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The production and application of a nuclear microprobe using a beam of protons at MeV energies
are discussed. Considerable attention is paid to matrix analytical and numerical methods for
designing quadrupole beam-forming systems. Quadrupole and axisymmetric focusing systems
are compared. The possibility of designing a high-frequency microprobe is considered. The effect
of the space-charge distribution of the beam on its evolution in the microprobe optics is studied.

INTRODUCTION

Recently there has been intensive development of in-
stantaneous methods for nuclear microanalysis—methods
of determining the elementary composition of materials
based on the detection of the secondary radiation produced
when the samples are bombarded by beams of electrons, pro-
tons, and also light and heavy nuclei. This radiation might be
typical x-ray radiation, elastic and inelastic scattering, radi-
ation associated with Auger transitions, products of nuclear
reactions induced by primary particles, and so on. The most
well-developed of these methods is that of the detection of
the characteristic x-ray radiation produced by proton (or
heavy-ion) bombardment, since measurements based on ex-
citation of samples by an electron beam obtained using an
electron microprobe have a large background (about
10°-10" times larger than for a proton beam), which greatly
decreases the sensitivity of the method. For element analysis
based on the use of the characteristic radiation emitted in a
proton or nucleus beam there is increased interest in beams
whose cross section at the target is several microns, since
such beams can be used to study the macroscopic structure
of solids and biological samples both on the surface and in
the interior. This interest has been stimulated by several ex-
perimental and theoretical studies, ™" which demonstrate the
possibility of producing microbeams of these diameters with
a current of 0.1 nA. A system producing a beam with a cross
section of several microns is referred to as a proton or nu-
clear (ionic) microprobe. The charged particles in such a
microprobe are usually provided by a Van de Graaff electro-
static accelerator and, in recent years, also by a.cyclotron.” !

The nuclear microprobe is an auxiliary device for the
microscopic analysis of surfaces, supplementing devices like
the secondary-ion analyzer, the electron scanning micro-
scope, the electron microprobe, the Auger spectrometer,
and so on. Its use opens up a number of new, important
possibilities for analysis, which cannot be achieved by other
methods. This is due to the following features of the nuclear
microprobe'”: all the elements, including hydrogen, theoret-
ically can be determined; the method can be “focused,” espe-
cially for light elements, by selecting the nuclear reaction
and the energy of the accelerated particles; the chemical con-
tent of the sample is not affected, which simplifies the cali-
bration and renders standardized samples, with chemical
content identical to that of the material being analyzed, un-
necessary; it is possible to study microscopic samples (for
example, biopsies) in a helium or air medium; light elements
in radioactive materials can be determined (by obtaining an
image of the surface distribution or the diffusion profile).
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Owing to their high magnetic ridigity (three orders of
magnitude larger than that of electrons in electron micro-
scopes), ions with energies of several MeV per nucleon re-
quire strong lenses for their focusing, otherwise the devices
based on them would be too large. Such beams are usually
focused by systems of quadrupole lenses, although there are
examples of the use of an axisymmetric superconducting
magnetic lens'* and a plasma lens' for these purposes.

The first theoretical studies on the determination of an
entire class of systems of quadrupole lenses suitable for use
in a microprobe as the equivalent of an axisymmetric lens,
with detailed analysis of the dependence of their focusing
properties on the field gradients in the lenses, were carried
out in the USSR.'™'® In these studies it was shown that a
system of four quadrupole lenses with a particular symmetry
in the positioning of the lenses and their power sources, re-
ferred to as a quadruplet of rotation, can serve as the analog
of a collecting axisymmetric lens, owing to its paraxial
(Gaussian) characteristics. In the foreign literature this sys-
tem is referred to as the “Russian” quadruplet. Using this
quadruplet, Cookson and coworkers at the Harwell labora-
tory in Great Britain designed the first proton microprobe
setup,'” which initiated the development of the new tech-
nique of quantitative microanalysis.

By now there are already several score of accelerator
laboratories abroad which operate ion microprobes; their
design and use are described in detail in the reviews of Refs.
17-23. In the USSR the first, and so far the only, proton
microprobe was constructed by A. G. Puzyrevich at the In-
stitute of Nuclear Physics of the Tomsk Polytechnic Insti-
tute.** In the existing proton microprobes the beam diame-
ters at the target range from 0.5 um to several tens of
microns.

The system forming the microbeam is a complicated
precision setup, whose optimal parameters must be found by
optimization calculations. The first work in this area was
carried out at the Joint Institute for Nuclear Research, and
was then followed by a number of other studies,” *' devoted
to the design of the optimal microprobe and investigation of
its characteristics. These studies have been carried out at the
JINR jointly with the Leningrad State University.

A small beam cross section at the target is the most
important factor of the many conflicting requirements im-
posed on the beam. The second important factor is the cur-
rent (or emittance) of the beam. The values of these param-
eters depend on how the ion-optical scheme of the
microprobe is chosen.

The calculation of the optimal ion-optical system for
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obtaining micron and, especially, submicron beams involves
the solution of a nonlinear inverse multiparameter problem,
for which all types of aberration must be taken into account
through fifth order. It is therefore important to trace
through the entire solution of the problem, including: the
selection of the coordinate system, generally a curvilinear
system attached to a particle moving along the axis; writing
out the equations of motion and the electromagnetic field
equations in the selected coordinate system taking into ac-
count nonelectromagnetic forces, for example, gravity; the
expansion of the equations of motion and field equations in
Taylor series in powers of the deviation from the axial parti-
cle; the technique of solving the nonlinear problem in config-
uration space by reformulating it as a linear problem in
phase-moment space; analysis of the structure of the coeffi-
cient matrix arising in the linear problem and choosing a
definite symmetry in order to optimize the system; the com-
pact conservative method of integrating the equations of mo-
tion, where in each step of the numerical integration the
phase space of the beam is strictly conserved; theoretical
analysis of the problem and determination of approximation
formulas for a preliminary calculation; use of the nonderiva-
tive sliding-tolerance technique for numerical optimization
of the system; comparison of different ion—optical micro-
probe schemes.

All of these points are discussed in this review, which is
largely based on the work carried out by the authors at the
JINR in 1977-1985.

In this review we use the coordinates of four-dimension-
al space-time. All quantities in the equations of motion and
in the field equations either are dimensionless or are ex-
pressed in terms of units of length or inverse length.

1. THE EQUATIONS OF MOTION AND THE ELECTRO-
MAGNETIC FIELD EQUATIONS

In calculations of precision ion—optical setups it is con-
venient to view the motion of all the particles of the beam
relative to a single particle—the axial (or reference) parti-
cle. In general, the trajectory of this particle is curvilinear,
and it can also be affected by nonelectromagnetic forces,
such as gravity. Using Cartan’s method of the moving refer-
ence vector,”> we write the equations of motion and Max-
well’s equations in a curvilinear coordinate frame attached
to the axial particle, Here we write a vector either as a col-
umn matrix Q, M, x, y, or z, or as a row matrix (j, M, X, j,or
%. The tilde denotes the transpose. The vector differential
operator is also written as a column matrix V(Q), V(M),
V(x), and so on, or as a row matrix v(Q), "ﬂ';’(M), Vix),
where V, (Q) = d/d Q,. The expression QV(z) stands for
the matrix whose ik-th element is equal to 4Q,/dz,. The
scalar differential operator d is written as the scalar product
d=V(z)dz= V{Q)d Q and can stand either in front of or
behind the function on which it acts. If required for clarity,
the function on which the operators d, V(x), or V(x) act is
indicated by an arrow underneath pointing from the opera-
tor to the function. We shall use the absolute metric spaces of
the vectors Q and M and the metric spaces of the vectors x, y,
and z associated with the specific metric chosen. The axial
particle will be characterized by the 4-vector M, and an arbi-
trary particle by the 4-vector Q. The fourth components of
these vectors are proportional to the time.
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The axial particle

We take the point M for the origin of the reference 4-
vector e, where the matrix e has the form

e =V (z) ﬁ,

in which (z,,) is the local Galilean coordinate system. We
shall study the evolution of the vector M in pseudo-Euclid-
ean 4-space (y) with orthonormal stationary reference vec-

tor given by the matrix ¢,, where

B W —I, 0
=V M, ee=eUeD:G:H 0 1“
Here I, is the 3 X 3 unit matrix.

To the moving reference vector e we attach a local coor-
dinate system (x), in which the motion of an arbitrary parti-
cle (point) Q is determined by the vector L = éx, so that
d Q = d M + d L. Weuse the notation of arc-length differen-
tials in 4-dimensional space-time, d7 and d7,,, where

di=V dddQ, dv,— V abam,

the arc-length differential ds in 3-space,

ds=V dz, +dz,+d,,
and the 4-velocity notation
u = dQ/dv, uy = dM/dty,
u (‘Z) = dz/dr, Um (Zm) — dzm/dT,n.

The coordinates z,, are chosen such that

m
Em1 = Bma = 0, Zmg — 8 Zmy = €lm,
Umi (3m) = Uma (Zm) = 0, g (2n) = Py Umy (Zm) =V
e |tm=q = €0, ¥ —p* = 1.

Here p is the dimensionless momentum of the axial particle
and y is its dimensional relative total energy.

The Darboux and Frenet reference vectors

The motion of the reference vector is determined by the
equation

de "
L& —e' =Pk, De,

0 ky —ky 1
ks O B

PlD=| k _k 0 5|
L &, I, O
where the 3-vectors k and ! = — I /p are functions of s, and

F is the 3-vector corresponding to the gravitational force.

For the Darboux reference 4-vector, k, is the normal
curvature, k, is the geodesic curvature, &, is the geodesic
torsion, and [ = 0.

For the Frenet reference 4-vector, kK, =0,/ =0,and k,
and k, are, respectively, the curvature and torsion of the
curve along which the particle M moves.

The reference vector e can be expressed in terms of e,
using the matrizant R:

e =R (P(k, 1), s/0) e, = Rey,
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satisfying the equations

dR

—=R'=Pk DR, RO0O)=I,

RGE = G.

The equations of motion

The equations of motion in a vacuum for the axial parti-
cle M and an arbitrary particle Q are written as follows:

am o
Tty Clm (2m) = €glim (Ym);
dim —&P (Buy Eu) i (2n) =P (Bl EB) i (U
m

dQ _ dMydL v
e T

du =

- =¢P (B, E)u(z).

Here B is the magnetic field induction and E is the electric
field strength. The 3-vectors B, E, and F, expressed in units
of inverse length in terms of dimensional quantities in SI
units, denoted by a star, are defined as

— 7 px 9 s o
B_p;;B‘E—'WgE’F_W;’
Wi=mic*?, p}=mjc*,

W p*
Ve Py WEsmie

Using, as above, a prime to denote the derivative with
respect to s, the equations of motion can be rewritten as

e

T

15=P(é, E‘), T'=V 76z,

B=BLkiv, E=E—li7,

z':z;,,—{-x’-;—lg(k, )z,

Z;n=5(3)+%i(4), 31 =

tng= | - 8+ Zmao: (1)

The matrices P(B,E) for the reference vector ¢ and
P(B,,E,) for the reference vector e, are related to each oth-
er via the matrizant:

P (B, Ey=R1P (B,, E,) R=GRGP (B,, E,) R,
V (2) = RV (1)-

We note that for the special case / = 0 we have

PR 0 0 By =k
Pk, 0)= 0 ol P (k)= —k, 0 k|,
ky —k O
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R:HB 0

0 1
B—RB,, E=RE,

H, RA—RR—1,

We shall assume that the observer is located in the plane
Xx; =0, i.e., all particles Q reaching this plane at different
times are detected. We then obtain the following operator
equations:

V ()= RY () = =2V (2),

where

1 0 0 0
0 1 00
Z= : :
Zy Zg 1 Zy,
0 0 01
1 0 0 0
0 1 0 0
=
—Zy —Zp 1 —Zy
0 0 0 1
Zgr = koxty — U Zyy = —Jogzy — Loz

Zoy = —Nlp —zly — @plyy @ =1 — koxy + lyzy + Ly,

Maxwell’s equations

In matrix form these equations are written as

—AQ A=py; V(Q)A=0; )
AQ)=VQV(Q: V(Q=eV(z); A=eA(z);
p=1uh (Q) u; (2)

S
GP (B, E)y=V (z) Ae— €AV (3)-
S~ s

In the coordinate system (y) with stationary reference vec-
tor ¢, the electromagnetic field equations have the form

d,
P (By, E) GV (4) =05,

P (—E,, Bo) GV (y) = 0.

dy
0__ 4 .
OT=P g

From (2) as a special case of the Frenet reference vector
(k, =0, !/=0) we obtain the Maxwell equations given in
Ref. 33.

2. THE METHOD OF EMBEDDING IN PHASE-MOMENT SPACE
FOR SOLVING THE NONLINEAR EQUATIONS OF MOTION

The analysis and calculation of the nonlinear systems of
equations for beam formation are considerably simplified by
transforming from the nonlinear differential equations of
motion in the phase space (x,x") to the system of linear equa-
tions in extended phase space—the phase-moment space.
This is the essence of the method of embedding in phase-
moment space.
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The vector moments

We define recursively the r-th power of the vector x,
oy 2t (1)

n xr—i (n)

and call it the 7~moment of the vector x or the r-th moment of
the vector x, where the auxiliary vector x'( j) is defined by
the recursion relation

z; @ (j)

z, 1 (n)

The vector x” has C*~ |, , scalar elements, where

I+ r
n-1 _ (n—=1+01
Ut A P ST

is the number of combinations with repetitions of » elements
» at a time. For example, for # = 2 we have

Ty
r= , )=z, (2)=xa,
Zz
2
z
T, & L
7% — o o= Ey T,
g Ty 2
xg

2 (1) =a?, 22 (2) = 22t (2) =122,

3

1:1
. z, 22 (1) = z oz
z, 2 (2) T, I

F

Similarly, the power of the operator V” (x) is a differential 7-
moment operator.

Expansion of the equations of motion

We write the matrix function F(X) as an m-th order
polynomial:

. om
F(5)= ég P

where FY iJs a homogeneous polynomial of degree j in %,
PO =y GG, 5= .

The partial derivatives of F(%) with respect to X are taken at

x=0.

Using this notation, the equations of motion can be
written as

((Dm}‘l' q}(l}_'_q)(z))zz(j)n
0
moo, m-1 _
= (@@ + 0+ [ 3 P+ 3 Brw]. ()
[ 0
Here

¢ =26z, ® = rpL,—z'?G,
i’:P(ii fﬂ), ﬁ:BV(E+f£, EZEW—Z,

70 =z, ZN=0j=2 ..., m

For m = 0 and 1 the equations of motion are written as fol-
lows:
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1 O, — 0Bz,
1

(P(0> =F

Po_p (Bw)1 E(m) =P,

B =B ik E=—m—1

1 %
3 ‘I):-p—g'14—‘zmsz,

9. q)((?) Lz ﬁ% i)mzr(i)

SRR LA A L
The latter equation is linear and is usually referred to as the
paraxial or Gaussian equation.

The particles of the beam are detected either at the same
instant of time or in a particular plane, for example, the
plane x; = 0. Therefore, to the equations (3) we must add
the equation for the observer, after which these equations
form a system of three second-order equations:

x’{:}iir);’, r=1, ..., m, i=1, 2, 4, (4)

where f''™ is a row vector of dimension equal to the number
of combinations with repetitions of 6 elements rat a time and

~

z = || 2Tyl

The equation for the phase moments

To the nonlinear equation (4) we can associate a linear
equation for the phase moments:

o
a . . e
A plm ¢ gym, (zyom — || 3
ds i
m

Here the matrix function p*”"' has the form of an upper trian-
gular block:

Pil Pl2 L P1.'m
P('m.) —{lo P22 . P2m
0 0 o DR

The solution of the linear equation (5) for X coincides
with the solution of Eq. (4) obtained by the successive-ap-
proximation method. The method of solving Eq. (4) by re-
ducing it to the form (5) is referred to as the method of
embedding in phase-moment space.

The writing of the nonlinear equation in a linearized
form makes it possible to construct its solution using the
matrizant, which is independent of the initial vector X,
whereas the solution of the nonlinear equation is sought for
each value of %,. We note that the use of matrices for solving
nonlinear problems was first proposed in the studies by
Brown.****

The solution of Eq. (5) is written in terms of the matri-
zant in the form

7 = X (P, g/s,) g, X (so/50) = 1,

where, like the coefficient matrix P'"’, the matrizant has the
form of an upper triangular block

B 3P .. X
X (p(m)’ S,"SU) - 0 X22 A sz
0 0 xmm
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and satisfies the differential equation

X' (BM, sfs)) = PW.X (P, sfs,).

The block matrix X'' is the matrizant of the linear equation
in the phase space of x:

~

u*
z=X"z,

A

117
& =P,

The matrix function X* | like P* (k>i ), is a rectangular ma-
trix with C” ~ | ., rows and C" 1, columns.
The matrix function X’" is determined by the equation

(Xliio)r =XTT£E1 = ‘1, ey M.
The oﬁ'-diagonal block matrices X” ( j > i) have the form

X (s/0)= 3 | X (s/r) P¥ (x) XM (v/0) d.
I=i+1 0

The matrices X?(s5/0) can be calculated as follows: first
we calculate X** ', then X**2, and so on, up to X?
(i=1,..,mj=i+1,..,m). Itisalso possible to simulta-
neously calculate the entire matrizant X(P"", 5/s, ), as will
be discussed in Sec. 5.

3.THE PARAXIAL EQUATIONS OF MOTIONFORIONSIN
VARIOUS TYPES OF ELECTROMAGNETIC LENSES

The paraxial equations of motion for/=0and x, =0

For this case we obtain
—:z—Ema-’:;
4+ (2t + Ba) - P (Vs Emi) %
+[ =5 ViBut 5 VB P
+ ( ;_ Bm3+k3) kg 'J\—i‘,ﬁLEm]"’t
+[ K+ By~ V2B,
—i— - V.E —

k
Pk, —% Emi:l Ty

+[ =% Vot VAE;] 2

ay= — 2k, +700 ) o]

3 i 1
ﬂ-‘,;‘L_Emswﬁp(—vkiJr—pT

+[—k—

+ _;E"ViEZ—

Emz) T,

1
—:T Emzka + ’p— ViBi

k
Pyl + ‘\;22 Emz:l &y

. 1
‘1‘[? VZBL_E"% V2E,

e (B ) £
_|_[% V.B, +% V.’.Ez] 7
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t= —— (Vhot =5 Eny)

1 E " 3 ,
_?(_?ki+ = )xz""p—zEmaz4

s %[yfs;+kz(3+%) o

+ = A% E;,—I— ksEmz} xy

“%[‘_‘Tk{_‘ki (3—1—%) By

k

1 1
+ o7 VoBo— 3 Em | @ —— Vallsa, |

Here V= V(x); V,B, and V,E, are understood to be the
derivatives along the trajectory of the axial particle and are
functions of s, and the curvatures k, and k, are determined
from the equations of motion of the axial particle:

Bma ¥
5 T B

Ry B;u B ;’2 Esy Kpe= —

where

Y= '\ Ema ds—+ Yo
]

The phase-space volume of the beam

The phase-space volume of the beam Vis determined by
i t}
V=Tyexp—\ 5 % E,ads.
o
If we take the phase-space variables to be the elements of a
vector A, where

hl = wl'l hz = Zg, hB = Tyy
pa
hy=L-al, hy=-"L-z hy=-z
i 1 T gy e T gy e

then in this phase space the volume remains constant during
the motion.
A magnetostatic lens with rectilinear axis

For the case k, = 0, k, = 0, and / = 0 we obtain

# k 1
a{ = (22 Bus+K—— ViBa) &

Jr(k;—% VZBZ):;2+ (2k3+ B_;n_a_) sz
ty= (— Kyt ViBy) 3y
+ (22 B+ K- VaBy) 22

— (2 + e} 2,
Choosing k, in the form
1
2p
and using the paraxial approximation of Maxwell’s equa-

tions neglecting the proper space charge

Vo8B, = Vle = Blz- Vil + VzBa = _B;mv

ka Bk Bma
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we find the equations of motion for a magnetostatic lens with

rectilinear axis:
Ty = —'"(sz"r Zn )"’EiJ(_ (V4B Vz By) 43 } (6)
4p ) .

5= (VB — V3B tut 5 (Ba— 7,

Introducing the notation

1 B3
kyy = —‘;(Bsz‘i'—;f;—g)a
£y
1 ~ =
ICIZ:EE(VEBi'_'VZB2)= S J:; s
z
k By 20
3= ( 2= 75 |

we rewrite (6) in matrix form:
0o 10 0
2 2 ky 0 ky 0
=Pz, P= 0o 00 1
ko O kyy O

Magnetic axisymmetric (V, B, =V,B,, B;; =0) and
quadrupole (V,B, =V,B, =0,B,,, = 0) lenses are special
cases of the magnetostatic lense with rectilinear axis.

The matrizant of an axisymmetric lens

The model of a bell-shaped field is usually used for an
axisymmetric lens’’:
By
& )2 ?

B
3 1+(

where B} is the maximum value of B, ; at the center of the
field s = s, and d is the half-width of the field.
Introducing the notation
Bo=B3/2p, B =Ky, © =V1+ kg

§— 8§, Sg— 8
e bt —otg By =0 (6 —1),

we write the expressions for the elements of the matrizant R
as

Ti! Ti2
Tzi TZZ

i % T O
z=Rr;, R=

0T

where

1 cosy .
[cos o sin ¥, ——2 sin a:I £

d sin o .
@ sindysind ’

Ty = [ cos @ sin (8,— )

-+ sin ai{mﬁm':—ﬂ{—m sin © sin 1‘}0];

1 i)
Py 1 [ . g 08 .
2= "gg, | ¢0s &sin & ~—= fin g |,

The matrizant of a quadrupole lens

For the quadrupole lens we shall use the common rec-
tangular model of the field, with the notation
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1

k:? 8121 CC BEQ’ BigzvgBiﬂvl‘BE’
+oo
L=\ k(s)ds, p*= k|, x=BL,
.
where B!, is the maximum value of V, B, on the axis of the

lens, L is the effective length of the lens, B1is the excitation of
the lens, and x is a dimensionless excitation.

With this notation the matrizant of a quadrupole lens
can be written as (for B, >0)

F 0 Fy Fi D, D
R— — 1 12 D: 11 i2
0D Foy Fos Dy Doy
where
Fy=F,,=cosx Fizz-é—sin # Fayy= —Psinx
Dy =D,,=chy; D12=% sha Dyy=fshx

The equations of motion in deflecting magnets

We shall assume that the deflecting magnet with non-
uniform field, whose boundaries at the entrance and exit are
rectilinear and perpendicular to the axial trajectory, has cur-
vature k,, i.e., it deflects particles in the plane (x,s). For the
static case with k, = k, =0, / = 0 the paraxial equations of
motion in this magnet can be written as

- 1 2
&= ( 7 VB, + p“.’t‘i) i+ pykot ]
" 1
x2:7v2B1$2; H (7
x:,':——(k xi—f—k‘za:)——ﬁ— (hazy)' l
where k, = — B, /p=1/p.

Introducing the matrizant in the space of the variables
()C | ’x; ,.X'i )l

Iy Iy
I f[=R-|[ x|,
xﬂ xd{}

let us find the elements of the matrizant for a rectilinear
model of the field assuming that &, and V, B, are constant
along the axial trajectory of length L,

L = pa = alky,

where a is the deflection angle of the axial particle. Introduc-
ing the index of field attenuation n by

_ ViB,
R
and the dimensionless excitation @

Pp=a Vi—n,

for n < 1 we obtain

Ry =cos ¢+ 1t (1 —cos ¢);

n

‘R21: "/—;Tn ( = )Sin (1

A. D. Dymnikov and G. M. Osetingkil 298



¥ L _ <,
e ( T i) (1 —cos ¢);
. e s i
Riyy= T sin ;
1 ;
R,,=cosq; R =Y _ _ —  sing:
22 ¢ 22 P Vien !

Ryy= A (1 —cos g);

1—n
Ry——E0 gin g
23 Vin P
Ry =1 — 11— (1—cos ¢).

The corresponding equations for the case n > 1 are obtained
from these expressions with the substitutions

VIi—n=iVn—1, p=i¢*, ¢*=a V' n—1,

cos ig*¥ = ch ¢¥*, sin ip* = ish ¢*.

We note that the relative longitudinal momentum
spread of the particles, which is commonly used in studies on
deflecting systems, is related to the variable x| as follows:

& = Aplp = pyxy + Vg

The second equation in (7) is the analog of the quadru-
pole-lens equation, and its solution for the model of the recti-
linear field is written as

z z
= N, r>0;
Ty Za0
T x
f =D- En ’ ?’l<0.
Ly 20
where
F=Fp—=cos(Vna) F,= lf_ sin (V' na);
n
Fy = —% sin () na);

Dy = Dy —ch (V]n] a);

__ P P
D= e sh(l |n|a.),

Dziz'l_#““ sh (V' [n] a).

4. CANONICAL AND SYMMETRIC BEAM CONTROL SYSTEMS

The systems for focusing, forming, and deflecting the
beams will be referred to as the beam control systems.

The G-canonical and T-symmetric matrix functions
In the equation for the matrizant

R =P R, R(ss) =1

the matrix function P(s) is a G-canonical function if it satis-
fies the equation

P ()G + GP (s) = 0,
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and it is a T-symmetric function on the interval [0,L] if
P(L/2+4 8-TH+ T-P(L2—35)=0.

In both cases the matrices G and T are understood to be real,
square, constant, nonsingular matrices.

For example, if for the square 2k X 2k matrix P we have
the block equations

pi— _pe pi_ pi pu_ pa

then this matrix is J-canonical, where
0o —1I,
I, 0

If for the 4 x4 matrix P we have the matrix T =S8,
where

s_[Y O w|t ©
=0Ul* =.0-1’

then the matrix P is termed symmetric, while if T = A,
where

“ 0 U
it is termed antisymmetric on the interval [O,L].

Jzk: T k:1,2...

U 0

The G-canonical and T-symmetric control systems

A control system in which the linear equation of motion
of particles is described by a G-canonical coefficient matrix
P(s),

2 =P(s)z,

is termed G-canonical, while a control system for which P is
a T-symmetric matrix is termed T-symmetric.

For a G-canonical system the matrizant R is a G-invar-
iant:

RGR = G.

For example, the matrix P describing a quadrupole or axi-
symmetric lens for the vector &, = ||x, x| || or %, = ||x,x:||is
J, -canonical, and the matrizant R of this system satisfies the
condition of J, invariance:
0 —1
=[i ~ol:

Ril RlZ 0 —1 Ril R‘.’.i

R'éi R22 1 0 HiE R‘ZZ

The matrizant for a T-symmetric system satisfies the
equation

T-R (P, 5/0) = R (P, L — s/L)-T.

Fors =L and s = L /2 we obtain
R (L/0)-T-R (L/0) = T;
R (1] 4) T (4fo0)-1

For a G-canonical system which is simultaneously T-sym-
metric, the following equations are valid for the matrizant:

G-T-R (L/0) = R (L/0)-G-T;

G-T-R(£/0)=R (L/ L )GT.

Symmetric and antisymmetric magnetostatic systems

The system of paraxial equations of motion in a magne-
tostatic lens has the form
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z, 0 10 0
U 2t | Fa 0 Kk, O
=Pz, z=— | P= o 00 4l (8)
T kyp O ky O
It is easily seen that the matrix P is G-canonical, where
J, 0
“No x|

It will be symmetric when the following conditions are satis-
fied:

L L
5 ) z_é)’l
ﬂ‘gg({—;-l—S)—:kzz(_{}—S‘ ; €
bed)-tnib. |

where L is the length of the system, and it will be antisymme-
tric if

ku(%“l‘s):]lzz(é—'s), ]
g (5 +5) =R (5 —5) l (10)
b (e) = e (£ ). |

From the conditions for it to be antisymmetric and G-ca-
nonical, it follows that the matrizant of an antisymmetric

system must have the structure

HH R:IZ Rla 0
Rzl REZ 0 = R13
Ry 0 Ry R 12

2

0 _RB ‘RZI Rll

(11)

A magnetostatic system which is the analog of an
axisymmetric lens

We shall use the term **analog of an axisymmetric lens”
for a system in which the matrizant R for length of the sys-
tem L has the form
Ry 0

0 R

Ry Ry,

R= ,
Ry Ry

»

, 311=‘

It follows from the structure of the matrizant (11) that the
system (8) described by (10) will, at its exit, behave like the
analog of an axisymmetric lens when the following condi-
tions are satisfied:
Ry (L0) = Ry, (L"’O),
Ry, (L/0)y = 0.

In the case k,, = 0 the second condition is satisfied identi-
cally, and the only requirement for a system to be the analog
of an axisymmetric lens is the first condition.

In particular, a system of quadrupole lenses (k., = &y,
=k, £ = 0) will be an analog of an axisymmetric lens when
the following conditions hold:

"‘(%“)i—k(‘-?ﬂ)a} (12)
Ru (L.‘O):Rzz (L/O)-

The quadruplet of rotation

The simplest focusing quadrupole system operating as
the analog of an axisymmetric lens is a system of four qua-
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drupole lenses—the quadruplet of rotation {or the *“Rus-
sian” quadruplet).'” Its properties are described in detail in
Ref. 16. Equation (12) implicitly specifies the relation
between s, and x, for a chosen geometry of the quadruplet of
rotation. The resulting curve in the (3¢,,%,) plane is referred
to as the load curve.

The matrizant of the antisymmetric quadruplet in the thin-
lens approximation

We shall use the following notation for a system of n
guadrupole lenses. The length of the j-th lens is called L, 5,
is the distance between the j-th and (j+ 1)-th lenses, 5, is
the distance between the location of the initial phase portrait
and the first lens, 5., , , is the distance between the last lens
and the position of the final phase portrait (the distance
between the last lens and the target), and

1 ; ,
_?7... |V182 {])I :ﬁja szﬁij.

In the antisymmetric quadruplet n =4, 5, =s,, L, =L,
L, =0L,, », =, and 2, = 5, For convenience in writing
out the equations, we shall use the additional notation

1 1
=8+ Ly ta=th=s+5 L+ Ly,

1
te=8y+ Ly, t:-:sé"l"_g“[fis
%3 ®3

O="0G=—TF" o= _C:’:-H—Lz P

o= (¢, + ¢5) 13+ 2e5ty — €1C3l315,

L =gy 28+ 8+, + 2L+ 2L,.

The matrizant in the (x,s) = {xs) plane is called X, and the
matrizant in the (x,5) = (ps) plane is called Y.

In the thin-lens approximation the elements of the ma-
trizant for the antisymmetric quadruplet are written as

Xn=Y, =14 a—cltity + 6,X5;
X12:Y12:I_‘+ & (th — ts)
+ it X gy — catats (t -+ £y + 15);

X =Yy =tylc}t; — (es+ €)% — 2ciin;
Xy, =Yy =1 —a— oty + 6:X0:

The quadruplet of rotation in the thin-lens approximation

The equation & = 0 defines a quadruplet of rotation and
is the equation of the load curve in the thin-lens approxima-
tion.

The key elements of the quadruplet of rotation are de-
termined by the expressions

H'F’:HF:f:ti%T}g%,

SF =SF=f(l—q)— =L,

P = Cylyty,

Even for fairly high excitations (s =1), the thin lens approx-
imation gives the quadruplet parameters with an acceptable
accuracy: 5-10% for HF and SF and 20% for the field gradi-
ents.
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The matrix of the focusing lens, the Twiss matrix, and the
equivalent length of the system
We shall use the two-parameter matrix of the focusing

lens F(y,v) and the three-parameter Twiss matrix T (u,v,£),
where

sin
cosp ——|.
F(u, vy= ;
—vsinp cosu
cos(L—e) sinp
T COS & Y COs E
(o v, &)= _ vsinp  cos(u+e)
€03 e COSE

The matrix of the focusing lens is a special case of the Twiss
matrix for £ = 0.

We introduce the concept of the equivalent length of the
focusing lens, L., defining it as

Leg = plv.

Representation of the antisymmetric quadrupletas an
equivalent focusing lens

For an antisymmetric quadruplet of length L, , where
Ly =2 (Ly + Ly + 81) + 8o
in each of the planes (x,5) = (xs) and (x,s) = (ys) we find

the parameters of the equivalent focusing lens:

1 1
008 Py = 08 p, = cos p=—5 (Hy+ Hyp) =5 (Vi + Vg

=1/ A Var .
ikl el G

dine = Hu—Mn . gne
£ p e slnsy_——smsl.
2V —HyHn
Here the matrizants H and V are used to denote the values of
the matrizants X and Y for s, =5, =0.

We define the coefficient of equivalence a,, as

Oeq = Leql"Lh.

The quadruplet of rotation can be represented as an equiva-
lent focusing lens of length L, the matrizant M = M(8/1)
of which is the matrix of the focusing lens:

M=X (8/1) =Y (8/1) =F (u, v),
where

cos U= My + Myl Geg = W(VLy).

Analysis of the results of numerical calculations shows
that ., =1 with a very weak dependence on y, i.e., the
length of the equivalent focusing lens is approximately equal
to the length of the quadruplet of rotation.

The relation between the parameters of the quadruplet of
rotation and the axisymmetric lens.

We use z (zg,) to denote the position of the focal point
in object (image) space, z, for the location of the center of
the quadruplet of rotation or the center of the lens, and f for
the focal length. Then for the quadruplet of rotation we can
write
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f=— =
T My~ wsinp !

1 1 1
ZE_ZF:SF_+T Lh :TCtg H+'2—Lk‘
and for the axisymmetric lens

d
f':‘ B
Slnm

Z,—Zp = —dctg% .

from which we obtain

ft. 00

==—1 a = arccos
The latter equations allow us to use the known value of p for
the quadruplet of rotation and, consequently, the known val-
ues of f/L, and SF /L, to calculate the values of L, /d and

k2 for the model of a bell-shaped lens with equal fand z, — z.

Comparison of the magnetic fields of the quadrupole lenses
in the quadruplet of rotation and the axisymmetric lens
Weuse B,; todenote the magnetic inductionata pole of
the j-th quadrupole lens, B, for the maximum value of the
magnetic induction on the axis of the axisymmetric lens, a;
for the aperture radius of the quadrupole lens, L; for the
length of the quadrupole lens, and »; for the dimensionless
excitation. Then the ratio of the ficlds is written as

B, _ wilj
By ay '
where
2k, Ln Li

Calculations show that quadrupole lenses provide a magnet-
ic induction at a pole which is roughly 39 times larger than
that for an axisymmetric solenoid with L;/a; =3.

It follows from the above expressions that the larger the
ratio of the length of the quadrupole lens to its aperture, the
larger the field reached in the quadruplet of rotation in rela-
tion to the solenoid.

5.RECURSION METHODS OF CALCULATING THE
MATRIZANT

Gauss brackeis

In the early stage of development of geometrical optics,
before the matrix apparatus existed, Gauss obtained his re-
sults on light optics using a recursion technique which later
became known as the Gauss brackets.”* The technique of
Gauss brackets is used for two-dimensional phase transfor-
mations. It is closely related to the thin-lens representation.
The use of Gauss brackets is convenient for writing down the
basic equations of ray optics and the optics of phase el-
lipses.”™*® A continuous generalized analog of the Gauss
brackets*' can be used to calculate the matrizant for an arbi-
trary coefficient matrix with rigorous conservation of the
phase volume of the beam at each stage of the calculations.
Effective computer programs based on this method have
been written for studying the beam dynamics for an arbi-
trary axial field distribution through fifth order in the non-
linearity.

The multiplicative form of the matrizant

A square B X 8 matrix a{ j),
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1 .0
1 . 0
a(py=| =I-I(H+I(a, j=1, ..
@iy Qjp .. Qg
0 0 1

differing from the unit matrix in its j-th row (the generating
row), is referred to as a { jy-unit matrix a. The unit matrices
have the following properties:

1. a ()b (j)= (a4 b) {j), if a;;="0;=1.
2at(jy=a* (i=T—T (e (Ga+ TG a3
3. Det a (jy=1]a ()| =aj; - B

A square 8 X8 matrix A can be represented either as
the product of § unit matrices (the H , expansion)

A=ag {Prap—1)...a{l)

ji=1,..

where

I(Hay=IHAG; A1) =A A7({HF0

AGFN)=AGHU—TGHATHIGHAG
+IHATGIO,

or as the product of 8 + 1 unit matrices (the H , expansion)

A=bB-+1bP)...0(1)

where
b{'}-H..I. bﬁ+|, 2 bﬂH B
0 1 0
PR B=E=] . e s ;
0 0 1
b b
o=l 2 o (;
bﬁ+1,1 bﬂ+1.ﬁ
bJ'r = b.i.iBJ'r (j)'.' rs&j,
i=2...p+1, r=1,..., 8,
bge1a = By (B + 1),

B (1) = 4:
o1

byy = b5, (g5 — byy— 22 bj;d;j),
B0, =2 ... B

By (j + 1) = Buy () — Bus (7 4 1) by,

rj, ki=1, ..., B
By (j+ 1) = By () b3},
EB,j=1,..., B

The generalized analog of the Gauss brackets

The sum of the unit matrices can be written recursively:

ﬂ1+..-+ak:2h1=ah+zk—1.l’ EM:O.
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I(H=i()i0),

-1 ﬁ!

r
An example of a linear recursive operation of order 2 is the
operation

Eml = ﬂmzm-hl + Em—z,h 2[}1 =1, z -1,1 = Vs

which defines the Gauss brackets. The generalized analog of
the Gauss brackets is the linear recursive operation applied
to the elements of a rectangular » X/ matrix a:

8
Sm,i = Zlam,m —j'Sm—j,is
j.‘:

i=1, W B om=1, ..., n (13)
Here m — j denotes the remainder of the division of m — j
by 3, which takes values from 1 to 3, inclusive:

m—j=1,...,p i=1,..., B

The matrix of the results of the preceding operations is de-
fined as

S_pra,1 - S~r&+1. B
S_pezg o S_pra,p || = I.B‘
So - Sop

The result of the operation of (13) on a matrix (an a-term
sequence) is also referred to as the shuttle sum §,, ; of an a-
term sequence. The Gauss brackets are a special case of their
generalized analog for 8= 2,a =1,i=1,2,andj=0,
1....

Let us construct the > matrix of individual shuttle

sums in the form of a matrix S( ja):

1+ 24

] Siprt 1 - S, p
S ay=| ... ... .- .
Sis Sy,
where
S (0-, a) = IB'

The products of the unit matrices are related to the
shuttle sums as

SG,a)=aj)...al)

Here the H, and H, expansions for the matrix 4 are written
as

A=S@ a)=5@+1, b

The continuous generalized analog of the Gauss brackets

Approximating the function P(s) in the equation for
the matrizant
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R’ (P, s/0) =P (s) R(P, s/0), R (P, 0/0) = I,

by a piecewise-constant (step) function P(j),j=1, ... .n,
where

n
Z As.f =5
=t

we write the matrizant as the product of the » partial matri-
zants R(j), each of which is calculated on its smooth seg-
ment As;:

R=R@mRMr—1)...R{.

Writing each of the partial matrizants as the product of unit
matrices (), r=1, ..., 8 + 1,

R(Gy=d p+1)...

we obtain the matrizant for the H, expansion in the form of a
product of »f unit matrices and the matrizant for the H,
expansion as a product of #(5 + 1) unit matrices.

Expanding the sequence of the partial matrizant
R(P( ), As;/0) in a series in As; and keeping only the linear
term, we obtain the following equations for the elements of
the sequence:

@ (1) =af (p+ 1/1),

-
ypper n=0 (1, B)-F Py, () As;,

Pl o o By By e 5

Qgmnpren =0 (i B)+ Py () sy, >(14)
b= By anan B =L

@i n="0(1, B+ (1—a) Py (j) ds3 k=1, ... B

8@, i)=1, 8@, j)=0, is=j, i, j=1, ..., B _J

Here the matrizant is approximately determined by the ma-
trix of shuttle sums:

Ry = Snpen), n (Br+1, a);

Ry & Stn-typepsn,z B+ 1, a); (15)
R~ S@Bnt1, )

The limit of the matrix of shuttle sums for n— oo, max

As; -0 is the matrix of the shuttle integrals of the function

P(s):

lim § (B + 1, &)=<| \ (I P (s)ds) =R (P, s/0),
0

Tt—>00

max As;— 0,

which is equal to the matrizant R(P,s/0).

Equations (15) together with the elements of the se-
quence (14) provide an algorithm for the approximate cal-
culation of the matrizant which is constructed by multiply-
ing the sequence by the unit matrix [;. Multiplication of the
sequence by a matrix C is performed in the following man-
ner.

We take the first row of the sequence and multiply it by
the matrix C = C(1). This gives a new row, whichis inserted
into the matrix C(1) in place of row I, thereby forming a new
matrix C(2). We then take row II of the sequence, multiply
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it by the matrix C(2), and insert the resulting row into the
matrix C(2) in place of its II row. The result is a new matrix
C(3), and so on. In the A, method the final 5-th row of the
sequence is multiplied by the matrix C(/3) and the resulting
row is inserted into the matrix C(f) in place of its last row.
The resultis C(f + 1) = RC.

In the H, method the final (# + 1)-th row of the se-
quence is multiplied by the matrix C(f + 1) and the result-
ing row is inserted into the matrix C(8 + 1) in place of its
row I. The new matrix is C(# + 2) = RC. These rules are
valid for each partial matrizant.

For P; = Q this method of computing the matrizant is
conservative with regard to the determinant of the matri-
zant. Therefore, the phase-space volume of the beam is rigor-
ously conserved in each step of the calculations, which
distinguishes this method from others such as the Runge-
-Kutta and Adams schemes.

The difference scheme of the H, method is a first-order
scheme, and that of the A, method is a second-order scheme
for row I of the matrizant and a first-order scheme for the
other rows.

If the function P(s) is G-canonical, it is possible to con-
struct a variant of the shuttle-sum technique for computing
the matrizant in which the G invariance of the matrizant is
strictly conserved in each stage of the calculations,

6. PROBE SYSTEMS FOR THE CONTROL OF HIGH-ENERGY
BEAMS—SYSTEMS WHICH DECREASE THE PHASE
DIMENSIONS OF THE BEAM

Theion probe

A control system which decreases one or more of the
phase dimensions of the beam is referred to as a probe system
or an ion probe.

We shall use the phase-space variables in whose space
the phase volume of the beam is constant during its motion.
Different types of probes can be defined, depending on
which phase variable is to be decreased. In the present study
we restrict ourselves to four-dimensional phase space (k),
where A, =x, h, =y, h, = x', and h, = y'. The phase di-
mensions at the entrance to the system (s =s,) and at its
exit (s =s,) denoted by Ay and A, j=1, ... 4. We shall
consider a transverse probe (x, <Xy, ), <J,) and an angular
probe (x! < x},,y. <yo) with two diaphragms before the first
lens.

A probe for which the beam at the probe exit has very
small phase dimensions, for example, several microns or
submicrons for a transverse probe, is referred to as a micro-
probe.

The problem of designing the optimal microprobe of a
given length can be formulated in two variants as the inverse
nonlinear problem of finding the set of lenses, their param-
eters, and their relative placement for a series of contraints in
the form of inequalities (limits on the maximum fields at the
electrodes or poles, on the apertures, and on the lengths of
the lenses).

In the first variant, the initial phase set is given and the
system providing the minimum phase dimension at the exit
is sought. In the second variant, the phase dimensions at the
exit are given and the system having maximum acceptance is
sought. We shall follow the first formulation of the problem
with the initial set specified parametrically.
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Description of the initial phase set

The boundary of the initial phase set defined by the two
diaphragms is described by the equations

(2 -+ 2D+ (4 + Yo/ D2 = (/D) l (e

] 2__ .2
T+ Y, =r3-

Herer, (i = 1, 2) is the radius of the i-th diaphragm, and Iis
the distance between the diaphragms. The intersections of
the contour (16) with the (xx') and (yy') planes are paral-
lelograms, which practically become rectangles for r, > 7.
The area of the phase-space parallelogram is § = 4r,r, /L.

The boundary of the phase set is the phase portrait of
the beam. The boundary in the form of a rectangle with sides
parallel to x and x' (or y and y'}) is the canonical phase por-
trait.

The paraxial system (the system in which the equations
of motion are studied in the linear approximation), which
takes the phase parallelogram into a rectangle, is always,
owing to the conservation of the phase volume of the set
Q(h), one type of probe, since some of the phase dimensions
of the beam at the exit in this system are always smaller than
(or equal to) the corresponding initial dimensions.

The magnification of a probe

Henceforth, unless stated otherwise, we consider trans-
formations of the phase portrait in the (x, x") section. Since
the extremal values of x and x' are associated with the ca-
nonical phase portrait, we assume that at the target the phase
portrait is a rectangle for which x,, =r and x,,,. = a.
Here the magnification of the probe is

m = riz, = xyfa.

For a transverse probe m <1, and for an angular probe
m>1.

The stigmatic and A-step probes

A probe is termed stigmatic if the phase portrait on the
target is a rectangle in the spaces (x,x’) and (y,y'). A probe
is a k-step stigmatic probe if it can be divided into & subsys-
tems, each of which is a stigmatic probe. In the two-step
stigmatic probe the first subsystem is referred to as the fore-
system, and the second as the primary system.

Notation for the parameters of the ion-optical system (10S)
of aprobe

We shall refer to the lens system of a probe as the IOS of
the probe. We use the following notation for the distances in
a system of quadrupole lenses, assuming the axial distribu-
tion of the field to be rectangular:

Al is the distance between the second diaphragm and
the entrance to the first lens;

s; is the distance between the j-th and ( j + 1)-thlenses;

g is the distance between the last lens and the target;

L; is the length of the i-th quadrupole lens;

L is the length of the probe (the distance between the
first diaphragm and the target);

L is the length of the TIOS (the distance between the
entrance to the first lens and the exit from the last lens);

F and F' are the front and rear focal points;
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H and H' are the front and rear principal planes;

Sand S’ are the front edge of the first lens and the back
edge of the last lens;

SFand S$'F' are the locations of the focal points;

fis the focal length of the 108;

r, and r, are the radii of the first and second diaph-
ragms.

In the case of a bell-shaped field, the distances between
the centers of the elements are denoted by the same symbols
with a star.

We also use the following notation for the matrizant:

__‘ Ry1r Rxg

= ! Ryay Raop
where M is the matrizant of the IOS, R is the matrizant of the
probe, the index 1 refers to the plane at the entrance to the
first lens, and the index 2 refers to the plane at the exit from
the n-th lens. Analogous relations hold for the (y, ) plane.
For the axisymmetric lens and the quadruplet of rota-
tion we have

1
x

Te

Te

Zan Zy

] +

Myyy Myiz
M &

az1 Mayes e

2n

M,=M,=M R =R, =R

Transformation of the phase portrait in the paraxial probe

Let us consider the transformations which take the ini-
tial phase parallelogram ABCD (Fig. 1) in the plane of the
first diaphragm to a rectangle in the plane of the target.
There are four possible variants of these transformations
(Figs. 2a-2d). It can be shown that variants (a) and (c) are
characteristic of the angular probe, while variants (b) and
(d) are typical of the transverse probe. In obtaining the ex-
pressions for the matrizant which accomplishes these trans-
formations, it is sufficient to consider the transformations of
the points A and B into the points 4" and 8.

Transformations of the phase portrait in the paraxial angular
probe

For transformations (a) and (c) we obtain

Ry = = 1lry; Ryp = rifryy Roe — TFrofrly, Ray = 0
o = riryfrly; m = riry = =frflr;

o = (55

Mp=x[Z Aa+2E (14 5],

My = '-'F—I;";—; My = i";i(‘.l +%) :

SF=1+Al; S'F =g+ (rlr)?l; = 2rlir,.

FIG. 1.
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FIG. 2.

Here the upper signs refer to transformation (a) and the
lower ones to transformation (c).
For a one-step probe M,, = M,,, SF=8'F’, so that

g = 1+ Al — I (Firg
For a two-step probe consisting of two quadruplets of

rotation separated by a distance A or two axisymmetric
lenses with centers separated by A * we have the relations

e fafs o fifs .
f= SF1+SFya—h — S*¥F +8%F,—A* 7
SF = 8§F,— .

TERR SFi+8F,—h

P 3 .

S*F -—S*FZ— S'Fl‘f‘;*Fg—)\.*_’
i

SF = SF\——5p T5F—%

f!
S*F = S*F =g s

Therefore, for the transformations (a) and (c) in the two-
step probe we obtain

F v
SFy=l4 Al [y SF=g+1 (L) 74t
fafs L o

=4 —=f

SF1 - SF,—* S

Transformations of the phase portrait in the paraxial
transverse probe

For the transformations (b) and (d) we find

Ry = Frirg Ry =05

Ry

Fryfrl; Ry = Fryr;

My= & (i g—r_);

— % 7 ry

Al
My,= -I_»[Trl— (lﬁ'rL\l)—g—l—“T,% ;

Moy = Frifrl, My, = £r AR
SF=Al; S§'F =g—1{n)t=g—7F1
m = =l = -&rlir.

For the one-step transverse probe we have
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g =AM+ (rir) L.

For the two-step transverse probe we have

SFy = Al + hify SFy=g— P+ ffalfi;

s rt fife
_ = 172
I= - =—grst -

Here the upper signs correspond to the transformation (b)
and the lower ones to the transformation (d).

It follows from the expression for the focal length that
the 10S of a microprobe must have a short focus. Therefore,
if the minimum focal length of a single 108 is insufficient for
obtaining the required decrease of the beam diameter, it is
necessary to use a second IOS to form a compound 10S with
a smaller focal length for the same length of the microprobe.

7.THE QUADRUPOLE MICROPROBE
Requirements on the |0S of a microprobe

An I0S of minimum focal length must be used to obtain
a microprobe with maximal decrease of the beam diameter.
The lower limit on the focal length for a one-step microprobe
is determined by the lowest attainable boundary of g and the
smallest possible lens length and probe length. The lower
limit on the lens length is determined by the mazimum possi-
ble magnetic induction at a pole or field strength at an elec-
trode and by the lens construction. In the quadruplet of rota-
tion with the smallest excitations, the smallest focal length
can be obtained by making the free spaces between the lenses
as small as possible and using lenses of equal length.

Examples of microprobes

For a quadruplet with no free spaces (quadruplet 4)
and Al = 0.14L,, where L, = L, is the length of the quadru-
pole lens, we obtain

j = 2.53 L], "y = BlLl == 1.-'15; Ko = ﬁng == 0-75;
g = 044 L,-+6.40 L2/L;

B; = Bpwia/Li, i=1,2;, m =253 LyL

Here Bp is the magnetic stiffness of a particle. For protons of
energy 3 MeV, Bp =0.25T'm.
If the free gaps in the quadruplet are taken tobe s, = s,
=35, =0.20L, (quadruplet B}, thenfor A/ = 0.14L, we ob-
tain
f= 268 L; % = 0.70;
g =014 L, + 7.18 L/,

m = 2.68 L,/l.

For higher excitations it is possible to obtain a focal
length an order of magnitude smaller. For example, for the
quadruplet (quadruplet C) with parameters L, = L.,
Al=0.056L,,5, =s, =0, and s, = 3L, we have

f=—027Ly; % =2.24; =, =127,
g = 0.056 L, + 0.073 L¥l; m = —0.27 L,/1.
Whereas in the first two cases the maximum beam radi-

us in the system is somewhat larger than 7, , in the third case
it is an order of magnitude larger.

The optimal microprobe

Taking into account chromatic and spherical aberra-
tions, assuming that r, >r,, we can write down an approxi-
mate expression for the beam radius at the target for y, =0
and y, = 0:
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A 3
z,=Ryri+Cy Tp‘%%“+cs (%) )

where

Co = (Mys + gMyy) L+ AD® + (Myg + gMy) (- Al

+ (My; -+ gMys) (0 + Al + My + My

Here M, are the coefficients of the geometrical aberrations
of the IOS of the probe, and C, is the chromatic-aberration

coeflicient of the 10S.

We write the expression for |x,| in terms of the beam

emittance £ and the angle ¢ = r, /L

2,) = Lt b0 - by 03,
) = t-b,
by=|Ryel; sz] rTl; by=|Csl;

We define r, such that the expression for |x, | has a minimum
The values of #, and ¢ at

at |x,. | =x

m*

Ap

71 and 4,,. We obtain

"

T TN
13'7rn= V 'G_b_,. ¥ d= Vb§+ 12b1b3_‘b2!

g 8
m = g,
The microprobe with & = 4, and |x, | = x,, isreferred to as

the optimal microprobe for the (xs) plane. For a given beam
radius at the target, this microprobe transmits a beam with

(sot+g)

T17a

!

x.| =x,, are called

the maximum emittance, i.e., the maximum current.

For the quadruplet A the geometrical-aberration coeffi-

cients are
M, = —10.7;
M5 = —22.1;
Mpsy = —22.3;
M o5 = —713.7;
My = —84.4;
Myys = —20.4;
M,y = —67.3;
M, = —19.9;

TABLE I. Parameters of quadrupole ion—optical systems with identical magnification,

length, and aperture.

M, = —20.8;
Mxlﬁ = _‘8v7;
M, — —83.7;
M 06 = —26,5;
Mys = —67.0;
My = —2.6;
MI,'E& =¥ _5818;
My = —3.8.

Here the TOS lengih is taken to be unity, and L, =L,
=0.25.

Comparison of quadruple 10Ss for microprobes

The doublet and quadruplet of rotation are used most
frequently in the quadrupole TOSs of microprebes. Often the
comparison of these I0Ss is not completely correct, since
systems with different geometries are compared. It is useful
to compare different I0Ss for the same microprobe length,
distance between the first diaphragm and the first lens, and
10S length.

We shall consider three proton microprobes with

L =2.0 and [/ + Al = 1.76, having different 10Ss of length
L. For the first 108, a doublet, we have L, =L, =1L,
=0.04, s, =0.04, 2=0.12, and L = 0.12. For the second,
quadruplet I, we have L =0.12, g=0.12, L, =L, =L,
=L, =L,=003 and 5, =5, =5, = 0. The third 1I0S,
quadruplet I1, has a slightly larger length L and, according-
ly, smaller distance g: L=0.16, L, =004, 5, =35, =3,
=0, and g =0.08. The energy of the beam particles is
W =3 MeV. The lens aperture radius is ¢ = 3 X 10 % All
lengths are given in meters.

Comparison shows (Table I) that it is possible to obtain
identical magnifications in the two planes (xs) and (ys) in
the quadruplet as opposed to different magnifications in the
doublet because of the large number of lenses and the large
field strengths. The product of the attenuations, which de-
termines the beam emittance, is nearly identical for all three
I0Ss and depends only on the geometrical structure of the

- microprobe. Quadruplet I, and, even more so, quadruplet 11
have lower spherical aberration than the doublet, but in the
former case this is a consequence of the larger fields, and in
the latter it is due to the fact that the target is closer to the
10S. The chromatic-aberration coefficients in the quadru-
plets are somewhat smaller than in the doublet. We note that
here the chromatic- and spherical-aberration coefficients
have been calculated only for the magnetic quadrupoles.

Using the results given in Table I, let us calculate the
initial parameters of a beam having a diameter of 1 um at the
target. We shall carry out the calculation for two values of

Parameter Doublet Quadruplet 1 | Quadruplet 11
%y 0.6056 0.544 0.617
s (0. 7486 0.902 1.000
Ix 0.262 0.167 0.155
Tu 0.077 0167 0.155
SFy 0.562 0.103 0.072
SF, —0.021 0.103 0.072
Riza —4.6 —9.04 —10.2
Rz —23.1 —9.94 —10.2
RsaRyos 106 99 104
Cox={(z | £3") —1.5.104 —1.4-10¢ —0.67-10*
Coy={u| 4%} —2.4.104 —2.1-10* —1.40-10%
x| Zpyel) —7.0 10* —4.5-10 —2.3.104
y |y —4.2.108 —4.5.108 —2.3.104
Cpx —4 —3.3 =8
Coy —4 -3.9 ~3.8
B, T 0.17 0.25 0.18
By, 'T 0.26 0.68 0.47
Vs kV 11.0 8.9 6.4
Vo, kxV 16.5 24.4 16 9
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8= Ap/p:6=10""and § = 10~*. The results are given in
Table I1. Comparing them, we see that all the comparable
magnetic microprobes for a given momentum spread have
similar four-dimensional emittances, i.c., similar currents.
The quadruplet of rotation has somewhat larger emittance.
In the case of the doublet, in order to obtain the maximum
emittance it is necessary to use rectangular diaphragms,
while in the case of the quadruplet circular diaphragms must
be used. Here to obtain a beam with a diameter of several
microns the width of diaphragm I in a microprobe using the
doublet must be very small: 2.4 um. In the quadruplet, 27,
= 5 pm. The initial angular spreads for a given & are approx-
imately the same for all three systems and in both planes, so
that diaphragm II can be circular in all three systems.

As § varies from 107 to 10 %, the emittance £, £, in-
creases by a factor of 13-16. It is therefore very important to
have the momentum spread closer to 104,

More significant decreases can be obtained by using the
IOS of minimum possible length for the maximum possible
length of the microprobe. However, in systems of length 3-5
m problems arising from the mechanical stability and scat-
tering on the residual gas in the vacuum chamber hinder the
functioning of such a system as a micron microprobe. In a
microprobe of length 4 m with an I0S of length 12 cm for the
smallest possible fields, the decrease in each plane in the
linear approximation is approximately 30. To obtain a de-
crease > 30 it is necessary to use a region of higher fields in
the quadruplet of rotation or to use a two-step I0S, Obtain-
ing a beam diameter of a fraction of a micron requires careful
optimization of the IOS and minimization of the chromatic
and spherical aberrations by using octupoles, other multi-
pole elements, and achromatic lenses, Moreover, a submi-
cron microprobe, or, at least, its final stage, should be orient-
ed vertically, as is done in electron microscopes.

Comparison of the parameters of the quadrupole and
axisymmetric microprobes

We shall compare the parameters of microprobes with
an I0S in the form of a quadruplet of rotation and a solenoid.
As before, for the quadruplet of rotation we use the model of
a rectangular distribution of the axial field. For the solenoid
we use the bell-shaped Glaser model.

We consider a quadrupole probe with the parameters
Li=L,=Ly, s5,=5,=5,=0, %, =0.617, x,=1.00,
I 4+ Al=175L,,g=0.66L,,m =0.24,and L = 0.2 m. Ac-
cordingly, for the solenoid we obtain k2 =0.23 and
d = 1.2L,. For protons of energy 3 MeV we have Bp = 2.5

T'm,B, =10T,B, /a =0.625T/cm, B, /a = 0.238 T/cm,
andd = 0.24 m.

Comparison of the chromatic aberrations of the two
types of 1OS shows that they are approximately equal. The
growth of the spot on the target due to the momentum
spread of the particles in the beam is Ar = 44L,8¢, for the
solenoid and Ar, = Ar, =48L,5a, for the quadruplet of
rotation, where ¢ is the initial angle of spread of the beam.

The broadening of the spot on the target owing to geo-
metrical aberrations for »<r, is mainly determined by the
spherical aberration, and for the quadruplet of rotation is
Ar = 4C,L,a} and for the solenoid Ar = 4C,L,a} . For this
example of a microprobe C; ~ 7200 and C, = 4700.

The calculations for bell-shaped axial field in the qua-
drupole system show that the difference between the values
of C and C, arises not from the difference in the types of
field, but from the difference in the form of the axial distribu-
tion of the field. For the bell-shaped distribution C=4300.

Therefore, in this example of a microprobe all of the
main optical characteristics, both linear and nonlinear, of
the quadruplet of rotation and the solenoid are practically
identical. The principal difference is in the values of the mag-
netic induction on the solenoid axis and at the poles of the
quadrupole lenses.

Calculation of the allowances for adjustment

In practice, after installation and adjustment the calcu-
lated parameters of the system differ from the actual ones. It
is therefore important to know the tolerances which must be
adhered to in order to obtain the calculated beam diameter at
the target. Assuming that the deviations of the parameters
from the optimal values are small, we expand r in a Taylor
series:

m
Ar:—':-,}':*— = Dy N;T_hr*) Aay, = (r—r¥*) Vv (o) Az,
i
where r* is the beam radius for the calculated optimal model.

Here m is the number of parameters whose variation
affects the characteristics of the beam and Aa, is the devi-
ation of the k-th parameter from the optimal value.

In Table III we give the values of (» — #*)/Ja, for a
microprobe in a flat target, where ., and a, are the angles at
which the lenses are rotated around the transverse axis in the
x and y planes, d, and d, are the displacements of the lens
axes relative to the system axis, and a, is the angle of rota-
tion of the lens about its longitudinal axis. These values have

been obtained for one of the calculated microprobe variants

TABLEII. Emittance and phase dimensions of the beam at the target for the systems of

Table I with§ = Ap/p=10 'and§=10 *

Doublet Quadruplet I Quadruplet IT
Exit parameter
10-3 10~ 10-3 10 10— 10~
108, 1.2 1.5 2.6 3.8 2.5 3.3
1057, 5.8 7.9 2.5 3.4 2.5 3.4
10502 6.1 18 7.4 19 7.7 23.4
105¢ 4y 59 16 6.9 16 6.3 18.6
1080, 0.7 2.8 1.9 6.6 1.95 7.8
1010g,, 3.5 12.5 1.6 5.6 1.6 6.3
1020g.,e 2.5 34.4 3.0 37 31 49
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TABLE IIL Values of the tolerances for the quadruplet of rotation.

Lens number
Type of deviation
i 2 3 4

e 41 003 143 302 67 661 19 778

oy 34 625 64 849 96 397 19 083

dy 70 966 101 599 193 346 40 497

dy 115 453 154129 134126 22695

z 1130 2970 2034 275

%o v 1043 2871 2239 117

with the following parameters: r, = 24 um, r, =0.22 cm,
I=335m, [+Al=353 m, L,=20 cm, g=0.32 m,
2, =0.631, 3, =1.023, =48 ym, and 5, =5, =5, =4
cm. We note that for @, #0 and d, #0(a, #0 and d, #0)
the beam is deflected in the (xs) plane [orin the (ps) plane].
For ¢, 0 it changes its characteristics in both planes simul-
taneously. This is the reason why in Table I1I for a,, we give
two values of the derivatives for the (xs) and (ys) planes. We
see from this table that the second and third lenses affect the
beam characteristics most strongly, while the effect of the
fourth lens is weakest.

Effect of the space charge for various emittances ofa
paraxial beam on the crossover dimensions in the proton
quadrupole microprobe

The following paraxial equations are valid for the mo-
tion of the particles of an infinitely long beam with elliptical
cross section in a quadrupole magnetic field:

sifp_ 5, @ o
& [l PP arx (ratry) ]1‘70? ]
o Ta , d I e
[kt e =0 | (n
p—YiBa XYy mie |

IT; wEe )

0

where £ * is the current in amperes on the beam axis.

In order to determine the beam radius at the target, we
split the interval [0,L] into sufficiently small segments [s7,
s/* 1], on each of which the coefficients of Eq. (17) can be
assumed constant.

We are considering a beam with elliptical cross section.
We take the initial phase portrait to be an ellipse inscribed in
the initial parallelogram. We use the envelope matrix
o = Ro,R, where R is the matrizant and o, is the matrix
characterizing the shape of the initial phase ellipse. We note
that ,, = r. and g,, = x,, where r, and x/, are the maxi-
mum values of x and x” in the phase set with elliptical bound-
ary.

Let us consider a particular partial interval of length &,
=s'''—s/(h,<L). Assuming that the quantities r, = r%.‘
and r, = r¥ entering into (17) are constant on the interval
h,, we can write the expression for the o matrix at the exit
from this interval as

o (V=R G+ D) oG)R G 1/

Here R( j+ 1/j) is the matrizant R on the interval 4, for
r=r(j) and ¢(j} is the envelope matrix at the point s”.
Substituting #*( j) = o¥ (/) into Eq. (17), we find the
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matrizant R *( j + 1/7) at r = r*( j), after which we deter-
mine the matrix g**( j).

o** () = B* [(j + 1)/ o* () B* [ + 1))
and the matrix o(j+ 1):
0 (4 1) = = (0% () + o (1))

The program package DENS has been developed for
solving this problem. The results of computer calculations
for a microprobe with the parameters

Lo =02m, s =s; =0.02 m,
s, = 0.5 em, [+ Al =3.5m,
g=03m, I =233m, rp =20 um,

ry = 0.23 cm, %, = 0.63

are given in Table I'V, where we have listed the values of the
current in the beam which lead to the indicated increases of
the beam dimensions (in units of »,,, where 7, is the beam
radius at the target in the linear approximation, neglecting
the space-charge distribution) for various values of the radi-
us 7, of the second diaphragm.

8. USE OF AHIGH-FREQUENCY ELECTRIC FIELD INTHE
ION-OPTICAL SYSTEM OF A MICROPROBE

It is well known that a time-varying field can be used for
transverse focusing of particles.”” In some cases a high-fre-
quency focusing system can be constructed more simply and
cheaply than, for example, a hard-focusing system.

Here we shall restrict ourselves to first-order focusing
in a high-frequency microprobe with rectilinear trajectory of
the axial particle.

For the case of a rectilinear reference trajectory we have

2=+ 24, k=101=0,

g = B = O Zmg—ds g =0;

Z3=Zypz= &, Vi (2') =V (.T),
Vs (Z) =Vz (.7!.'}, V(S):—gg Y
Vi () =V ()~ Vi ()-

We consider an IOS in which the longitudinal electric field
E, is a traveling wave:
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TABLEIV. Values of the current (in gA) in the beam for the quadruplet of rotation,

leading to different increases of the beam dimensions at the target.

rx,'rm
re 1074 m
1.05 1,10 1.50 J 2.00 3.00
1 1 1 2.5 3.5 5.0
22 8 13 21 54 Lif3]
50 19 30 70 101 225
100 40 60 140 200 324
200 96 128 270 385 640

E, =F (s) sin (% z,— Ezs)

and the equation for the trajectory of the axial particle is
given by

E,=E(s) siu% i

We shall assume that

w
— <t

LW ®
sin— x, 2 —
c e

x,

Writing out Maxwell’s equations

Vi(s)B,— % VB, — VB, +V,E,=0;

VB;—V (s) B+ % VB +V,E,=0;
Vo3 —V By + V. E;=10;

ViBy+ Vo, + V (5) By — T Vil =0;
—Pi5 E‘a—’r_};’ Villy, + VyBs +V.E =0
—VE;+V(s) E1—‘_.;‘V.;E{+ VB, =0;

- V2Ei + V1E2 J‘, V:,Bg == 0:
VB VaBy +V (5) Ba—% V,By=0

in the lowest-order approximation, we find that the electro-
magnetic field in the linear approximation has the form

1 ; 1 .
Ex=5¢E@ T Bi=—gE@) T
1 1
Ey=5 2 E() Loy Bi=5E() 5 2
Ey=E(s)—x; By=0.

The Gaussian equations of motion for this field are written
as

5 F =Ny

For E(s) <0 we have ¥ < 0. In this case a high-frequen-
cy lens behaves in the transverse directions like an axisym-
metric collecting lens in which

2 1
K= ) .
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In this lens, along with the transverse focusing the phase and
energy spread of the particles increases.

In the preceding section we compared quadrupole and
axisymmetric JIOSs with the parameters

Li=Ly =1L 8 =5,=3,=0,
w; = 0.617, %, = 1.00,

I+ Al = 17.5L,, g = 0.66L,,
m=0.24 L;=02m, k =0.23,
d = 1.2L,.

The product E,, o for a high-frequency I0S equivalent
to these lenses will have the following value for bell-shaped
E(s):

30 3
Eo=2p C—&?:Sp €.

Here E,, is the maximum value of E(s). For particles of
energy 3 MeV we have p=03 and E, 0= 6.47x10’
m™'-sec

High-frequency IOSs can be constructed both from
structures with traveling waves (a waveguide) and from
structures with standing waves (a cavity resonator). The
simplest example is a gap between drift tubes with the longi-
tudinal component of the high-frequency field along the axis
of the gap. The transverse focusing in this field is realized
during the phase (longitudinal) defocusing.

Further investigation of the possibility of using a high-
frequency field in a proton microprobe requires considera-
tion of aberrations.

9.USE OF THE SLIDING-TOLERANCE TECHNIQUE FOR
NUMERICAL OPTIMIZATION OF AN 10S

The problem of the numerical optimization of an 108
can be formulated as a problem in nonlinear programming,
which amounts to minimization of a function of many vari-
ables while satisfying constraints both in the form of equali-
ties and in the form of inequalities. The technique used for
minimizing the functional is the sliding-tolerance technique,
the realization of which involves the use of the deformed-
polyhedron technique**—one of the direct methods which
does not involve the calculation of derivatives.

In thenumerical optimization of probe systems, the ini-
tial values of the parameters are taken to be those obtained
by analytic optimization. In a number of the cases studied
the numerical optimization did not give better results. The
use of the sliding-tolerance technique for the optimization of
quadrupole systems has been studied in Ref. 43. A program
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package for the calculation of probe systems has been con-
structed on the basis of the method of embedding in phase-
moment space for the first, third, and fifth phase moments in
the bell-shaped and rectangular axial-field models for qua-
drupole lenses, using the generalized analog of the Gauss
brackets for integrating the equations of motion.***!
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