for a system with
two degrees of freedom the equation for the eigenvalues of
the matrix I" taken the form

—J 0 1 0
0 e 0 1
det —‘;27‘,;' _% —% 0 (20)
2
~m —&f 0%
Its solution is
Mgae=[—b=V2—4e"?, (21)

where
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P
b= SIJS(Q)r- aqz + ol
_ dok By BV BV a2V 2 (22)
e=det- Slo)= g _(fwlaqg)

We shall assume that 5> 0. Then under the condition that
¢> 0 the solutions A are purely imaginary and the motion is
stable. For ¢ <0, the pair of roots becomes real, and this
leads to exponential separation of neighboring trajectories,
i.e., to instability of the motion. The determinant ¢ has the
same sign as the Gaussian curvature K(g,,g,) of the poten-
tial-energy surface:

Lo A

aqi ;‘g_g - \ 643342 i
[1+(E) +( dg, ) :I
This association suggests > the possible existence of the fol-
lowing scenario for the transition from regular to random
motion based on investigation of the Gaussian curvature of
the potential-energy surface.

At low energies, motion near the minimum of the po-
tential energy, where the curvature is certainly positive, is
periodic or quasiperiodic in nature and is separated from the
region of instability by a line of zero curvature. If the energy
is increased, the “particle” will for a time be in the region of
negative curvature of the potential-energy surface, where
initially neighboring trajectories separate exponentially, and
at large times this will ultimately lead to a motion that mi-
mics random behavior and is usually called stochastic. In
accordance with this scenario of stochastization, the critical
energy of the transition to chaos is equal to the minimal
value of the energy on the line of zero Gaussian curvature.

We now investigate the influence of the curvature of the
potential-energy surface on the dynamics of a Hamiltonian
system, '’ taking as an example the three-parameter family of
potentials

KA{q, g2)= 23

Viz, y; 4, B, p)= wa—l- S M+ (42" By,  (24)
We restrict ourselves to the case 4 > 0, B > 0, which ensures
the existence of a minimum of the potential energy at the
origin. For the parameter values 4 =B=1, u = — 1 the
potential (24) reduces to the well-known Hénon—Heiles po-
tential,'"* which has become the traditional testing ground
for new ideas and methods associated with the investigation
of stochastization in Hamiltonian systems. In connection
with the problem of integrability another set of parameters,
A=B=p=1, which leads to the so-called modified
Henon—Heiles potential, has also become very well known.

The Gaussian curvature of the considered potential-en-
ergy surface vanishes at the points that satisfy the equation

— u7 (g — y) = By, (25)
where
1 B 1 B
Vo= — 3 U= Ro= — (10} %= —
(26)

Forp < Otheline of zero curvature of the potential (24) isan
ellipse that for the Hénon-Heiles potential degenerates into
acircle (Fig. la):

22 4+ y® = 1/4. (27)
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FIG. 1. Contours of the Hénon—Heiles
potential (a) and the modified Hénon—
Heiles potential (b). The broken lines
and curves are the lines of zero Gaussian
curvature.

In the case 1 > 0 the zero-curvature line is represented by the
branches of a hyperbola, these degenerating for the modified
Hénon-Heiles potential into two straight lines (Fig. 1b):

y=4z—1/2. (28)

For the potential (24) the energy on the zero-curvature
line is determined by the expression

Vg K=0)= 2+ B(1—»)y*

+%—AB(2—M)y+%A2B. (29)

We consider in more detail the situation when the zero-
curvature line is a closed curve (i <0). Then within the
interval Jy — Ry, y + R, [ the function V(y:K = Q) attains
its greatest value at the point ¥ = 1/4(B /u ). For x < | the
value of the energy

V(5 K =0)= g3z % (x+3) (30)

is equal to the minimal energy ¥V ;, (K =0) on the zero-
curvature line and, in accordance with the scenario of sto-
chastization that we are considering, is the critical energy at
which the transition from the stable regular motion to the
unstable chaotic motion occurs. For 2> 1, the minimal val-
ue of the energy on the zero-curvature line is attained at the
edge of the interval, at one of the points y, + R, and

1 B3
len(KTZO):EF' (31)

In particular, for the Hénon—Heiles potential (x = 1).

| 5 1 Bd 1 B 1
Vi (K =0)= gz 5 #* (x +3)= 5z =13 -

(32)
In the case g >0 (the branches of the hyperbola form the
zero-curvature line), the minimal value of the energy is al-
ways attained at the point ¥ = 1/4(B /i) 2. In particular, for
the modified Hénon—Heiles potential (e = — 1).

me(K:O)LZ%s;:uz(x—I—B):%. (33)

The values predicted above for the critical energy of the
transition to chaos agree well with the results of numerical
solution of the corresponding equations of motion. For the
numerical investigation of nonliner Hamiltonian systems
two main methods are traditionally used: the method of
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Poincaré maps and study of the rate of separation of neigh-
boring trajectories. The method of Poincaré maps is particu-
larly effective for systems with two degrees of freedom and a
phase space of four dimensions. Because the energy is con-
served, the trajectory of the “particle” lies on the three-di-
mensional surface H(x,x,p,p) = E. Eliminating one of the
variables, for example, %, we consider the points of intersec-
tion of the phase trajectory with the plane x = const
(x = 0). In the general case they will be randomly distribut-
ed over some part of the (,7) plane bounded by a separatrix.
If in addition to the energy there is a further integral of the
motion I(y,j) = const, then the successive crossings of the
trajectory will lie in our chosen plane on some curve
¥ = f(). Therefore, analysis of the Poincaré maps can es-
tablish the existence of additional integrals of the motion
and, therefore, establish which type of motion is realized in
the system for given values of its parameters in a definite
region of the phase space.

Figure 2 shows the Poincaré maps (plots) for the
Hénon-Heiles potential and the modified Hénon-Heiles po-
tential at the saddle energy. Their striking difference—
dynamic chaos in the first case and quasiperiodic motion in
the second—is due to the following circumstance. As is well
known, systems with two degrees of freedom are integrable
only in exceptional cases. In particular, various approaches®
give for the Hamiltonian

=5 (@4 ) +V (2, y; 4, B, ), (34)

where V(x,y,4,B,) is determined by the expression (24),
the following conditions for integrability:

DHDu=14=28,
2) pt = 6, A and B arbitrary;
3)u=16, B=16A.

Condition 1 exactly corresponds to the modified Hénon—
Heiles potential, which by the simple substitution x = u + v,
¥ = u — v reduces to a separable and, therefore, integrable
potential. However, even a small perturbation of the param-
eters of the potential, leading to the nonintegrable situation,
enables us to observe chaos in the modified Hénon—Heiles
potential as well. Figure 3 shows the Poincaré maps for dis-
torted (4 /B = 0.8) Hénon—Heiles and modified Hénon-
Heiles potentials. Figure 3a does not differ qualitatively
from the unperturbed case (Fig. 2a), but the Poincaré map
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FIG. 2. Poincaré maps for the Hénon-Heiles potential {a) and the modi-
fied Hénon-Heiles potential (b) at the dissociation energy.
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FIG. 3. Poincaré maps for the distorted (4 /B = 0.8) Hénon-Heiles po-
tential (a) and the modified Flénon—Heiles potential (b),

of the perturbed modified Hénon—Heiles potential contains
all the characteristic features of stochastic motion.

Poincaré maps permit a perspicuous representation of
the phase-space topology. However, to estimate the extent of
the disorder, it is convenient to use the circumstance that the
separation between initially neighboring points that liein the
chaotic region of the phase space increases exponentially as a
function of the time, whereas in the case of ordered motion
there is only linear growth. We define'® a measure of local
separation of the trajectories:

T

ka (¢, 2 d)=— 2 In :jﬂ“ , (35)

i=1

where d, and d; are the separations in the phase space
between the trajectories at the times (= 0(d,) and ¢,
=t /n(d,), and n is the number of divisions of the trajector-
ies. It follows from numerical calculations that if 4, is not
too large, then:

1) lim, _ . &, (t.z,dy) = k(t,z0,d,) exists;

2) k(t,z,.d,) does not depend on ¢;

3) k(t,z4,d,) does not depend on d,,;

4) k(t,zy,d,) = 0ifz,is chosen in a regular region of the
phase space;

5) k(t,z4,d, ) does not depend on the choice of z; if z;, 1s
chosen in the chaotic region of the phase space, and
in this case

k (¢, zo, do} > 0- (36)

Properties 2, 3, and 5 make it possible to speak of £(E) in-
stead of k(1,zy,d, ) when z; belongs to the chaotic region of
the phase space. Properties 1-3 can be explained'® on the
basis of the connection between k(t,zy,d,) and the Lya-
punov characteristic exponents, but at the present time
properties 4 and 5 must be regarded as empirical. Neverthe-
less, the construction (35) is not only a natural parameter
that determines the degree of development of stochasticity in
the system and one convenient for numerical calculations
but is also intimately related to the so-called dynamical en-
tropy,!” which represents the rate of change of the coarse-
grained entropy of a Hamiltonian system.

To prove the existence of a correlation between the mea-
sure k, of the local separation of trajectories and the Gaus-
sian curvature of the potential-energy surface, we investigate
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K o1
-3k /
| d1,0 FIG. 4. Dependence of
B N the Gaussian curvature K
(continuous curve) and
B / 7 measure of the local sepa-
B Y, 7 ration of trajectories &,
~ f/ = (broken curve) on the
= — -45 choice of the initial con-
- o . ditions (x = 0).
1 1 1 1 1 1 I | |
[/ 0,5 A0 Yo

the dependence of this quantity on the choice of the initial
conditions. Figure 4 shows such a dependence for the Hén-
on-Heiles potential. The initial points were chosen on the y
axis; the region 0 <y < | corresponds to positive values of the
Gaussian curvature K, while in the region L <y < 1 the Gaus-
sian curvature becomes negative and reaches the value
K = — 3atthesaddle pointat y = 1. With increasing Gaus-
sian curvature the parameter k, also increases. In the nu-
merical calculations values of &, in the interval 0.01-0.001,
with ¢ ~ 1, were used.

To describe the dynamics of the system for energies ex-
ceeding the critical value, it is necessary to study the depend-
ence of k, on the energy at large times. In this case, &, ceases
to depend on the initial conditions if they are chosen in the
chaotic region, and, as we have already noted, it is a conven-
ient measure of the extent of chaos in the system. The trajec-
tory calculations over large time intervals necessary for this
purpose can be avoided by using the ergodicity of the chaotic
component of the motion. We calculated &, over very short
time intervals (T~ 5t), but with averaging over the phase
space (about 1000 initial values). The results, given in Fig.
5, were, as expected, close to the data of Ref. 15 correspond-
ing to trajectory calculations for times 7'~ ( 10*-10%)z. This
dependence of k, on the energy reflects the well-known
growth of stochasticity in the Hénon-Heiles potential ob-
tained from analysis of the Poincaré sections. '

Using this method to determine the measure &, of local
separation, we were able to investigate the nature of the mo-
tion in the potential (24) for variation of its parameters in

k.ﬂ
0,751

10}

0,05+

0
4,z 04 0,6 0,8 1o 1,2
E/Eg

FIG. 5. Energy dependence of &, for different methods of averaging: with
respect to the time (black circles, data of Ref. 15) and with respect to the
initial values (open circles). The continuous curve corresponds to the
exponential dependence that approximates &, in accordance with the data
of Ref. 15; E,, is the dissociation energy.
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0.2 Ky H2 J_s s FIG. 6. Dependence of the mea-
’ sure of local separation, k. the
| | 2,0 Gaussian curvature, K,, and

Kn it the mean curvature, H,,, at the
a1k -7 saddle points on the parameter
2. The energy is equal to the dis-

- M sociation energy.

wide ranges. Figure 6 gives k,, at the saddle energy as a func-
tion of the parameter 5 = (A4 /B)u and also the Gaussian
curvature K, and mean curvature H, = Sp S(q) as functions
of the same parameter. It can be clearly seen that a deviation
of the parameter from unity leads to a decrease of the mea-
sure of dynamical chaos in the system and that this decrease
is clearly correlated with the decrease of the curvature at the
saddle points.

Thus, numerical calculations of the dynamics in the
considered family of nonlinear potentials confirms the part
played by the curvature of the potential-energy surface in the
occurrence of the instability that leads to the transition from
regular to chaotic motion.

DYNAMICS OF FINITE MOTION IN POTENTIALS WITH
SEVERAL LOCAL MINIMA

The example just considered—the dynamics of the sys-
tem described by the generalized Hénon-Heiles potential—
supports the idea that the criterion of negative curvature
gives an important indication of the transition from regular
to chaotic motion. Its use for numerous Hamiltonian sys-
tems led to promising results.'® The interpretation of nega-
tive curvature of the potential-energy surface as the source of
local instability permits well-known grounded prediction of
the existence of chaotic regimes in a studied system and also
estimation of the region of energies in which the transition to
these regimes occurs. The effectiveness of the approach
based on analysis of the potential-energy surface is enhanced
by its generality, which permits its application to a large
class of nonlinear Hamiltonian systems irrespective of their
particular nature.

Although in numerous cases the negative-curvature cri-
terion correctly predicts the critical energy of the transition
to chaos, we must not forget that we are dealing here, not
with a rigorous criterion, but only with a weak indicator of
loss of stability of a certain type of regular motion, and that
this loss need not, in general, lead to chaos. In part, the limi-
tation of the criterion is due to the assumptions made in its
justification, the key step being the transition from the non-
autonomous equations (14) to the autonomous equations
(19) by replacement of a coordinate that lies on the fiducial
trajectory by an arbitrary phase coordinate. Such a proce-
dure can be justified only over a sufficiently short time inter-
val, during which the matrix I" can be regarded as approxi-
mately constant. In this sense our stability analysis has a
rigorously local nature and leaves open the question of the
connection between local instability and the global behavior
of the system.

The complexity of the situation is well illustrated by the
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dynamics of finite motion in potentials with several local
minima. A Hamiltonian system with a potential-energy sur-
face possessing several local minima provides a fairly simple
model in the framework of which one can describe the main
features of the dynamics of the transition between different
equilibrium states, inciuding important transitions such as
chemical reactions, nuclear fission, etc. Being richer than in
the case of potentials with a single minimum, the geometry
of such a potential-energy surface permits the existence of
several critical energies even for a fixed set of parameters of
the potential. This circumstance leads to the existence, for
such potentials, of mixed states, i.e., at the same energy dif-
ferent dynamical regimes are realized in different minima.

The specific features of the problem can be demonstrat-
ed by the example of the Hamiltonian

H:%-(.:TZ—F‘!}?)+%y4+x2y+ax2—y3. (37)

The mass parameters for the two independent directions
have been taken to be equal, since the discovery of stochasti-
city for equal mass parameters guarantees its existence as
well for the case when they are different.

The geometry of the two-dimensional single-parameter
potential

Viz, y; a):%y‘+x21f+a:cz—y2 (38)

is determined by five (for @ > v2) critical points: two minima
of equal depth, the first of which, with coordinates x = 0,
y= — v2, we shall in what follows call the left well and the
second, with coordinates x = 0, y = v2, the right well, and
three saddles with coordinates x = + Ja* —2a, y= —aq,
and x = 0, y = 0. The parameter a determines the potential
energy at the side saddles:

V{z=+ Va3 —2a, y=—a)=% at—a? (39)
The energy of the saddle at the origin does not depend on a
and is equal to zero. Therefore, for negative energies the
motion will be localized in an individual well. For a = 2
(this case will be investigated in the most detail) the energies
at all the saddles are equal.

We now estimate the critical energy of the transition to
chaos using the negative-curvature criterion. In this case,
the problem reduces to finding a conditional extremum—
the minimum of the potential energy on the zero-curvature
line. This line is described by the equation

v + a) By —

For a = 2, we arrive at a value of the critical energy that is
the same for the two wells and is equal to

2) — 227 = 0. (40)

E, = Vpm (K =0) = —5/4. (41)

We now turn to an analysis of numerical solutions of the
equations of motion generated by the Hamiltonian (38).
Figure 7 gives Poincaré maps for different energies (@ = 2)
that demonstrate the transition from regular to chaotic mo-
tion for the two minima. The motion represented in Fig. 7a
has a clearly expressed quasiperiodic nature for both the left
and the right well. Note the difference in the structure of the
Poincaré maps for the different minima, namely, the compli-
cated structure with several fixed points at the left minimum
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FIG. 7. Poincaré maps for the potential (37) at different energies: a}

and the simple structure with a single fixed point at the right
minimum. As the energy is raised, we observe a gradual tran-
sition to chaos, but the change in the nature of the motion of
the trajectories localized in a particular minimum is very
different. Whereas for the left well an increase of the energy
to about half the saddle energy (Fig. 7b) results in a gradual
transition to chaos and its increase to the saddle energy (Fig.
7¢) has the consequence that practically all initial condi-
tions lead to chaotic trajectories, the motion at the same
energies in the second minimum remains quasiperiodic.
Moreover, even at an energy appreciably exceeding the sad-
dle energy there still remains in the right well an appreciable
fraction of the phase space that corresponds to quasiperiodic
motion.

Analysis of the Poincaré maps permits the introduction
of a critical energy of transition to chaos, this being defined
as the energy at which the proportion of the phase space with
random motion exceeds some arbitrarily chosen value. The
indefiniteness is due to the absence of a sharp transition to
chaos for any critical value of the perturbation to which an
integrable problem is subjected. Therefore, when an “‘ap-
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proximate’ critical energy obtained by numerical modeling
is compared with a *‘critical” value obtained by means of
analytic estimates, i.e., on the basis of various criteria of sto-
chasticity, a certain care must be exercised. Figure 8 shows
the measure of the growth of chaos in the left well as a func-
tion of the energy as obtained by means of analysis of the
Poincaré maps. The arrow indicates the value of the critical
energy found from the negative-curvature criterion. At this
energy the stochastic component of the motion reaches
about 10% of the accessible phase space.

Thus, the critical energy determined by the negative-
curvature criterion for the left well agrees well with the criti-
cal energy obtained by numerical modeling but contradicts it
for the right well, where the numerical modeling reveals the
appearance of chaos only when the saddle energy has been
reached. This contradiction forces us to resort to stochasti-
city criteria based on the theory of nonlinear resonance in
multidimensional systems.

One of the first widely used criteria for the transition to
chaos is the so-called criterion of overlapping of nonlinear
resonances.'” According to this criterion, the occurrence of
local instability in a Hamiltonian system is due to the touch-
ing of the separatrices of individual nonlinear resonances.
The scenario of the transition to chaos based on the overlap-
ping of resonances is as follows.* The averaged motion of a
system in the neighborhood of an isolated nonlinear reso-
nance in the plane of the action—angle variables is similar to
the behavior of a particle in a potential well. To some reson-
ances there correspond several potential wells. Overlapping
of the resonances means that the potential wells approach
each other in such a way that a random walk of the particle
between them becomes possible.

This approach must be somewhat modified for systems
that are described by a Hamiltonian with a single resonance
term. In this case, the occurrence of large-scale stochasticity
is due?! to the breakup of the stochastic layer near the separ-
atrix of the unique resonance. The essence of the modifica-
tion consists in the approximate reduction, in the neighbor-
hood of the resonance, of the original Hamiltonian to the
Hamiltonian of a nonlinear pendulum interacting with a pe-
riodic perturbation:

L vt Meceosz—Pcosk(z—t).  (42)

H@, z, )=~

The width w of the stochastic layer of the resonance is*

w ~ pete/ pk+t, (43)
where
o = 2MY*/mk. (44)

If P /M has the order p°, then

Bolotin et al. 378



we~ p~heTl/o, (45)

where

A=2k + 1 —s. (46)
For

pi = [1— (1 +2)-172] (47)

the function w(p) has a point of inflection. The rapid growth
of w makes it possible to determine the threshold of the
breakup of the stochastic layer as the value

pe = A I(L 4+ W2 — 1] (48)

of p at which the tangent to the point p, of the function w
intersects the p axis.

We use this method to find the threshold of the transi-
tion to large-scale stochasticity of the system described by
the Hamiltonian (37). This Hamiltonian in coordinate sys-
tems with origins at the left well (upper sign) and right well
(lower sign) has the form

H :%— (@2 4+ 0la?) +“-1.z— (2 o))+ a2y F V254 —;1; 7

(49)
where
0 =12 @F VD2, 0,—2. (50)
Fora =2,
1,0824,
"’l""“[ 2,6131. (513

We make a canonical transformation to action-angle vari-
ables:
242 2. 2 .
x_( ®y ) e P ¥ _( Wy ) e qjg, } (52)
z= (25,012 sin ¢, J= (2.750)172 sin (.

In these variables, the Hamiltonian (49) becomes

H(Jy, d9i @4 @) =Hy(Jyy J0)

-+ 26’5& Fmym, (J15) €08 (M4 -+ May); (53)

¥:10, 11, [0, 2], [0, 3], [0, 4, [2, 1], [2, —1],
where
Ho (30 95) =+ Gyo-+ 224,
foe==% (‘72) B

s
oo =52
02 w2’ w;

o m—
e
=
(o2

e e e

(34)

=3

w} '’

3
4
8

H
]
o
P
(%]
N
L]
2
=
&
B2

fua= fZi:fz,—i:E'_
The term with indicesr = (r,,r, ) is called a resonance term
for the given value E of the energy if there exist action vari-
ables (/.7 ) such that £ = H,(.#.#7% ) and

rowy (U5, 5) -+ 120, (7, J7) =0, (55)
where
W; = OH /88, (i=1, 2). (56)
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If at energies corresponding to finite motion ( — 1 < E <0)
we are sufficiently far from the resonance, i.e., for all (m,,
m,)

Mgy 4 M@y ] 3 fon,im,, (57)

then we can, avoiding the problem of “‘small denominators,”
make a canonical transformation to new action-angle vari-
ables that eliminate the angular dependence in the lowest
order in the small parameter identified with the energy. The
result of this procedure is a redefinition of the integrable part
Hy(F .#,) of the original Hamiltonian and an extension of
the set £~ of terms that depend on the angles. One of the
following three cases is then obtained:

1) as before, there are no resonance terms in the region
of energies in which we are interested;

2) a single resonance term arises;

3) several resonance terms arise.

In the first case we make a new canonical transforma-
tion and continue this procedure until we encounter situa-
tions 2 or 3. In the second case the critical energy at which
the transition to large-scale stochasticity occurs can be de-
termined by the method of the breakup of the stochastic lay-
er,”' whereas to find the critical energy in the third case one
can use the criterion of overlapping of resonances. '

Near the resonance a small mismatch,

|40, - 11505 < Framys (58)

can be compensated by terms of higher order obtained by
means of a further canonical transformation of the nonre-
sonance terms. In the case ¢ = 2 the condition (58) of a
weak mismatch is satisfied for the resonance (2, — 1), and
the procedure outlined above leads to the expression

35

4oy -5

Ho=Jio+ Jpr— 1+ - Qg—mgf
3V2 1 Ja1d
H = 5 — s =

In the left well we retain from the angle-dependent terms
only two: the resonance term
1/2
5 21 (222 )" cos (29, (60)
2

2 Wy

and the “pumping” term®’
V2 3 1 -
W[W-FE] 135 cos (20, —2q), (61)
the direction m of which is the closest to the resonance r.
After this, direct application of the criterion of breakup of
the stochastic layer leads to the value of the critical energy in
the left well:

E, ~ —0.51, (62)

which agrees well with the result of the numerical solution of
the equations of motion. Direct analysis of the integrable
part of the Hamiltonian (59) shows that in the right well
there are no resonances, so that, in complete accordance
with the numerical results, the transition to large-scale sto-
chasticity is possible only when the saddle energy is reached.

POTENTIALS OF THE LOW UMBILIC CATASTROPHES AND
BIRKHOFF-GUSTAVSON NORMAL FORMS

The mixed state demonstrated in the previous section is
typical for a large class of two-dimensional potentials with
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Table I. Potentials of umbilic catastrophes.

Potential Germ Perturbation Conditions M ‘ Topology Epy Ep E.,
1 3 a=1 1 1
Dy —_— A yi—b ==_q2 - R
1 w2y —a § ay? —by b=a b 3/4 ]>‘ 7 0 1
1 1 a=2 5
D 2 =g % — by? s ol ﬁ —1 0 —
5 2%y ad az?—by b 7 b1 g
1 2 gt 2 )
Dy aty — =y ay—by+ cz? 4=8" - > gty 2 | _sus
] c=2a g 5 5 ’
c=2
PR a=1/2
1 =5t 1
Dy a2ty + 5yt ay* 4 by® 4 ca® 2 b—3/8 0 0 = 0 o
e=2Va C!—'V? R R ,03

*The energies of all saddle points are equal to E,, and the energies of all minima to E,,.

Note. If the conditions of Maxwell* are satisfied, the energies of all saddle points are equal to E p, and the energies of all minima to E ..
The symbol R identifies minima at which chaos commences only when the saddle energy is reached; the symbol S, minima for which the

critical energy can be determined by the negative-curvature criterion.

several local minima. We have restricted ourselves to the
investigation of potentials of degree not higher than the sixth
and symmetric with respect to the x = O plane. However,
even under such restrictions the possible set of potential
forms, which depend, in general, on 12 parameters, is t00
large. To reduce the volume of work, but still remaining fair-
ly general, one can use the methods of catastrophe theory.**
According to it, a fairly large class of polynomial potentials
with several local minima is encompassed by the germs of
the lowest umbilic catastrophes of the type D, , D, D, D,
subjected to definite perturbations. Thus, the potential (24)
of Hénon—Heiles type is identical, apart from linear perturb-
ing terms, to the elliptic umbilic D, (Ref. 23).

Table I gives the values of the critical energy for the
lowest umbilics as determined by the method of Poincaré
maps and the negative-curvature criterion. For all minima
possessing a complicated structure of the Poincaré maps
with several fixed points the critical energy obtained by the
negative-curvature criterion is close to the one obtained by
numerical solution of the equations of motion. For the mini-
ma that possess a unique elliptic fixed point, chaos is ob-
served only when the saddle energy is reached. This observa-
tion permits use of the following method to determine the
critical energy. Having studied the structure of the Poincaré
maps at low energies in each of the local minima, one can
imnediately identify those of them in which the critical ener-
gy can be determined by the negative-curvature criterion. In
the remaining minima, the critical energy must be identified
with the saddle energy. This method is much simpler than
the use of criteria for the transition to chaos associated with
some version of the overlapping of nonlinear resonances.

The topology of the Poincaré maps can be reproduced
without recourse to nunerical solution of the equations of
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motion. For this we use the method of studying classical
nonseparable systems proposed by Birkhoff.** If the Hamil-
tonian H(p,q) can be represented in the form of a power
series in which its quadratic terms are a sum of the Hamilto-
nians of uncoupled harmonic oscillators with incommensu-
rable frequencies, then there exists a canonical transforma-
tion (p,q)— (,M) such that the Hamiltonian in the new
variables is a power series in (&7 + 7). Gustayson® modi-
fied Birkhoff's method to the case of commensurable fre-
quencies. When the Hamiltonian obtained in this manner—
the Birkhoff~-Gustavson normal form—is truncated in an
appropriate order in the nonlinearity parameter, it permits
an integrable approximation to the original nonintegrable
Hamiltonian.

We consider the procedure for transformation to nor-
mal form of a Hamiltonian that is a power series in the co-
ordinates and momenta:

Hw V)= H (u,v) + HOu, v) + ..., (63)
where
HO(u, vy= 2> aguld, s=2,3 .., (64)
|41 T3l =s
wt=ubub o wd; i =i4it .. iy

For systems with a positive-definite Hamiltonian H'® there
exists a canonical transformation (u,v) — (gq,p) such that

=

H2(q, p)= 2 %mk(qﬂpi)- (65)

h=1

We shall say that the Hamiltonian H(q,p) is represented in
normal form if
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DH (q, p) = 0, (66)

where

== Su(ngr—rag)- (67)

This condition is equivalent to the requirement of vanishing
of the Poisson bracket of H>’ and H, since

D = —[H®», ...l (68)

The procedure for reducing the Hamiltonian to normal
form can be realized*® by a succession of canonical transfor-
mations, each of which reduces to normal form the unnor-
malized term of lowest order. The generatin g function need-
ed to implement an individual transformation is

F (Pq) = S1Psgs + WP, q). (69)
Rk

The connection between the old (p,g) and new (P,Q) vari-
ables is

W)

AWI(s)
thfh“f*—ﬁ, Pr="F,+

dg

» H(p, q)=T(P, Q),
(70)

where I'(P,Q) is the Hamiltonian in the new variables. Ex-

panding the new and old Hamiltonians in Taylor series near

the points P and g, we arrive at an equation for the sth com-
ponent W of the generating function:

DWEXP, q) = TCOXP, q) — HEYP, q). (71)
To solve this equation, we go over to the variables (v, §):
1 . .15 ;
Phtﬁ('ﬂh+l§h); g =1V 2 (ny— i&), (72)
which diagonalize the operator D:

D~ D(n, E):izmh(ﬁkd—gh—nh%j. (73)

Thesolution of Eq. (71) in the variables 77and £ has the form
W = Dt (T — Jr. (74)

Here, I is a known function, and the function T''" can be
determined by requiring finiteness of W', Therefore, the
function I’ must be chosen in such a way that all the terms
in ' that could lead to vanishin gof the denominatorin the
expression (74) cancel exactly. Such terms are usually®
called null-space terms. Separating in H® the null-space
terms N, we represent the solution (74) in the form

T = N, (75)
W = Dt (He — Ny, (76)

To make this solution unique, it is sufficient to require the
absence of null-space components in the generating func-
tion.

As an example, we give the normal form (uptos=6)
for the Hamiltonian (37) with a = 2 near the right mini-
mum:

H (Ji? 32) = 2,6131J1 -+ 2»}“2— 012194'}’!'72
—0,016752—0,37532
—0,00155; —0,0283523, —0,1222.7, 72 — 0,1328 7. (77)
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Commensurability of the frequencies leads to an exten-
sion of the set of null-space terms. Indeed,

DnmED: =i (m,0, —m,an,) e (78)
and under the additional condition
My®y — myw, = () (79)

D 'y} diverges. To avoid this divergence, the function
T in the case of commensurable frequencies must be cho-
sen in such a way that the additional terms in ' that lead
to divergences cancel. Except for this one point, the proce-
dure of reduction to normal form is identical to that of the
case of incommensurable frequencies.

STOCHASTIC DYNAMICS OF QUADRUPOLE VIBRATIONS OF
NUCLEI

The main subject of study in the traditional theory of
collective nuclear excitations is that of the regular solutions
of the corresponding equations of motion. Although
allowance for nonlinear effects does significantly modify the
collective spectra and excitation probabilities of the corre-
sponding collective modes, it does not lead to a radical
change in the nature of the motion. As we have seen above,
interpretation of the nucleus as a nonlinear multidimen-
sional Hamiltonian system permits under certain conditions
a transition from regular to chaotic motion. In this section,
we investigate this possibility for quadrupole surface vibra-
tions of nuclei described by the the deformation potential®

) e o El
Uay, as) =2 (a4 203 + )/ & csa (601 —at
+ - (a2 4 20302, (80)

where a, and a, are internal coordinates of the surface of the
nucleus undergoing quadrupole vibrations,

R (Br q) = RG {1 T ﬂ'()Yzo (6, (p)
+ s [Yp (0, ) + Yo oo (6, @), (81)

while the constants ¢,, ¢;, and ¢, can be regarded as phe-
nomenological parameters that can be related by means of
adiabatic time-dependent Hartree—Fock theory to the effec-
tive interaction of the nucleons in the nucleus. The potential
(80) represents the lowest terms of the expansion in the de-
formation parameters of the more general expression®’

Ulay, ag)= 2 Cmy (@ + 2a3)"ay (6ag —a3)" (82)

Since the construction of (82) used solely the transforma-
tion properties of the interaction and the symmetry of the
vibrations, this same expression describes the energy of the
quadrupole vibrations of a liquid drop of any nature, the
specific properties of the drop being entirely expressed in the
coefficients ¢, .

In place of the coordinates a, and a, one often uses the
coordinates [ and 3

Ve, .
a,= Peosy; aB:Tﬁsmv, (83)
where 3 is the deformation parameter of an axisymmetric
nucleus, and y is the parameter of “nonaxiality.” To investi-

gate the topology of the potential, it is convenient to go over
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to the coordinates
z=V2a,=Psiny; y=g,=Pcosv, (84)
in which the potential (80) takes the form
Uz, y; @ by €)= a2+
b {2y ) Fe@+yn (85)

i 1
@ = Cy, b——-3]/ i C=56G

or

U, v a b, ¢) =+ aft — - bt cos 3yt (86)

The parameters ¢, €3, €4 (@,0,¢) have been estimated in
various phenomenological models. 8 They vary in such wide
ranges that it is sensible to investigate the potential (85) in
the complete range of parameters. As before, we shall as-
sume equality of the mass parameters for the two indepen-
dent directions.

The potential is a generalization of the Hénon—Heiles
potential investigated in detail earlier in the paper, but, in
contrast to it, the motion in the potential (85) is finite for all
energies. This is particularly important in the quantum case,
in which the potential (85) ensures at all energies the exis-
tence of stationary (and not quasistationary, as in the case of
the Hénon—Heiles potential) states. In addition, the poten-
tial of quadrupole vibrations is, in general, a potential with
several local minima, this giving an extra interest to the
study of the connection between the nature of the dynamics
and the geometry of the potential-energy surface.

We now investigate the family of potential functions
U(x,y;a,b,c), using for this the methods of catastrophe
theory.?> The symmetry properties of the potential (80),
which were studied in detail in Ref. 6, make it possible to
limit the study of the potential-energy surface to the special
case U(ay,a, = 0): All the critical points of the potential lie
either on the linea, = 0 (x = 0) or on lines obtained from it
by an appropriate symmetry transformation. Without loss of
generality, the parameter b can be assumed to be positive—
the substitution b— — b corresponds to the mirror transfor-
mation p— — y.

The set of solutions of the system of equations

U, =0; U)=0;det §=0 (87)

serves in the parameter space as a separatrix dividing it into
regions I, IT, and I11, in each of which the potential function
is structurally stable. On the transition through the separa-
trix b* fac= W = 16 and a = 0 the number and nature of the
critical points change. Figure 9 shows profiles U(x = 0,y) of
the potential (85) at the most characteristic points of the
space of the parameters (a,b,c = const).

We consider briefly the structurally stable regions of
the parameter space. Region I (0<W < 16) includes poten-
tials that have a single extremum—a minimum at the origin.
Analysis of the Gaussian curvature of the potentials that lie
in this region permits its division into three subregions. In
the first, 0 < W < 4, the Gaussian curvature of the potential-
energy surface is everywhere positive, and in accordance
with the scenario of stochastization that relates the occur-
rence of local instability to entry into a region of negative
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F1G. 9. Profiles of the po-
tential U(x = 0,p) of the
potential-energy  surface
5 for the most characteristic
~ points of the parameter
space. The regions of nega-
\\ tive curvature are hatched.

curvature of the potential-energy surface the motion is ex-
pected to be regular. For 4 < W<12, a region of negative
Gaussian curvature is localized at y <0 in the interval

(14 1)

<u< bRV T), (5

For 12 < W< 16, aregion of negative curvature also appears
at y> 01in the interval

5 (1 TR <r< Lk ),
(89)

The energies on the zero-curvature line in the section x =0
of the potential-energy surface for values of Win the interval
4 < W < 16 are shown in Fig. 10. Region IT (W> 16, 2> 0)
includes potentials with two (for x = 0) minima, one of
which, at x = 0, p = 0, corresponds to a spherically symmet-
ric equilibrium shape of the nucleus, while the second corre-
sponds to a deformed nucleus. These two minima are sepa-
rated by a saddle point, in the neighborhood of which the
Gaussian curvature of the potential-energy surface is nega-
tive. Finally, on the transition through the separatrix ¢ = 0,
which separates regions II and I1I, we encounter potentials
that describe nuclei which are deformed in the ground state
and do not have even a quasistable spherical excited state.
Region I1I can be divided into two subregions, the boundary
W = — | between which is the locus in the parameter space
of the points at which the two eigenvalues of the stability
matrix vanish simultaneously:

a -+ 2by - dey* = 0; a — 20y + 12cy® = 0. (90)

FIG. 10. Energies on the
zero-curvature line in the
section x =0 of the poten-
tial-energy surface for values
of W in the interval
4< W<16. The region be-
tween the lower (E,. ) and
upper (E, ) critical ener-
gies correspond to the region
of classical chaotic motion
(a=1.0,¢c=10.01).

1000
100

10

o1
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This region includes the so-called y-unstable nuclei, whose
potential energy does not depend on .

We now turn to an analysis of numerical solutions of the
equations of motion in the potential (85). For values of the
parameter W in the interval 0 < W < 4 all solutions of the
equations of motion are regular. We recall that in this case
the Gaussian curvature of the potential-energy surface is ev-
erywhere positive. In the interval 4 < W< 16 we observe a
gradual transition from quasiperiodic motion at low ener-
gies to chaotic motion at energies which make the regions of
negative Gaussian curvature accessible. In region II
(W= 16), where the deformation potential has several local
minima, the numerical solutions of the equations of motion
exhibit the mixed behavior already described for umbilic ca-
tastrophes, namely, in the central minimum and in the mini-
mum corresponding to the deformed ground state different
dynamical regimes are observed at an energy below the sad-
dle energy. Poincaré maps illustrating this behavior for a
potential in region I with parameters that ensure equal
depths of the central minimum and the peripheral minimum
are shown in Fig. 11. Finally, for ¢ <0 in the subregion

— 1< W<, where there is no negative curvature, all solu-

tions of the equations of motion are regular, while in the
subregion W< — ! chaotic motion replaces regular motion
at sufficiently high energies.

As regards the critical energies of the transition to cha-
os, they exhibit the following clearly distinguishable beha-
viors:

1) for potentials with one central minimum
(0 < W< 16), the critical energy is equal to the energy deter-
mined by the negative-curvature criterion for all values of
the parameters;

2) in the case of potentials with several local minima

FIG. 11. Poincaré maps for motion in the potential in the region (see Fig.
9) IT with parameters that ensure equal depths of the minima for different
energies: £ = 0.44E , 0.65E, E,, 2E_ (E_ is the saddle-point energy).
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Exip?

FIG. 12. Critical energy for
different values of the pa-
rameters of the potential
(83) (a=0.125, upper fig-
ure; a = — 0.125, lower fig-
ure) obtained on the basis
of Poincaré maps. The con-
tinuous curves show the crit-
ical energies obtained using
the negative-curvature crite-
rion, and the broken curves
show the saddle energies.

(W > 16), the critical energy for a central well possessing
several elliptic fixed points in the Poincaré map (see Fig. 11)
is equal to the energy found by the negative-curvature crite-
rion; for minima corresponding to nonspherical equilibrium
states and possessing only one elliptic fixed point, the critical
energy is equal to the saddle energy;

3) an analogous relation between the number of fixed
elliptic points and the critical energy of the transition to cha-
os also holds for ¢ < 0.

Figure 12 shows the critical energies of the transition to
chaos for a potential of quadrupole vibrations
(a = +0.125,¢ = 0.25), determined by the negative-curva-
ture criterion (continuous curve) and by analysis of the
Poincaré maps. The arrows indicate the values of the param-
eter b corresponding to W = 12 and W = 16. Thus, for the
potential of quadrupole vibrations too the method of deter-
mining the critical energy used in the analysis of motion in
the potentials of the umbilic catastrophes is effective.

Using the parameters of the deformation potential cal-
culated in Ref. 29, we made®® an analysis of the classical
phase space of a Hamiltonian of quadrupole vibrations that
includes terms of sixth degree in the deformation for the
isotopes "*"*"**Kr. The large experimental values of the
energies of the first 27 states for the nuclei ™ 7°Kr indicate a
spherical shape of the nuclear surface, whereas the probabil-
itiesof the 2" — 0™ electromagnetic transitions and the very
small energies of the first rotational states (converted to the
same number of nucleons, this energy for the isotope "*Kr is
significantly less than the lowest of the known energies for
*“Pu: 42.8 keV) indicate the possibility of “superdeforma-
tion.” These data are regarded as experimental confirmation
of theoretical predictions®*** of the possibility of the coexis-
tence of shapes. In superdeformed nuclei nonlinear effects
associated with the geometry of the potential-energy surface
must appear already at relatively low excitation energies.
Inclusion in the formalism of expansion terms of higher or-
der in the deformation leads to a significantly more compli-
cated geometry of the potential-energy surface. As can be
seen from Fig. 13, for all the considered isotopes of krypton
we find potential-energy surfaces having a complicated to-
pology with many local minima.

For all the local minima of the various isotopes of kryp-
ton the critical energies of the transition to chaos were deter-
mined by numerical solution of the equations of motion. As
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FIG. 13. Potential-energy surfaces of krypton isotopes (the
broken curves show the lines of zero curvature).
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for the potentials of fourth degree in the deformation consid-
ered above, the critical energies are, depending on the topol-
ogy of the Poincaré maps at low energies, equal with good
accuracy to either the minimal energy on the line of zero
Gaussian curvature or the saddle energy.

In connection with the discussion of the critical energy
of the transition to chaos determined by the negative-curva-
ture criterion, we follow the change in the sign and in the
absolute value of the Gaussian curvature for the potential-
energy surface of "*Kr and of the equivalent fourth-order
potential (85) with parameters chosen to make the extrema

Kx=0,4)
4146
I 1
! I
I
B i
L .
1000 |- i p |
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L Il b
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8 b ',i”,wimJ T P 1 1 LA
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FIG. 14. profiles of the Gaussian curvature K(x = 0,y) of the potential-
energy surface with allowance for the deformation terms of sixth order
(continuous curve) and only the terms of fourth order (broken curve).
[ The values of the function K (x = 0,y) in the hatched region of the y axis
are in the range 0.1-10 *.]
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of these two potentials and the values of the energies at
them coincide. Figure 14 shows the Gaussian curvature
K(x = 0,p) of the potential-energy surfaces of "*Kr and the
equivalent potential. It can be seen that the region of nega-
tive curvature of the latter occupies a significantly larger
region of space and has a value for y> 0 an order of magni-
tude greater than for the potential-energy surface of "*Kr.
The measure of the separation of the classical trajectories
leading to the occurrence in the system of stochastic proper-
ties is determined by the size of the region and the absolute
value of the negative Gaussian curvature. This circumstance
permits a qualitative understanding of the reason for the
transition to chaos for the quadrupole vibrations in the K
nucleus at comparatively higher energies than in the equiva-
lent potential—the factors that determine the chaotic nature
of the motion in the "Kr nucleus are strongly suppressed.
The comparatively small region of space in which the
negative Gaussian curvature of the potential-energy surface
of the isotope *Kr is concentrated also determines the na-
ture of the motion at energies appreciably exceeding the sad-
dle energy that separates the central minimum of the surface
from the side minima. Figure 15 shows the fraction § (%) of

A T 1. T I 1 1 L
0.2 0.6 1.0 14 E/Ep 1 Zlog(E/E, )

FIG. 15. Dependence of the traction S { %) of the phase space occupied by
chaotic trajectories on the energy of the system. The continuous curve
corresponds to the potential of quadrupole vibrations with allowance for
deformation terms of sixth order; the broken curve corresponds to
allowance for only the terms of fourth order.
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FIG. 16. Poincaré maps illustrating the restoration of regular motion in
potentials of quadrupole vibrations of fourth order in the deformation
(a,c) andsixthorder (b.,d): (a) and (b) at energy E = 10000 E ;; (¢) and
(d) at E=100 E,,.

the chaotic trajectories among all the considered trajectories
as a function of the energy for motion in the deformation
potential of the ™Kr isotope and in the equivalent fourth-
order potential. It can be seen from the figure that for the
krypton nucleus the critical energy of the transition to chaos
is approximately equal to the saddle energy. With increasing
energy 1009% chaos sets in, in both potentials. However, at
energies appreciably exceeding the saddle energy the regular
nature of the motion is restored for both the ™Kr nucleus
and the equivalent potential. This new transition is illustrat-
ed by the Poincar¢ maps at high energies shown in Fig. 16.
The earlier appearance of the regular motion at the high
energies for the quadrupole vibrations of the surface of the
K nucleus compared with the vibrations in the equivalent
potential can, as at low energies, be explained by the smaller
absolute value of the negative Gaussian curvature and the
greater degree of its localization. We emphasize that a simi-
lar restoration of regular motion at high energies must occur
for any potential with a localized region of negative Gaus-
sian curvature. In particular, it occurs for the isotope "Kr.
But for the isotopes "*'Kr the negative curvature is not lo-
calized in a small spatial region, and therefore in this case
regular motion is not restored al the energies accessible in
the numerical calculations.

Concluding our study of the dynamics of autonomous
two-dimensional Hamiltonian systems with polynomial po-
tentials, we briefly formulate the main results that relate to
the determination of the critical energy of the transition
from regular to chaotic motion:

1) for any local minimum, the critical energy of the
transition to chaos is either equal to the minimal energy on

385 Sov. J. Part. Nucl. 20 (4}, July-Aug. 1989

the line of zero Gaussian curvature,

B = Umln (K =3 0)1 (91}

or equal to the saddle energy E_,
E.=E; (92)

2) in a local minimum with a single saddle point chaos
commences only on attainment of the saddle energy, which
exceeds U, (K =0);

3) in the remaining cases, the possibility of applying the
negative-curvature criterion is governed by the topology of
the Poincaré map at low energies;

4) for potentials with a localized region of negative
Gaussian curvature a return to regular motion is observed at
high energies, and the critical energy of this second transi-
tion is determined by the upper boundary of the region of
negative curvature.

DYNAMICAL CHAOS AND INDUCED FISSION

During an almost half-century history the process of
induced fission has been studied by very different methods.
Any progress in the understanding of nuclear structure was
immediately reflected in fission physics. For example, the
change in the widely accepted ideas about the existence of a
shell structure in strongly deformed nuclei** led to a radical
revision of the structure of the fission barrier and permitted
the explanation of numerous critical experiments.

In this section, we wish to draw attention to the circum-
stance that stochastization of the collective motion at high
excitation energies permits a reexamination of the dynamics
of penetration through a multidimensional potential barrier,
which plays a decisive part in the problem of induced fission.

The process of induced fission of nuclei can be repre-
sented geometrically as the motion of the representative
point along some trajectory from the minimum of the defor-
mation potential, corresponding to the ground state of the
nucleus, through the saddle point into the fragment valley.
The stability of such motion is largely determined by the
geometry of the potential-energy surface. Thus, the exis-
tence, on the surface of the deformation potential, of a finite
region of negative curvature near saddles leads to exponen-
tial separation of initially neighboring trajectories, i.e., to
instability of the motion. Indeed, by means of the Mauper-
tuis variational (least-action) principle™ the trajectories of a
dynamical system can be represented by the geodesics of
some Riemannian metric defined in the part of the configu-
ration space in which the potential energy does not exceed
the total energy. Let us consider two geodesics emanating
from a single point in a region of negative Gaussian curva-
ture: K(x,y) < 0. In the case of a subsequent intersection,
these geodesics would form a geodesic dihedron that in ac-
cordance with the Gauss-Bonnet theorem must have a sum
@ + 3 of the internal angles equal to

a+p=1{ K@ ya (93)

where d(} is the element of surface. Since K <0, we must
have a + 5 < 0. Therefore, a geodesic dihedron, for which
@+ >0, is impossible in this case. Thus, in a region of
negalive curvature initially neighboring trajectories (for a
definite choice of the metric) separate. This separation is
exponential, since all solutions of the Jacobi equation for the
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normal deviations on a manifold of negative curvature in-
crease with motion along a geodesic not slower than an expo-
nential of the traversed path for which the exponent is equal
to the square root of the modulus of the curvature with re-
spect to the two-dimensional direction for which this modu-
lus is smallest.” A measure of the resulting instability is the
characteristic path length .S. over which initially neighbor-
ing geodesics separate by a factor g, ie.,

8, = | K| =HE (94)

It was shown in Refs. 35 and 36 that exponential instability
of the geodesics on a manifold of negative curvature leads to
stochastization of the corresponding geodesic flow in the
phase space. We emphasize once more that it is only for the
choice of a definite metric (the Maupertuis metric) that the
result on the stochastization of the phase flow in the region
of negative curvature is rigorous. Application of the nega-
tive-curvature criterion directly to the solutions of the Ham-
iltonian equations of motion requires care and is truly effec-
tive only in conjunction with a numerical experiment.

In a region of global stochasticity in which integrals of
the motion restricting the behavior of the system do not ex-
ist, it is natural to replace the description of the dynamics of
the system in terms of equations of motion by a statistical
description. In particular, the diffusion approximation can
be used to describe the phase of passage in the fission process
through the region of negative curvature near the saddle of
the deformation potential.’” The quantity S. introduced
above is to be regarded as the step (length) of such diffusion.
Then the diffusion coefficient is

D= T15,. (93)

where Fis the mean velocity of the motion of the representa-
tive point over the surface of the deformation potential in the
region with K <0. The characteristic time 7. of random
walk of the representative point over a region of negative
curvature with linear dimension L is

T, = L*D (96)

provided that S. €L, an inequality that serves as a criterion
for the applicability of the considered approximation,

We use the scheme described above to estimate the time
delay associated with the passage through the region of neg-
ative curvature near the saddle point of the deformation po-
tential of a fissioning nucleus.” For this purpose, it is suffi-
cient to use the simplest phenomenological model of the
nucleus—the liquid-drop model. In this model, the existence
of a saddle point is due to competition between the Coulomb
and surface forces. For deformations that preserve the axial
symmetry, the equation of the nuclear surface is

R@® =R 11+

=2

oy, (1) P (cos 0). (97)

We are interested only in the local characteristics of this
surface near the saddle point, where the deformation energy
is

- 1 - .
Usi = User T3 D) Crar (00— @) (@rr — 2p). (98)
o

=

The quantities U, @,, and &, can be calculated directly at
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the saddle point, C,,. is the matrix of rigidity coefficients,
whose eigenvectors represent the independent collective
modes (stable and unstable) of the fissioning nucleus, and
the eigenvalues C, directly determine the diffusion step

8, =D (00 "%, (99)
where

0, = (IC5|/B))""%,  By=pR3/h, (100)

p is the density of the nucleus, and R, is its radius.

As the calculations of Ref. 39 show, for fissility param-
eter 0.39 < x < 1 all the rigidity coefficients apart from C, are
positive. The limiting value x~0.39 is a bifurcation point,
below which there exists a family of saddle points of asym-
metric shape. Among the stable modes, the mode with A=4
has the minimal rigidity. Therefore, in accordance with (94)
and (99)

Sy = v (00,)7 2.

(101)

For a numerical estimate we use the values of the rigidity
coefficients obtained in the study of Ref. 40. Setting
7 = [2E,/M , where E,. is the threshold energy, L ~ R, for
nuclei with fissility parameter x ~0.8 we finally obtain
L (L[ L R
T*:—ﬁ‘——( )(T)~102—5—“

s (102)
v *®

Thus, the stochastization of the phase flow in the region of

negative curvature of the potential-energy surface can signif-

icantly increase the time of passage through this region com-

pared with the transit time L /7 under the condition

~8.<L.

We recall that the standard analysis of induced fission is
based on the well-known Bohr—Wheeler formula,*' but ex-
perimentally observed deviations from this formula® stimu-
lated some theoretical studies (see Ref. 43) based on the
ideas of Kramers,** who had used the diffusion mechanism
to describe monomolecular chemical reactions. Kramers’s
theory makes it possible to estimate the time 7 of formation
of a quasisteady flow through the barrier by relating it to a
coefficient of nuclear friction. At large 7 neutron decay will
compete more effectively with the fission process, and this
will lead to a decrease of the effective fission probability
compared with the value predicted by the Bohr—Wheeler
formula. The occurrence of diffusion through the multidi-
mensional potential barrier on account of exponential insta-
bility of the trajectories in the region of negative curvature
(without a source of a random force) is an alternative to the
phenomenological diffusion of Kramers.

Similar time delays due to the occurrence of fractal
structures for trajectories that pass near saddles occur in
multidimensional potential scattering.*

QUANTUM MANIFESTATIONS OF CLASSICAL
STOCHASTICITY

The important progress in the understanding of the
nonlinear dynamics of classical systems stimulated numer-
ous attempts to include the concept of stochasticity in quan-
tum mechanics. The essence of the problem is that, on the
one hand, the energy spectrum of any quantum system that
executes a finite motion is discrete and, therefore, its evolu-
tion is quasiperiodic, while, on the other, the correspon-
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dence principle requires the possibility of transition to classi-
cal mechanics, which possesses not only regular but also
chaotic solutions. Some important results in the direction of
the resolution of this obvious contradiction have already
been obtained."***’ However, even before the complete solu-
tion of the problem a restricted version of it is worth consid-
ering, namely, the search for special features in the behavior
of quantum systems whose classical analogs (classical sys-
tems with the same Hamiltonian) exhibit chaotic behavior.

The first attempts to find manifestations of classical sto-
chasticity in quantum systems were associated with the
study of the energy spectra and stationary wave functions of
nonlinear nonintegrable model systems. The spectra were
studied by comparing the “exact” quantum-mechanical
spectrum with its semiclassical analog. By the “exact” spec-
trum we mean the spectrum obtained by diagonalizing the
exact Hamiltonian on a reasonably chosen basis (of course,
truncated). By the “semiclassical” spectrum we mean a
spectrum obtained by a certain generalization of the Bohr—
Sommerfeld procedure. In some way or other the Hamilto-
nian is transformed to a function of only action variables
(for example, using the method of Birkhoff-Gustavson nor-
mal forms), the quantization of which then permits deter-
mination of the semiclassical energy spectrum.

It appears natural to expect that in the neighborhood of
the critical energy of the transition to chaos, at which the
approximate integrals of the motion used to construct the
semiclassical spectrum are broken up, the agreement be-
tween that spectrum and the exact spectrum should become
significantly worse. We shall analyze this effect for the ex-
ample of the spectrum of the quadrupole vibrations of nuclei
whose classical dynamics was studied in detail in the pre-
vious section. In the region with a single extremum—a mini-
mum at the origin (0 < W < 16)—we reduce to normal form
all the terms of the Hamiltonian of the quadrupole vibra-
tions up to the fourth order and obtain for the energy spec-
trum the expression

E(N, Ly=N-+1+ 2 [TL2— 5 (N + 1)2 1]

+g BV 12 —L2+1),
N=0, 1,2...; ]:-:—]:N, i(_f\]_f_),)___

(103)

Figure 17 shows the difference between the exact ener-
gy levels and those calculated in accordance with the expres-
sion (103) for the case W = 13, E,, = 10. It can be seen from
the figure that the semiclassical formula in the region of en-
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FIG. 17. Difference AE between the exact quantum-mechanical energy
levels and the semiclassical levels (103) for the Hamiltonian of quadru-
pole vibrations with parameters W= 13, ¢ = 0.001 35,2 = 1 (E,, = 10).
The upper curve is the mean value of the distances between neighboring
levels.
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' E Heiles Hamiltonian with
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ergies in which the classical motion is regular (£ <E.) re-
produces very well the exact quantum-mechanical spec-
trum. On the transition to the chaotic region (EZ K o )s the
difference increases sharply.

Setting ¢ = 0 in the expression (103) we can obtain the
energy spectrum of the Hénon-Heiles Hamiltonian. In this
cas¢ too, as can be seen from Fig. 18, the agreement between
the semiclassical and exact spectra rapidly deteriorates on
the transition through the value of the classical critical ener-
gy.

With regard to the more complicated problem of the
behavior directly of the exact spectrum in the neighborhood
of the critical energy, unanimity has not yet been
achieved,**>¢

To find the quantum manifestations of classical sto-
chasticity in which we are interested, we can go further than
study of the properties of the stationary states and consider
quantum objects whose classical analogs directly exhibit sto-
chastic behavior. Such objects, in particular, are wave pack-
ets originally localized at certain points of the phase space.
To construct such wave packets, one uses*® coherent states
of the harmonic oscillator, which permit the introduction of
a semiclassical phase space with density

Py (@) = | @ | V) P = py (g, p)- (104)

The density py (@) is the analog of the ordinary classical
density and satisfies an equation of motion that in the lead-
ing order in # is identical to the Liouville equation.

Diagonalization of the Hamiltonian on the basis of the
oscillator wave functions gives rise to a set of coefficients
C(N.L):

C (N, L) | N, L).

|E)Y= 3] (105)
NL

This same set of coefficients permits the construction of a
phase density for the stationary states,

e (@, p) = |(alq p) | E) (106)

since the matrix elements («|NL ) are well known.*' In the
two-dimensional case, the phase density for the given sta-
tionary state is a function of the four variables g1 P12 G2 D
which determine the original localization of the wave packet
in the phase space. A convenient way to study the phase
density of stationary states is to plot contour charts for dif-
ferent sections. These have become known as quantum Poirn-
caré sections.

We now consider the time evolution of wave packets
that at the initial time form a coherent state localized at a
definite point of the phase space:

Wi=0)=a). (107)
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The time evolution of such a wave packet is determined by
the expression

[ W (1) )= | E) (E |a)e®. (108)
E

An important characteristic of the motion is the probability

of finding the system at the time £ in the initial position la),

p(t) =18 O F (109)

where the probability amplitude g, (¢) is the integral of the
overlap of |¥(#)) with the initial wave function |a),

go () = (@ | ¥ @) =20 | (E | aPleriBt. (110)
E

Using the definition of the phase density ( 104), we obtain

ga (1) = X o (@B (111)
We see that the dynamics of the packet is determined by the
spectrum of the initial coherent state, i.e., by the stationary
states that form the original coherent state. In other words,
g., (1) is an almost-periodic function of the time if the ener-
gies of the eigenstates which make the dominant contribu-
tion to the density are arranged regularly. In Ref. 48 two
limiting cases of the time evolution of coherent wave packets
describing bound states of nonlinear nonintegrable systems
were found. These two types of evolution are characterized
by:

a) a quasiperiodic time evolution;

b) a rapid variation of the probabilities of population of
the initial states.

Coherent states initially localized in the neighborhood
of the centers of classical regular regions exhibit little disper-
sion and follow the classical trajectories at large times. Maxi-
mally rapid dephasing was observed for wave packets that
were localized far from the centers of the regular regions.

We also consider briefly one physically interesting situ-
ation in which the quantum and classical evolutions are
nearly the same.***” We consider the evolution of a system
over times appreciably shorter than the so-called diffusion
scalet, (Ref. 46), t, ~#n where 7 is the mean density of the
energy levels. In this case, the energy uncertainty AE> 7 ~ !
is much greater than the mean distance between the levels,
and the system “does not yet feel” the discrete nature of the
spectrum. Therefore, over such times its evolution will be
the same as in the classical limit, as numerical experiments
confirm.**?*

Thus, the study of the classical dynamics of multidi-
mensional Hamiltonian systems is also helpful for under-
standing quantum manifestations of classical stochasticity.

QUANTUM CHAOS AND STATISTICAL PROPERTIES OF
NUCLEAR SPECTRA

Important correlations between features of the dynam-
ics and the structure of the quantum energy spectrum can be
obtained by a study of the statistical properties of levels. The
statistical properties permit a better understanding of the
fundamental properties of the system. Concepts such as tem-
perature and entropy are important for understanding
many-particle systems irrespective of whether or not we can
avoid a statistical description.

We shall be interested in the local properties of the spec-
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trum, i.e., the deviation in the distribution of the levels from
mean values, in a word, fluctuations. Why must we have
recourse to local properties of the spectrum? The reason is
that global properties like the number of states N(E) or the
smoothed level density p( E) are too crude properties, while
a local property such as the distribution function of the dis-
tances between the levels is very sensitive to the properties of
the potential and to the structure of the boundary. For exam-
ple, it is sufficient in a square to bend one of the walls slightly
for it to become dispersive, just as the classical trajectories in
such a system (billiard table) become stochastic.! At the
same time, there is a strong rearrangement of the distribu-
tion function of the distances between the levels, although
the number of states N(E) varies slightly or not at all.

To study the statistical properties of a spectrum, it is
necessary, first, to have a sufficiently large number of levels
in an interval that ensures constancy of the mean distance D
between the levels and, second, to be able to identify the
quantum numbers of the considered sequence of levels—the
statistics of levels with the same and different quantum
numbers differ strongly.

There are two main energy regions accessible for experi-
ment.’* The first is the low-lying region from the ground
state up to energies at which the level density becomes too
great and the number of competing decay channels makes it
impossible to identify the spin and parity. For nuclei with
A ~40, the upper limit is 7 MeV. In this interval there are
about 20 levels with ten different J7, T combinations. Asa
result, there are only a few levels with the same J7, T at our
disposal. The situation does not improve on the transition to
heavier nuclei.

The second region lies above the threshold of neutron
separation (about 15 MeV in light nuclei and about 7MeVin
heavy nuclei). The S-wave (I = 0) resonances are dominant
in the absorption of slow neutrons with energies up toa few
kilo-electron-volts. If the target, as, for example, '*°Er, has
J"=0" in the ground state, then the final state formed as a
result of neutron capture has J”= 1/27. In this way it is
possible to identify sequences of up to 100 levels in an energy
interval of a few kilo-electron-volts. The data on proton re-
sonances relate to lower energies. The level density in this
region is significantly lower, and to obtain the same statistics
it is necessary to cover a larger energy interval.

Partly because of the lack of experimental data, numeri-
cal modeling plays an important part in the study of the
fluctuations of nuclear energy levels. In particular, the shell
model with residual interaction makes it possible to obtain
fairly large sequences of levels. The single-particle Hamilto-
nian determines the mean density of levels in the given ener-
gy interval, and the residual interaction fixes the position of
a particular level.

Figure 19 shows histograms of the distribution of the
distances between neighboring levels, x = (E, . | — E,)/D,
taken from three different sources™*": # + '*’Er neutron re-
sonances, isobar-analog states in the *’V nucleus, and part of
the spectrum of a shell model with residual interaction. Al-
though the original spectra differed strongly, we can say that
they have the same distribution of distances between neigh-
boring levels. The histograms can be well approximated by
the continuous curve

axr
p@) =g e,

(112)

Bolotin et a/. 388



FIG. 19. Histograms of the distribution of the distances between
neighboring levels constructed on the basis of all available experi-

X mental values of the energies for neutron (2) and proton (b) re-

sonances, the spectrum of the shell model (c), and the Poisson
spectrum generated by a set of random uncorrelated numbers ar-
ranged in ascending order (d).
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which is called the Wigner distribution.

On the other hand, let us consider the possibility that
the levels form a random sequence. Then the distances be-
tween neighboring levels have a poisson distribution (Fig.
19d):

p (&) = o=, (113)

The histograms of Figs. 19a-19¢ and of Fig. 19d differ

strongly. The nuclear spectra exhibit a “repulsion” of the

levels,
lim

x-+{

p(x) =0, (114)
but for the random sequence we observe a clustering of the
levels—a predominance of small distances between them.

The repulsion of levels was first considered by von Neu-
mann and Wigner®® already in 1929. Its connection with the
problem of nuclear spectra was emphasized by Wigner, %
Gurevich and Pevsner,®' and Landau and Smorodinskii.® A
history of the problem and the main studies in this direction
can be found in the collection of Ref, 63.

We consider briefly some physical arguments that cast
light on the phenomenon of level repulsion. ** We consider a
Hamiltonian defined in some fixed basis by means of its ma-
trix elements. The operator H can be regarded as a vector in
this space. Level repulsion can be regarded as due to the fact
that a subspace for which the corresponding spectrum is de-
generate has a lower dimension than the complete space of
matrix elements, so that degeneracy or the weaker effect of
clustering is improbable. An alternative explanation ®*is that
if the Hamiltonian depends on a certain set of parameters,
then level crossing when the parameters are changed can be
achieved only if there exist at least two independent param-
eters. In the single-parameter case, one can show that repul-
sion at short distances is unavoidable.

So far we have discussed only pure sequences, i.e., se-
quences with the same quantum numbers. An example of a
mixed sequence is the spectrum that results from absorption
of slow neutrons by the "' Ta nucleus, for whichJ™ = 7/2 "
in the ground state. In this case sequences of 3" and 4
levels are interspersed in the spectrum of neutron reson-
ances. The level-repulsion effect is suppressed in this case by
the vanishing of the matrix elements connecting states with
different values of the angular momentum. The correlations
between the levels become weaker, and the distribution p(x)
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evolves to the Poisson distribution (113). If we regard dif-
ferent pure sequences as independent and describe each by a
certain distribution, then the resultant distribution can be
constructed.®*® Therefore, the main problem is to under-
stand a pure sequence of levels, and all the remaining ques-
tions can be resolved in the framework of the rigorous meth-
ods of probability theory.

In the sixties, Wigner, Porter, and Dyson (see Ref. 63)
constructed a statistical theory of the energy levels of com-
plicated systems on the basis of the following hypothesis:
The distribution of the energy levels is equivalent to the dis-
tribution of eigenvalues of an ensemble of random matrices
of a certain symmetry. The final result for the distribution
function of the distances between neighboring levels ob-
tained in this theory has the form

P (x) ~ x%e b, (115)
The critical exponent &, which determines the behavior of
the distribution function as x —0, depends on the symmetry
of the matrices: @ = 1 if they are orthogonal, @ = 2 if uni-
tary, and a = 4 if symplectic.

The predictions of the statistical level theory (mainly
the predictions for a Gaussian orthogonal ensemble of ma-
trices) were compared in detail with the complete available
set of nuclear data.**** No significant discrepancies between
the theory and experiment were found. In particular, ensem-
bles of random matrices excellently reproduce the property
of spectral rigidity of nuclear spectra: small fluctuations
around the mean values of the number of levels in an interval
of given length. Similar comparisons were made for atomic
spectra.®® Here too good agreement was obtained with the
predictions for a Gaussian orthogonal ensemble, although
the number of analyzed data was much less than in nuclear
Spectroscopy.

A quite different and fairly universal approach to the
problem of the statistical properties of the energy spectra of
complicated systems can be developed on the basis of the
nonlinear theory of dynamical systems. Numerical calcula-
tions,”""" supported by solid theoretical arguments,"*>7!
show that the main universal feature of systems that are
chaotic in the classical limit is the phenomenon of level re-
pulsion, whereas for systems whose dynamics is regular in
the classical limit level clustering is characteristic. This as-
sertion is sometimes called the hypothesis of the universal
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FIG. 20. Statistical properties of the energy spectra [p(x) is the
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distribution function of the distances between neighboring levels,
and £2(L) is the variance] for circular billiards (a) and “‘stadium™
billiards (b). The continuous curves correspond to the Wigner dis-
tribution, and the broken curves to the Poisson distribution.

nature of the fluctuations of energy spectra.®’

Among the systems whose spectra have been subjected
to detailed numerical analysis, two-dimensional billiards oc-
cupy a central position. In them we have a free particle of
mass m that moves freely over a plane within a certain region
of arbitrary shape and undergoes elastic specular reflection
at the boundary, It is convenient to investigate two-dimen-
sional billiards for our purposes for several reasons:

1) this system has the smallest number of degrees of
freedom for which chaotic motion is possible in a conserva-
tive system;

2) the classical dynamics of the system has been well
studied;

3) effective metheds exist for finding the billiard spec-
trum (the solution of the Dirichlet problem is known for
boundaries of different shapes);

4) the infinite number of eigenvalues in the discrete
spectrum ensures statistical reliability of the results.

For billiards with a definite shape of the boundaries,
one of two extremal situations can be realized: integrable or
nonintegrable. Thus, for circular billiards (Fig. 20a) the an-
gular momentum is a second (in addition to the energy
E =p*/2m) integral of the motion, and such a system is
integrable. A billiard table in the shape of a stadium (Fig.
20b) is the simplest stochastic dynamical system. Figure 20
(from Ref. 49) shows the statistical properties of the energy
spectra (distribution function of the distances between
neighboring levels and variance) of these two systems. In
complete agreement with the hypothesis of a universal na-
ture of the fluctuations of energy spectra the disiribution
function for the integrable system—the round billiard ta-
ble—can be excellently approximated by a Poisson distribu-
tion, and the variance is a linear function of the length of the
energy interval considered. In the nonintegrable case we ob-
serve level repulsion and a slow growth of the variance due to
the rigidity of the corresponding spectrum. All the statistical
properties of the spectrum in this case are practically identi-
cal to those of a Gaussian orthogonal ensemble of random
matrices. oo

In contrast to billiards, in which the nature of the mo-
tion does not depend on the energy, generic Hamiltonian
systems are systems with a subdivided phase space that con-
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tains both regions in which the motion is stochastic and is-
lands of stability. How is this circumstance reflected in the
statistical properties of the spectrum? Berry and Robnik,*
and independently Bogomol'nyi,”” using semiclassical argu-
ments, showed that the distribution of distances between
neighboring levels for such a system is an independent super-
position of a Poisson distribution with relative weight x4 de-
termined by the fraction of the phase space with regular mo-
tion and a Wigner distribution with relative weight
fi(y + = 1) determined by the fraction of the phase space
with chaotic motion:

S o—
p (z)= pPe—r=erfc (-1_3—th ik )

.
(2wt ) e (116)
This is an interpolation between the Poisson distribution
(113) and the Wigner distribution (112).

To trace the correlations between the statistical proper-
ties of the quantum spectrum and the nature of the classical
motion, we return to quadrupele vibrations of nuclei de-
scribed by the potential (85). In the region of parameter
space corresponding to potentials with a single extremum
(0 < W< 16) the Hamiltonian can be effectively diagonal-
ized on a basis of harmonic-oscillator wave functions. It is
convenient*® to choose the basis states in the form

N, L, j>=~1—:?{INL>+J' IV, —Ly,  (117)
N=0,1,2 ..5L=NN—-2..;5j==1

FIG. 21. Distribution of
distances between neigh-
boring levels for the chao-
tic region of motion in the
potential of quadrupole vi-
brations (W=13, E,
= 1.8).
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FIG. 22. Correlation between the nature of the classical motion
and the statistical properties of the quantum spectrum in the triple
transition (R-S—R) of the potential of quadrupole vibrations for
W= 13: a) Poincaré maps; b) distribution p(x) of distances be-
tween neighboring levels; ¢) variance =2(L). At the bottom, By
=90 (first regular region); in the middle, £, =1.5, £, ~13895

(chaotic region); at the top, E,,. = 14.2 (second regular region).

The symmetry of the quadrupole-vibration Hamiltonian

(85) has the consequence that the matrix
(N'L',j'|H |N,L, j) has ablock structure. It consists of two
matrices of types 4, and 4, [Mod(L,3) =0,j= + 1] and
two identical matrices of type £ [Mod(L,3)#£0, ;= + 1].
The possibility of independent diagonalization of each of
these matrices permits a significant simplification of the sta-
tistics—about 300 levels of each type can be obtained with an
error of about 1% in the mean distance between the levels.

Figure 21 shows the histogram of the distribution of the
distances between neighboring levels for the quadrupole-vi-
bration Hamiltonian (W =13, E_ = 1.8). In this case, all
the energy levels occurring in the distribution correspond to
the region of chaotic classical motion. As can be seen from
the figure, the distribution p(x) corresponds to the Wigner
distribution, as in the case of billiards with chaotic behavior
(Fig. 20b).

An even clearer correlation between the statistical
properties of the quantum spectrum and the nature of the
classical motion is observed in the triple regularity—chaos—
regularity transition (R-S-R) that, as we noted earlier, oc-
curs in potentials with a localized region of negative curva-
ture. Figure 22 illustrates this correlation for three energy
regions: the first regular region £ < £, (at the bottom), the
chaotic region £, <E < £, (in the middle), and the sec-
ond regular region £ > E,,_ (atthe top). On the left we show
typical Poincaré maps for these energy regions, and on the
right the statistical properties of the spectrum: the logarithm
of the distribution and the variance. For the chaotic region
both the distribution function and the variance correspond
well to the predictions for a Gaussian orthogonal ensemble.
The logarithmic scale for the distribution function p(x) is
convenient for exhibiting this correspondence at large x. For
the regular regions, the distribution function in the same
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scale must, in accordance with the hypothesis of the univer-
sal nature of the fluctuations of energy spectra, be a straight
line (logarithm of the Poisson distribution). The calcula-
tions demonstrate agreement with this hypothesis, though
for short distances between the levels a certain deviation is
observed. This tendency to the formation of slight repulsion
in the regular region can evidently be attributed to a small
admixture of the chaotic component.

CONCLUSIONS

The most important collective phenomena in nuclei—
fission and deep inelastic processes accompanying heavy-ion
collisions—are collective processes with a large amplitude.
A consistent theory of such processes must be an esgentially
nonlinear theory based on the recent achievements of the
general theory of nonlinear dynamical systems. The essence
of the new achievements of this theory is that under certain
conditions the dynamics of a strictly deterministic system
becomes indistinguishable from random dynamics. Treat-
ment of a nucleus as a multidimensional nonlinear dynami-
cal system reveals the possible existence in it of fundamental-
ly new stochastic or chaotic regimes. The transition from
regular to chaotic motion due to a change in the energy or
other parameters of the systern must have a significant influ-
ence both on the structure of the nucleus and on its interac-
tion with external fields. In particular, the process of energy
redistribution between the internal degrees of freedom is
radically changed, a new approach to the description of the
passage through multidimensional potential barriers is re-
quired, and the problem of the structure of the energy spec-
tra of complicated nuclei is seen in a new light.

The future program of investigations on stochastic nu-
clear dynamics must include the following main directions:

1) the search for stochastic regimes;
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2) the development of methods to determine the critical
energy of the transition to chaos;

3) investigation of manifestations of chaotic dynamics
at energies above the critical value.

In each of these directions the first steps have already
been taken. Chaotic regimes have been found in the math-
ematical modeling of heavy-ion collisions in multipole sur-
face vibrations of nuclei. The interpretation of negative cur-
vature of the potential-energy surface as a source of local
instability has made it possible to predict reliably the exis-
tence of chaotic regimes, and also to estimate the region of
energies at which the transition to these regimes is made.
The effectiveness of the approach based on analysis of the
potential-energy surface is enhanced by its generality, by vir-
tue of which the approach can be applied to a large class of
nonlinear Hamiltonian systems irrespective of their particu-
lar nature.

The expected construction of p-ray lasers by the end of
the present century will make the problem of exciting sto-
chastic regimes in nuclei by a periodic external field topical.
The principle of localization of quantum chaos*" leads in this
case to nontrivial features in the absorption of the energy of
an external field. Finally, allowance for dissipative effects
will make it possible to include the problem of self-organiza-
tion (the emergence of structure) in nuclei among the topics
that are studied.
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