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This review is devoted to a currently popular field-theoretic model of extended strongly
interacting objects. The nonlinear nature of the Skyrme model leads to solutions of the Euler—
Lagrange equations which already at the classical level have properties similar to those of
baryons. Some details are given of the derivation of the effective quantum Hamiltonians using
collective variables, which allow one to obtain numbers from the calculations. The Skyrme model
is presently used to analyze a very broad class of problems in strong-interaction physics. For
example, it has been used successfully to analyze the nucleon excitation spectrum and the static
properties of baryons, nucleon—nucleon forces, meson-nucleon scattering, dibaryon and
multibaryon states, meson exchange currents, photoproduction processes, and so on. An
extremely attractive feature of the model is the unification of the techniques for studying both
isolated baryons and the systems which they form, for example, nuclei.

INTRODUCTION

The Skyrme model is an example of a field-theoretic
model of extended objects. The dynamical variables of the
model are bosonic fields. The object of investigation is the
baryon structure and interaction at low energies.

The large amount of recent interest in the Skyrme mod-
el' in the theory of strongly interacting particles is a conse-
quence of the hope that meson effective Lagrangians can
bridge the gulf between quantum chromodynamics (QCD)
and the known theory of nuclear structure.

The dynamics of the elementary quark and gluon fields
becomes difficult to analyze in low-energy quantum chro-
modynamics, owing to the large coupling constant. Al-
though everyone believes that the physics of any known nu-
cleus is also described by the QCD Lagrangian, no one has
been able to obtain the basic properties of nuclei in terms of
the quark and gluon fields.

The search for a small parameter in QCD led *t Hooft*
to the idea of considering QCD with a large (tending to in-
finity) number of colors N, . Witten® showed that if the limit
N, — oo exists, then QCD will be a theory of effective local
meson fields with local interactions of order N '. More-
over, in this limit the baryon masses prove to be of order NV,
while the number of colors completely drops out of the equa-
tions determining the size and structure of the baryons.

It is well known that nonlinear theories can have solu-
tions corresponding to localized objects of finite size—soli-
tons*—with the analogous dependences on the coupling
constant. Therefore, the Witten result leads to the picture of
baryons as the solitons of an effective meson theory. This
picture does not require any further reference to the quark
origin of the effective Lagrangian. A theory of just this type
was proposed in the study by Skyrme in 1961-1962 (Ref. 1).

It should not be assumed that the effective theories
(and the Skyrme model) verify QCD in the low-energy re-
gion. Rather, they only model that region of QCD where
perturbative methods do not work.

At present, the problem of obtaining the effective me-
son Lagrangian directly from the QCD Lagrangian is being
worked out, A large number of studies have been devoted to
this problem (see, for example, Refs. 5 and 6 and references
therein). The derivation of the effective meson Lagrangian
inherently involves the study of the mechanism for sponta-
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neous chiral symmetry breaking in QCD,” and this, in turn,
involves the study of the vacuum structure of QCD.

On the other hand, we have the problem of studying the
structure of baryons, baryon systems, and their interactions,
which can be obtained theoretically by expanding the effec-
tive meson Lagrangian.

It has been found that some of the results are completely
independent of the details of the effective Lagrangian, and
only reflect its symmetries and the fact that baryons are the
solitons of the nonlinear Euler-Lagrange equations derived
from this Lagrangian. Symmetry considerations provide
quite rigorous constraints on the possible form of the effec-
tive meson Lagrangian.

Restricting ourselves to the simplest model of this
type—the Skyrme model, we probably cannot hope for good
quantitative agreement with the experimental data, but we
can obtain a qualitatively good description of the fundamen-
tal regularities characterizing a system of strongly interact-
ing particles which would support the idea that baryons are
the solitons of an effective meson Lagrangian. It is in this
sense that the Skyrme model is an excellent theoretical labo-
ratory for studying all the special features of nonlinear field
theory.

CHIRAL SYMMETRY AND SOLITONS

The basic ideas of chiral dynamics are quite simple. In
the infrared region of QCD, where the hadron spectrum is
formed, one has collective degrees of freedom, which are
observable fields, for describing the phenomena in a restrict-
ed energy range. Although the use of phenomenological
chiral Lagrangians is usually restricted to the semiclassical
approximation, the phenomenological success already at the
tree level has caused chiral dynamics to be taken more seri-
ously.® A systematic quantization scheme”’ and the super-
propagator technique for regularizing the quantum chiral
theory' have been developed.

Nonlinear chiral theories naturally lead to soliton sec-
tors. Already at the classical level, chiral solitons are very
similar to hadrons'":

1. They carry a definite, rigorously conserved topologi-
cal charge, owing to vacuum degeneracy. This localized
charge is a good candidate for the baryon number.

2. They are extended, strongly interacting objects.
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3. They are very massive compared with the masses of
the fields involved in the Lagrangian.

These features plus the rich spectrum of states genera-
ted make chiral dynamics a very attractive theory for low-
energy phenomena in strong-interaction physics.

Let us discuss some of the symmetries inherent in QCD
which will be used later.

A FEW WORDS ABOUT THE SYMMETRIES OF QCD

The quark part of the QCD Lagrangian density (and,
therefore, the entire ../ 5 )

=4 ‘:JJ('I) = ELVLLDqu - QR’\,QLDHC’R’

where D, isthe covariant derivative, is invariant under sepa-
rate unitary transformations of the flavor indices of left- and
right-handed quarks ¢, and ¢p. We have the U(N;)
X UWNH=UNV,) . xUN g =U0(2); XU(2)gsymme-
try group, under which the quarks transform according to
the rule

Gy, = Up Gz, qp = Up {p-

The vector U(1), subgroup of this group, under which g,
and g, are multiplied by the same phase, ¢, = {exp(i8) }q,.
and g = {exp(i@) }qp , is an exact symmetry and the charge
corresponding to it is the baryon number. The axial U(1) ,
subgroup, under which the left- and right-handed quarks
transform  with opposite phases, ¢, =>¢“g; and
g =e g, ,isnot a symmetry group of the quantized La-
grangian (the Adler-Bell-Jackiw anomaly). Therefore,
there remains the chiral symmetry

SU Ny % SU (Npp=SU Ndv %X SU (N a»

where the right- and left-handed transformations are re-
stricted to matrices with unit determinant. Finally, the ab-
sence of parity doublets in the physical spectrum of particles
with explicit isospin symmetry indicates that SU(2)_
®SU(2), is broken'' down to SU(2), by the spontaneous
chiral symmetry-breaking mechanism with the appearance
of massless pseudoscalar Goldstone excitations with the
quantum numbers of the pions.

When speaking of the effective boson Lagrangian, one
has in mind the Lagrangian describing the dynamics of the
Goldstone bosons, while keeping these symmetries intact. It
is simplest to construct this effective Lagrangian by taking as
the fundamental variables the elements U of some SU(2)
group, the local coordinates of which will be identified with
the boson fields. Then the left- and right-handed transforma-
tions of the quarks can be associated with the left and right
multiplication of elements of this group. The chiral SU(2),
% SU(2), group of transformations of the quark fields will
correspond to the direct product of left- and right-handed
representations of the elements of SU(2), so that the trans-
formation U=AUB ™ with an arbitrary constant 4 and
BeSU(2) corresponds to an arbitrary element of the quark
global group.

The chirally invariant action density is usually con-
structed using left-invariant Cartan forms L, = U "d, U.
Under right-handed transformations R they transform as
LH =RL, R *, but remain invariant under SU(2), . Analo-
gously, the right-invariant forms R, =4d,U-U " can be
used, which are, in turn, invariant under right-handed trans-
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formations, but transform under left-handed ones as
R,=LR,L™*. An arbitrary chirally invariant poly-
nomial P(L,) is equal to P(R,) and conversely, since
P(R,) =P(AL,A")=P(L,).

THE SKYRME LAGRANGIAN
The SU(2) Skyrme model is defined by the Lagrangian
density'
e

B 4
== o Tr L Ly + e Te Ly, LI (1)

Here the currents L, = U * 3, U are expressed in terms of
SU(2) matrices U{x) = exp({2/F, )it 7) defined by the

isotriplet of pion fields = and the Pauli matrices 7. The La-

grangian is written in explicitly Lorentz-covariant form. It is

easily verified that this Lagrangian defines a chirally

invariant theory. It is invariant under the global

SU(2), SU(2), chiral group of transformations

U(x) = AU(x)B * for any constant unitary 2 X 2 matrices 4
and B. This invariance corresponds to conservation of the

axial and vector currents in the model. The single dimen-

sional constant F_ in (1) can be determined in the bosonic

sector from the pion weak-decay amplitude. (In this case F_

is equal to 186.4 MeV.) The first term of the Lagrangian

generalizes the kinetic energy of the pion field to a chirally

invariant form (the nonlinear sigma model). The appear-

ance of the term with a fourth-order derivative is extremely

important for the entire model. Without this term there

would be none of the solitons, the quantized version of which

we hope to use for describing heavy extended objects such as

nucleons, multibaryons, and nuclei.

From dimensional considerations we see that the con-
tribution of the first term in the Lagrangian to the classical
mass is proportional to some linear dimension, while that of
the second term is inversely proportional to this dimension.
Therefore, the presence of the second (the so-called
Skyrme) term in the Lagrangian can ensure the existence of
anontrivial energy minimum for solitons of finite size. There
is a somewhat more rigorous proof of the Derrick theorem,
which states that the minimum space dimension for which
we will have a nontrivial solution is equal to three. This is
just what we need.

The trivial solution defining the vacuum state is obvi-
ously U,(x) = 1. Since, in general, AU, (x)B * #1, we are
dealing with spontaneous breakdown of the chiral symmetry
(the ground state is less symmetric than the Lagrangian).

It was pointed out in Ref. 13 that the fourth-order term
can be viewed as the result of a specific choice of counter-
terms at the one-loop level in the Lagrangian regularized by
the superpropagator method'*:

LT = % 4208y L, L, a8 (B L2+ 388, o0, L8, Ly)

wpty

M2, (L L)+ s AG,L, O 0Ly (2)

Here Z; diverges quadratically, and the other quantities di-
verge logarithmically. The last term is a regulator which re-
moves the divergences in Z,, Z,, and Z, and Z, and Z, are
wave-function renormalizations. The quantities Z, and Z,,
remain as free parameters. In the limit of infinite cutoff pa-
rameter A — oo, the term involving Z, vanishes. Then the
choice Z, — Z, = 1/32¢” gives the Skyrme model. It is well
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known that (2) satisfies the current algebra and partial con-
servation of the axial-vector current, and that it gives reason-
able threshold behavior and unitarity up to energies some-
what below the cutoff.

THETOPOLOGICAL CHARGE AND MASS OF THE
CLASSICAL SOLITON

Now, among all the possible field configurations we
shall restrict ourselves to only those satisfying the condition
U(x) = 1for |x| - o at any arbitrary time r (otherwise the
energy would be infinite). Therefore, U(x) for any fixed 7
maps the physical space R * into the SU(2) group, and all
points at spatial infinity from R * are mapped to the unit
element of the SU(2) group. The space R * with identified
points at infinity is compactified to the S sphere. We are
therefore dealing with a mapping U(x) from S to the §*
sphere of the parameter space of the SU(2) group. Such
mappings split up into equivalence classes, characterized by
a certain integer, the degree of the mapping. Any two map-
pings belonging to the same class can be continuously de-
formed into each other while those belonging to different
classes cannot. Examples of such deformations (homoto-
pies) are global SU(2) rotations and time evolution. There-
fore, the degree of the mapping (topological charge), being a
homotopic invariant, is conserved independently of the dy-
namics of the system. The mapping degree is interpreted
geometrically as the number of times the S* sphere of the
SU(2)-matrix parameters is covered in a given mapping.

It is possible to construct™'"*? the trivially conserved
topological current

JB = N | N (3)

. .
Py
satisfying the continuity condition
B
Ay =0 (4)
with charge corresponding to the mapping degree:

B =\ dz JB@). (5)
The topological charge B is additive. In fact, an arbitrary
configuration U(x) can be factorized as

Ux) = UL (2)-U, (2)

in accordance with the group multiplication rule. It is easily
shown that

B (U (z)) = B (U () — B (U, ().

Moreover, if B[U(x)] = 1, then B[U * (x)] = — 1. In ad-
dition, J4 ~v*, where v* is the 4-velocity of the center of the
soliton, which for B =1 is determined by the condition
Ulxy) = — 1.

Skyrme concluded that this set of properties allows the
topological charge to be identified with the baryon number.

In order to verify that this interpretation of the SU(2)
model is correct, we can show that the quark Dirac sea al-
ways includes a new orbital when the topological charge of
the chiral field is increased by one unit. Although the de-
tailed behavior of the solutions of the Euler-Lagrange equa-
tions is not important here, we shall discuss a few of the
properties of spherically symmetric stationary field configu-
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rations of the form U(r)=-explirnF(r)], where
n=mn/|w| =r/r and F(r) = |w(r)|. This configuration is
called the **Skyrme-Witten ansatz.” It is precisely these con-
figurations which ensure that the energy functional of the
Skyrme model has an absolute minimum in the sector with
unit topological charge. '® For the topological charge density
we easily find

dar (r)
===, (6)

0P (r)=—

sin2 F (r)

2 T
The profile function F(r) satisfies the differential equation
(-*;_Jr 2¢intF) P s oF

; in2F  sin® Fsin 2F
()2 — su;::l __ sin f;:m - (7)

where x = ¢F_r is a dimensionless variable.

The solution of this equation satisfying the conditions
F(0) = 7n, where nis an integer and F( s ) = 0, ensures the
finiteness and minimum of the energy functional determin-
ing the soliton mass:

M=n i"‘ [%\ [(F‘)ZJrf—zsinzF]de;c

44 \ sinﬁF[(F’}2 LWLy dx:l (8)

2 z?

in the sector with topological charge

B = \ &PrpB (r) = n.
Returning to the Lagrangian, let us take out the part of
it which is independent of the time derivatives:
Fa

—M= 16¢

{ \ &3z Tr L; (z) L; (x) +-.‘1§ K d*zTrL,, L]-}z} .

(9)
It is precisely this part of the Lagrangian, taken with the
opposite sign, which determines the energy (mass) of the

stationary configuration. After a trivial *adding and sub-
tracting” procedure, we can write the mass as

. Fu f¢
M= = {\ @aTr (L () & Ll
SR 3 2.24::25 Tr gy tanls (@ Ly (@) L (), (10)

from which we obtain the following estimate for the mass of
the classical soliton'":

M Fo3n2 | B Ve (11)

Using the Skyrme-Witten ansatz, we can write M as'®

m=En T ([ LD 4 3 0T P g,

e 2 4. dr

42 { sin F (@) (1+2 GV o+ Lt g () 2. (12)
Therefore, the lower limit in the topological estimate of Fad-
deev is unattainable because the conditions for the first two
integrals on the right-hand side of this expression to vanish

dx a2

dr (r) 42 sin? I (x) e s }
(13)

dF (x)
20
I+4-2 dr =il

are incompatible.
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FIG. 1. Solution of Eq. (7) for the chiral angle F(x) in the sector with
B=1

Exact solution of Eq. (7) in the sector B = 1 gives the
soliton mass M= 36.5F_ /e, which is roughly 23% greater
than the value corresponding to the lower limit in the esti-
mate (11).

In Fig. 1 we show a graph of the numerical solution of
Eq. (7) with the boundary conditions F(0) =# and
F( o0 ) = 0. The solution is a monotonic function. It is easily
checked that no continuous deformation can transform the
soliton into the trivial field w =0, U= 1. In fact, in any
attempt to “switch off”” the soliton, we must discontinuously
jump from F(0) = 7to F(0) = 0. However, when F(0) #,
the soliton energy becomes infinite [see Eq. (8)]. For x— a
Eq. (7) becomes

P pl A (14)
x

and gives the asymptotic form

F (z) ~ plat
It is easy to see that near the origin

F(r) ~Br — ax.
The last two equations are sometimes used as an analytic
approximation of the solution'® after the matching points
are chosen (uneven matching). Another common approxi-
mation is the Padé approximation used in Ref. 19.
QUARKS IN THE CHIRAL FIELD. THE BARYON NUMBER

Let us turn to the question of the interpretation of the
topological charge as the baryon number. For this we con-
sider the model problem of the motion of massive quarks in

the field of a chiral soliton.”*' Let the quark orbitals |4 }
satisfy the Dirac equation
; 17 g
[0y b 52) 0 (252 )] 1
=[—io. V4 p(cos F (r+iy;nsin F (1)] | A =g, | A},
(15)

where £, is the orbital energy in units of the quark mass in
the physical vacuum. The Hamiltonian of the problem com-
mutes with the parity and “‘grand spin” G = j + t (the sum
of the spin and isospin) operators and is invariant under
simultaneous rotations in space and isospin space. The states
are classified according to the grand spin and parity G7. In
Ref. 20 this problem was solved for a linear profile function
F(x) (or chiral angle) in a finite region of space (0, X). The
chiral angle varies from F(0) = nw to F(X) = 0. The spec-
trum of quark orbitals thus obtained is shown in Fig. 2, For
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FIG. 2. Spectrum of quantum orbitals as a function of the soliton size X.

small X' the chiral field is too weak to bind the quarks, and
the spectrum displays only the free-quark mass gap. For
1.5<.X<3 the bound 0" orbital leaves the upper continuum
and for X3 has negative energy. A system with baryon
number B = 1 relative to the physical vacuum is obtained by
the filling (and color saturation) of this 0 " orbital and orbi-
tals coming out of the lower continuum. For sufficiently
large X, the 0™ orbital joins the levels of the Dirac sea and we
have a new mass gap of a new Dirac sea, which has baryon
number 1 relative to the old one. The new sea acquires in-
teger or half-integer spin, depending on whether the number
of colors NV, required for saturation of the 0 * orbital is even
or odd. Therefore, for large X' the ground state of the multi-
particle Dirac Hamiltonian

Hy = S d2W+ [—ie-V + B (cos F -+ it-ny, sin F)] ¥
(16)

corresponds to the situation where all levels with negative
energies (including the 0™ level coming from the upper con-
tinuum) are filled. This state can be identified with the Skyr-
mion, and the vacuum rearrangement energy corresponds to
the Skyrmion mass.

In the case of soliton topological charge B = 2 an addi-
tional 0~ orbital leaves the upper continuum and joins the
sea of negative energy levels, and so on. This behavior sug-
gests that the topological charge can be interpreted as the
baryon number.

Goldstone and Wilczek® were the first to calculate the
baryon current (J}fﬂ ¥y of Dirac particles in a chiral field
using perturbation theory. The baryon density
(by) = (¢ * ) which they found is identical to the den-
sity found in the Skyrme model.*

The baryon density at the point x relative to the unper-
turbed vacuum can be written as

p@ =tr]x) (x| DA — k=) k— [},
A

=

(17)

where the summation is restricted to only filled quark orbi-
tals, which include all negative-energy orbitals (and, possi-
bly, a positive-energy 0 ' orbital). The sum X', includes the
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negative-frequency plane-wave orbitals |k — ) of the unper-
turbed vacuum. We stress that when the soliton is sufficient-
ly large, the valence orbital has negative energy. Moreover,
MacKenzie and Wilczek have noted, on the basis of study of
the squared Dirac equation, that this orbital cannot lie far
from the continuum.

The perturbative expansion of the density is obtained by
rewriting the density as

1 . 1t
.“(K):#tr—m—iiduwrx}(xi[m hgTw:I
t 1 1
= —tr— d(')|X)(XH’ ‘:—A—i A]
= l},‘ ¥ 1——P+V ‘1-—p
:tr:;Ti \ dw | X)
et bpt g By ]
t—p 1—p 1—p 1—p 1—p
7 e
/
\\ \\
(18)
where
h= —iaV -+ (0+itgys); hy= —iaV 4§ l
p=Tg0+irV; Ve=o+ivgy—1; | (19)
J

o=cosF(r); ¢'=nisinF (r).
The wavy lines correspond to the density operator |x) (x|,
the dashed lines correspond to the interaction ¥, and the
oriented lines correspond to the free quark propagator
(1 —p) ' The energy integral runs along a contour sur-
rounding the points corresponding to the energies of occu-
pied orbitals in the sum. The density converges when the
number of negative-energy states included grows. The low-
est-order contributions to the baryon density come from
third- and fourth-order graphs. This gives

dF (z)
dz '

0 (2) = — mg-5in® F () (20)
which coincides with the density of the Skyrmion topologi-
cal charge. In Fig. 3 we show the baryon density of quarks
for a field with topological charge B = 1 and linear dimen-
sion X = 5. The density was obtained by adding the contri-
butions of the individual levels. The perturbation-theory es-
timate (which coincides with the result of the Skyrme
model) practically reproduces the exact result. Moreover,
we see from this figure that the density differs greatly from
the density of the 0 " orbital taken separately. Therefore, the
one-loop contributions to the density cannot be omitted (ex-
cept for solitons of small size). A detailed study of the bar-
yon number of quark states in the field of a chiral soliton can
be found in Refs. 21 and 24. .

Finally, we should note the following feature, which
supports the interpretation of the topological charge as the
baryon number. If we consider the SU(3) generalization of
the Skyrme model including the entire octet of pseudoscalar
mesons, the Lagrangian will necessarily contain an addi-
tional term, the so-called Wess-Zumino term*’
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FIG. 3. Baryon density of quarks for a soliton with topological charge
B=1(X=5) from Ref. 20. The contributions of valence and sea quarks
to the total density are shown. The points correspond to the results of
perturbation calculations, which are identical to the results of Skyrmion
calculations of the baryon density.

S
Swz=—zg7 \ dzeypane Tr (Lo LgLyLoLe), (21)
which is written as an integral over five-dimensional space
(where N_ is the number of colors, equal to three in the real
world) or as an integral over the parameter o (Refs. 26,27):

i

Ne ¢ g M (o) 5 (o) (a)y,
Swz= GoF \ dix s doe g Tr2 F FRELIR dE R A
0

Y% = exp (— in®\%0) d,, exp (in®A%0).
(22)

This term is needed, for example, to describe the amplitude
of the process KK — 3. In this model the conserved baryon
current can be obtained as the Noether current correspond-
ing to the invariance of the Lagrangian under gauge trans-
formations. The explicit form of this current coincides with
that of the topological current, although in the SU(2) var-
iant of the model the corresponding Noether current is ab-
sent.

THE NUCLEON.COLLECTIVE VARIABLES

The Skyrme model is a type of collective model (in the
terminology used in nuclear theory). The method of collec-
tive (group) variables was formulated by N. N. Bogolyubov
in the polaron problem.”® The collective variables of the
Skyrme model define classical configurations of the pion
field. It is assumed that a selected set of field configurations
is, in some sense, the most important. This means that a
sufficiently complete set of time-dependent collective vari-
ables defines a field which approximately satisfies the Euler—
Lagrange equations.

Collective variables corresponding to nucleon rotation
were first introduced in the model of the pion field coupled to
asource.”” In Ref. 12 they were used to quantize the Skyrme
model. The authors of Ref. 30 have calculated the effective
Hamiltonian, including rotational and monopole vibration-
al degrees of freedom, with and without the explicit breaking
of chiral invariance by a meson mass term in the Lagrangian,

For quantizing the model we obviously need the time
components of the currents entering into the Lagrangian. It
should be noted that the energy of the system is not changed
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if the static solution U,,(x) is subjected to the transformation
U,=AU,A ", whereA isa unitary unimodular matrix of the
form a,1 + i7"a". The matrix 4 obviously corresponds to the
SU(2) representation of the group of three-dimensional ro-
tations in isotopic space. The parameters of the rotation ma-
trix 4 can be chosen as the collective variables describing the
rotational degrees of freedom. Therefore, restricting our-
selves to field configurations

Ur, ) = A (1) Us (1) A" (1), (23)

the Lagrangian, with the time components of the currents
isolated,

G M 2R gy Tr (D, L) — =2 \ T (L, LoJ? dér
= — —W‘\ T r(Jm 0)"@‘\ I'[ I 0] 7
(24)
can be written as
L = — "UJ‘— 43’{.[?2.:‘\1"392];‘:[- (25)
Here
' i - in?Fy-
A=\ @ sin? FL1+4 ((Fp+20 ) ds
K2 —Tr (A (1) A* ())/2. (26)

In order to obtain a physical interpretation of this effective
Lagrangian, let us consider the SU(2) X SU(2) group of left
and right multiplications of the group SU(2), to which the
matrices 4 belong. It is easily seen that the Lagrangian is
invariant under multiplication of the matrix 4 on the right
by a constant matrix h: A= A-h. Here the field U(r,z) be-
comes U=A(D)hU,(r)h *A ™ (). It is easily checked that
the action of the matrix 4 on U, takes it into
U,(r) = Uy(R, 'r), where R, is the 3 X 3 matrix of spatial
rotations. On the other hand, multiplication of the matrix 4
on the left by an SU(2) matrix g transforms the field config-
uration U(r,?) into

Ur, 1y = gA (t) Uy (x) A* (1) g+ = gU (r, ?) g*,

1e., it corresponds to an isotopic rotation. Therefore, we
have the Cayley construction of the SU(2) xSU(2) group,
formed using left and right transformations of the original
SU(2) group. Study of the variation of the effective action
under infinitesimal right and left time-dependent transfor-
mations shows that the generators i Tr7'4 *A and i Trr"
AA * will be conserved. Canonical quantization requires the
correspondencea, = — id /da,. Therefore, the spin and iso-
spin operators take the form

J b g Lt = Bty e ) i

1 2 ( I da, 9 taj 180 gy l (27)
I 1 ( 7 i o J

= =1 lg—— — @ =—— Epumlly =] .

I 2 0 da ay ay Femt day, )

These operators act in the space of functions of the collective
variables ¢, and ;. Owing to the conditions 44 * =1 and
A tA =1, the operators J; and I, are coupled to each other
by an orthogonal transformation g, f; = —J,,, where g,
= Tr(A4Ar°4 ") /2i. From this it follows that the ansatz un-
der consideration generates states with equal values of the
spin and isospin I' = J°. The rotational part of the Hamilto-
nian is proportional to J* or I>. We thus have the problem of
a spherical top which is quantized with half-integer angular
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momenta, when we are describing Fermi particles, and with
integer angular momenta when we are describing Bose parti-
cles. The cigenfunctions of the problem are obviously the
finite-rotation matrices D/ ,’, which are harmonic polyno-
mials of degree 2J in the collective variables. The energy
levels are degenerate in the projections Jy and [, the full
degree of degeneracy being (2J + 1)°.

CURRENTS AND EQUATIONS OF MOTION

The chiral invariance of the Skyrme-model Lagrangian
corresponds to two conserved currents. They can be calcu-
lated by considering an infinitesimal chiral transformation

U (z) = exp (—iva) U (x) exp (+izh)

and the corresponding variation of the Lagrangian. The co-
efficient functions multiplying d, a and d, b specify left- and
right-handed conserved currents:

b
JE* = § SR Tr oL, 4 SN, 2 A
X (28)

F‘Z
Rk . "a h x
Ju -_1—8-Tr1: RH+1492

Tra" [R,, R, AR,

where the Latin indices correspond to the isotopic compo-
nents. Using the condition for conservation of the left-hand-
ed Noether current, d,J ;* = 0, it is easy to find the general
equation of motion in the form given by Skyrme':

a[(4)—o (29)
Use of the Skyrme-Witten ansatz leads directly to Eq. (7)
for the profile function (chiral angle). In the expressions
(28) the right-handed current of the “free” Lagrangian ./,
isR, = U&,l U *.Inturn, the half-sum and half-difference of
the left- and right-handed currents defines the axial and vec-
tor currents.

The isospin can be defined as the integral over the time
component of the isovector current, I, = [ J/}'d *r. For ex-
ample, introducing the orthogonal 3 X 3 matrix of isotopic
rotations [, (¢), which acts on the isovector components in
the Euler—-Rodrigues parametrization for the matrix
U(x) = o(x) 4+ it ¢' (x), and defining the angular velocity
@' in the rotating coordinate frame via I, I, }'=¢,0, we
arrive at the expression I, = (F_¢*) ~'Aw; relating the iso-
spin/, totheangular velocity w; and the moment of inertia:

l:igxzsinzF[i—F!}((F')z“F‘SiDEF)]dJC- (30)

2 =

In a similar manner, the spin can be defined in terms of
the components of the energy—-momentum tensor Ty, :

Ii =i { ez Ton &r, (31)
where
o 1
Tt)h: - & (L.!n LU)_ P ([Lkv L-\:Is [LD! Lv]) (32)

Taking into account the explicit tirme dependence of the cur-
rents L, and the definition of the angular velocity @ in the
stationary coordinate frame, we find

_

Jy=—"= (Fxe®) \ 22 sinz F ( (F')? E%i):l dz. (33)
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The integral in this expression determines the moment of
inertia in coordinate space. We see that it coincides with the
moment of inertia in isotopic (internal) space.

The relation between the angular velocities ; and @]
specifies the relation between the spin and isospin mentioned
above.

1tis convenient to parametrize the rotation matrices I,
in terms of the Euler angles.” Reference 31 also gives the
representation of spin operators as differential operators act-
ing on D functions of the Euler angles. The matrices /,, and
A used to derive the isospin and spin operators are related
through the equation I, = Trr, A7, A * /2i. This completes
our interpretation of the operators I, and J, as the isospin
and spin operators. Let us conclude this section with a re-
mark about the structure of the collective wave function. If
the vector |4 ) is understood as a state corresponding to a
definite orientation in the internal space with matrix 4 and
field configuration U = AUyA4 ™, then the nucleon state |V )
corresponds to the superposition given by the integral (over
the group)

| Ny = gdd 7 (4) |A4), (34)

where y (A4} is the wave function in collective-coordinate
space. Since |4 ) corresponds to a state which is well defined
in the internal space, it has poorly defined isospin and angu-
lar momentum. On the other hand, the state |V ) has well-
defined spin and isospin, but no definite direction in the in-
ternal space. Here we are dealing with a situation which is
well known in the theory of nuclear rotations.

Whereas in the SU(2) Skyrme model the quantized
state of a Skyrmion with odd baryon number is a fermion
only by construction, in the SU(3) generalization the fer-
mionic nature of such states necessarily follows from the
linearity of the Wess—Zumino term in the time derivative.*

STATIC PROPERTIES OF NUCLEONS IN THE SKYRME
MODEL

The static properties of nucleons in the scheme de-
scribed above have been obtained in Ref. 12, where the quan-
tities /. and e were treated as free parameters chosen such
that the nucleon and delta-resonance masses were repro-
duced. Therefore, all static quantities become functions of
F_ande.

Expanding the expressions for the isovector current J |
(x) and the baryon current Jff (x) in the Skyrme model, we
can define the electromagnetic current

T @ =70 @+ 575 @), (35)

Here J )" is the third component of the isovector current and
Jff/z is half the baryon current determining the isoscalar
part of the electromagnetic current. Equation (35) corre-
sponds to the well-known expression relating the electric
charge Q, theisospin projection T, and the baryon charge B:
Q=T,+ B/2. Using the Skyrme-—Witten ansatz for the
chiral angle F'and the general representation for the isovec-
tor current, we can calculate the density of the third compo-
nent of the vector current {averaged over angles):

[¢+4 ((F'}zw‘v Lt s ) [sicF
V3 ,n T
R Ve [ (e + 2820 ) Jsiwe pas Ty (36)

x
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FIG. 4. Electric charge density g, x” for the proton (curve 1) and neutron
(curve 2) as a function of x = F_er.

where %_; is the operator corresponding to the third compo-
nent of the isospin. Adding to this half the baryon density
(1/7x*)F'(x)sin® F(x), we obtain the electric-charge den-
sity operator. The matrix element of this operator between
the nucleon states of interest to us determines the spatial
density of electric charge for the various isotopic compo-
nents. For example, we find the electric-charge density dis-
tributions for the proton and neutron shown in Fig. 4. This
distribution is difficult to obtain in the bag model (in the
quark bag model the derivative of the electric-charge density
is discontinuous at the bag surface, owing to the boundary
conditions usually used).** The proton distribution is posi-
tive-definite everywhere, and the neutron distribution is
characterized by a positively charped core and negatively
charged shell.

For calculating the observables, we must first of all
choose the values of . and e. Numerical computation of the
integral (30) determining the value of the moment of inertia
A gives

47

b=

(%).51

and for the nucleon and A-isobar masses we find

5

My=M+g2: My=M+4 7. (37)

TR
Using the experimental values of M and M ., we obtain F_
= 129 MeV and e = 5.45.
The isoscalar rms radius, given by the integral

Dy o=\ r2pE (r) dr = 4.47/e2F% (38)
0

with this choice of the constants F_and e, is {+ )}, = 0.59
F. The isoscalar and isovector magnetic moments have a
clear physical interpretation and are given by the following
integrals:

Wr—g =~ | r < Bdin

(39}

| = | —

HI=1= 3 \ rx Jrzgdﬂw,

where B and J'" are the spatial components of the baryon
current and the third component of the isovector current.
From this, for the isoscalar magnetic-moment density we
have

pl=0— 'r_iF' (#)=in? F (r)

M { 22F sin? F (rydr

This expression can be used to calculate the corresponding
rms radius. However calculation of the proton and neutron
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magnetic moments x4, and g, requires use of the explicit
form of the collective wave function (see Ref. 12).

How can the axial constant g, be estimated in this mod-
¢l? The standard definition of the matrix element of the axial
current in the usual notation is

(N (p2) | Au (0) | V (24

—u (o) T (Y584 (0% + €u¥®ha (@] (py)- (40)

Taking the symmetric nonrelativistic limit for g0, we find

(N (p2) 1 AT Q) |V (p )y =584 (N | 0T | N,

where g, = g, (). This limit corresponds to calculation of
the integral fd *xA ¢(x), where the integral over the angular
variables is taken first and that over the radial variable after-
wards. This procedure gives

\ @zt (@) = 5z D Tr[1,477,41. (41)
The constant D on the right-hand side of the last equation is
given by an integral which is calculated using the solution of
the stationary equation for the chiral angle. Using the fact
that in the standard notation Tr[r,4 *7°4 | = — 2 (0,7,
from this we find the quantity g ,.

Comparison of the traditional representation for the
pion field in the asymptotic region

EaNN_ T
SaMy 70

(' (2)) = —

(o) (42)
with the pion field 7 in the asymptotic region given by the
Skyrme model

U~ 1 4 2iza £y, (43)

where U=AUA* and U,~1+ iCrn/r’, and C is a nu-
merical coefficient found from the asymptote of the solution
of the stationary Euler—Lagrange equation, verifies that the
Goldberger—Treiman relation

Fagaxx
fa ="y (44)
is satisfied. This relation can be used to calculate g ..
Some of the static quantities calculated in this scheme

are in good agreement with the experimental values, while a
few differ considerably. For example, the values obtained for
F_ and g, differ from the experimental values by 30 and
50%, respectively. Here it is often said that the Skyrme mod-
el can give a good description of quantities which are inde-
pendent of the number of colors N, of the initial gauge group
SU(N.) of the theory, but is completely incapable of de-
scribing quantities which depend significantly on ¥.. Here
we reproduce a table, taken from Ref. 34, of several quanti-
ties characterizing the nucleon in this model and their de-
pendence on the number of colors. The numerical values are
taken from Ref. 12. The calculated quantities in Table T
which are independent of the number of colors N, are, in
fact, in better agreement with experiment. This is true of the
isoscalar electric (£}, and magnetic {(r’) ) , rms radii,
the ratio of the proton and neutron magnetic moments g,
and u,, the ratio of the square of the pion constant F_ and
the axial constant g,, and the ratio of the interaction con-
stants g ya and g, yn-

The isovector rms radius diverges in the chirally invar-
iant limit (m_ = 0). In order to avoid this, it is necessary to
add to the Lagrangian a “mass’ term which explicitly breaks
the chiral symmetry:

AS =+ miF% (TrU —2), (45)
which leads to an extra term in the equation for the profile

function
1 m

2@y ~
— e XU S
4 e FY

and to a change in the numerical values of all the integrals
determining the masses, moments of inertia, and other quan-
tities, and, therefore, also the values of the coupling con-
stants. For example, the determination of eand F'. from M ,
and M, now givese = 4.84 and F,. = 108 MeV. It is obvious
that the asymptote of the solution of the differential equation

for the chiral angle also changes. Now
Fy~Le (46)
r

instead of F(r) ~1/#%, as was the case for m _ = 0. Calcula-
tion of the pion field at large distances from the nucleon gives

TABLE . Static properties of nucleons in the Skyrme model (including only rotational

degrees of freedom) and their dependence on the number of colors.

Property N_ dependence | Prediction Experiment Error, %
by, N9 0.39 F 0.72 F 18
T N2 0.92 F 0.8 F 14
Wy N 1.87 2.79 33
Hn Ne —1.31 =1.94 31
Wp Wy Y 1 43 1.46 2
£y N, 0.61 1.23 50
Fa Nz 129 MeV 186 MeV Bl
gy N 27280 MeV2 | 28127 MeV? 3
faxy Naj2 8.0 13.5 34
TaNA 4\';‘”3 13..2 20.3 35
gaNA'SaNN N 1.5 1.5 1
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8.~y = 11.9. The isovector electric and magnetic rms radii
are finite. The isovector electric density is determined by the
time component of the vector current, and the isovector
magnetic density is determined by the spatial part of the
vector current. The isovector electric and magnetic densities
turn out to be equal to each other:

g (T )_'('fwrr) 11

it { By (e 2220
e )

the corresponding rms radii are also equal:

: 47)

x

\-r“m ]*{,r +

QI

i =y 2 = LR

This equation, which can be written in terms of the proton
and neutron magnetic moments as

[P — P [t~ s 17,
Hp —Hy

is very well satisfied in reality (the left-hand side is 0.88 F,
and the right-hand side is 0.80 F).

For small momentum transfers the electric form factor
can be written as the Fourier transform of the density of the
electric-charge distribution (36). Performing the integra-
tion over the angular variables and averaging over the wave
functions of the states, the result can be written as™ *’

F(Q)= — =\ F' (2) sin® Py (Qa) da
8in® F

. {a2sinF (144 [(F’)-:-' ]) (o Q)+ 72 (02)

\ a2 sin‘lﬁ(1_|_ I—Um) p SEEE, sin? I ])d.r

T, (49)

In this expressionj,( Ox) and j.(Qx) are the spherical Bessel
functions. The dimensionless momentum transfer is
@ =gq/F, e

As has been emphasized repeatedly, the isoscalar part
of the electromagnetic current in the Skyrme model is deter-
mined directly by the baryon current. This means that even
in the absence of the equations of motion for the profile func-
tion F, the latter can be obtained from one of the empirical
isoscalar form factors, and then used to calculate other ob-
servables. In this approach there are fewer constraints speci-
fied by the explicit form of the Lagrangian, and a larger like-
lihood of verifying the actual concept of the nucleon as a
chiral soliton.

If we restrict ourselves to the dipole approximation for
the isoscalar form factor,

Fronlg®) = ti‘l—(ﬁ)f 1

then, as is easily seen from the preceding expression (in
which the second term on the right-hand side should be
dropped, since we are now dealing with the isoscalar form
factor), the inverse Fourier transform leads to the following
equation for the profile function:

F(r)—5sin 2F () = xe=4r (14 Ar f 5 A%2)  (50)

with A* = 0.71 GeV",
Therefore, the empirical form factor can be used to re-
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construct the “empirical” profile function. The function
thus obtained has been used™ to analyze the deuteron elec-
tromagnetic form factors (see below).

As was pointed out in Ref. 38, in the Skyrme model
there is a simple relation between the isoscalar electric F,
and magnetic F,,; , form factors of the nucleon:

0

My o

o IE Fio(g%). (51)

Fnr, I=0 (’12) =
For small momentum transfers this gives

¢ M o
Fﬁ)l II*'—Q;\‘—A(?u)I 0 (52)

where {(#*), , is the isoscalar rms radius. If we used the
moment of inertia 4 obtained from the mass spectrum, the
right-hand side of the last equation gives an isoscalar mag-
netic moment of about (0.82-0.86)u,,.., which corresponds
to the range of uncertainty in the empirical isoscalar radius
0.72-0.79 F. This value is in good agreement with the em-
pirical value 0.88g,,.. .

Relation (52) can be used to determine the value of the
moment of inertia A without reference to the A resonance.

VIBRATIONAL DEGREES OF FREEDOM

The scheme for calculating the properties of baryons
described above is restricted to the inclusion of only the rota-
tional degrees of freedom. Even the first calculations includ-
ing monopole vibrations showed that they have a very strong
effect on the properties of baryons™ (dibaryons; see below).

The collective variables describing monopole vibra-
tions are introduced by substituting into (1) a more general
ansatz for the form of the solution:

U(r, ) = A (&) U, (eMbr) A+ (D). (53)

The time-dependent scalar parameter A plays the role of the
collective variable describing monopole vibrations corre-
sponding to scale transformations of the solution of the sta-
tionary equation, U, (r), and uniform fluctuations of the
densities of observables. After canonical quantization and
diagonalization in the angular variables, we arrive at the ef-
fective Hamiltonian™

+ B+, (54)

Here p, is the momentum corresponding to monopole vibra-
tions and j is the spin (equal to the isospin) of the state. The
effective mass 4(A), the potential B(4), and the moment of
inertia C(4) are given by the following expressions:

A () —e=¥Qy 4
B(h) - e=hy+erl’, +e=¥17; (55)
C(h) = o=l -+ e=],.

The coefficients ,, V., and I, are determined by the follow-
ing integrals:
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The integrands in these expressions are determined by the
solution of the stationary equation with m_ =0 or m _#0,
depending on the case in question. In the case m _ =0, the
integral ¥, obviously falls out of the expression for B(1).

The mass spectrum is determined by the solution of the
Schrodinger equation with the Hamiltonian (54). If we ne-
glect the coupling of vibrational and rotational motion, the
spectrum is characterized by the following dependence on
the number of colors:

E = @N, — 4NE — XY (57)

The first term on the right-hand side corresponds to the clas-
sical soliton mass, the second corresponds to the contribu-
tion of vibrations of the soliton, and the third corresponds to
the contribution of rotations. The dependence of the spec-
trum on N_ is reconstructed from the dependence of the con-
stants I and e on V.. The spectrum therefore has the form
of rotational bands constructed on vibrational states. Analy-
sis of the effective Hamiltonian shows that the rotational and
vibrational motions are strongly coupled, which is consis-
tent with experiment:

Dot My—M~ .

m— = —MjTjﬁT = 004,

Here the vibrational splitting between levels is defined rela-
tive to a reference resonance, and the rotational splitting is
defined relative to the A resonance. It should be emphasized
that the rigidity to 4 deformations is large and i$ determined
by the Skyrmion mass (the situation is analogous to that in
bag madels of baryons).

The calculated values of the masses show that the states
I1,1/2) and |0, 3/2) are degenerate (the first index gives the
number of A phonons, and the second gives the spin and
isospin). This feature is practically independent of the cou-
pling constant e. If we consider the experimentally observed
states |n + 1, /) and |n, j + 1) lying above the A and refer-
ence resonances, they do actually confirm this degeneracy.
For example, the states [3/2 (372')) P75, [A(1690)] and
[1/2(1/2%)) Py, [N(1710)], which in our scheme are the
first vibrational excitations above the A and the second excit-
ed state with the nucleon quantum numbers. are practically
degenerate. If the constant _ is chosen to be equal to the
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experimental value 186 MeV and the constant e is taken
equal to the experimental N—A mass splitting, the calculated
Y. and P}, masses coincide with the experimental values.

In the course of the procedure of quantizing the vibra-
tional degrees of freedom we encounter an operator ordering
problem owing to the A dependence of the effective mass.
On the basis of the results of Ref. 42, it can be concluded
that, whereas the ordering of the operators involved in the
kinetic energy has little effect on the energies (masses) of the
lowest states, it strongly affects the wave functions. The lat-
ter, in turn, can significantly affect the calculated form fac-
tors including the vibrational degrees of freedom of the soli-
ton. Similar difficulties also arise in a careful treatment of
the quantization of the rotational degrees of freedom, but we
shall not discuss this here (see Ref. 43).

In Ref. 44 it was found that the inclusion of local radial
fluctuations of the pion field can lead to negative contribu-
tions to the mass of the quantized Skyrmion.

A richer excitation spectrum arises when spatially
asymmetric fluctuations are considered.*

NONSTRANGE DIBARYONS AND MULTIBARYONS

After some success had been achieved in the study of the
properties of nucleons and their excitations in the Skyrme
model, investigations were begun in sectors with large bar-
yon numbers: two-baryon,** three-baryon,* and multibar-
yon states,* and also nonstrange and strange dibaryons.*

For dibaryons (and for multibaryons in general),*
three types of stability conditions should be distinguished:

1. Topological stability. The classical evolution of an
object corresponding to a deformation of the mapping
5§+ =5 "does not changeits equivalence class, which is speci-
fied by the index of the mapping—the topological charge.
This (quite weak for multibaryons) condition ensures only
baryon-number conservation. The multibaryons obtained
using the Skyrme-Witten ansatz w/|w| =n=r/|r| are
characterized by only topological stability. Such multibar-
yons have a large classical mass, which increases with in-
creasing baryon number B as B(B + 0.87) (Ref. 50).

2. Quantum-mechanical stability. The mass of the low-
est quantum state of a dibaryon is less than the sum of the
masses of two quantum Skyrmions with B = 1. This strong-
er condition is satisfied for the lowest states of the dibaryons
computed using the ansatz in which, as the azimuthal angle
¢ is varied, the chiral field is rotated an integral number of
times more rapidly about the symmetry axis™

n = (cos &, sin a cos ko, sin a sin kg), (58)

where & is the index of the mapping. The classical mass of a
Skyrmion with B =2 is equal to 2.14 times the mass of a
Skyrmion with B = 1. Quantum-mechanical stability occurs
also for torus-like solitons.™

3. Classical stability. The classical mass of the dibaryon
is less than the sum of the masses of Skyrmions with unit
baryon number. The solutions found in Ref. 53 satisfy this
condition.

The possibility of the appearance of nonstrange dibar-
yons of low mass and rotational bands in the dibaryon mass
spectrum was first discussed in Refs. 51 and 52.

The k¢ ansatz(58) was used for the static solution U,,.
Consideration of a fairly general time dependence of the field
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Ulr, t)=A () Uy (M) Rgyre) A+ (1), (59)

where R, is the 33X 3 matrix of spatial rotations, 4 (¢} are
the coordinates of isotopic rotations, and A(¢) is the coordi-
nate of monopole vibrations, leads to the quantum effective
Hamiltonian*'

H= % (M,e=* 4 M ey
1 e T*
=~ W T T T AT
B

+
5 (o 0200 —198 ()

+ 15 (10s— 16A1 — |0 — 7A1
—4 [T Qm—193m1)} Faen (60)

Here 7°and S are the isospin and spin operators; see Ref. 52
for the functions M., M,, V-, A, and (-. Our ansatz is con-
structed such that a rotation about the 3-axis corresponds to
an isospin rotation about the same axis by twice the angle,
This leads to a relation between the 3-projections of the spin
and isospin in the frame attached to the body (b.f.):
S"= —2TY" This relation should be viewed as an opera-
tor constraint on the choice of wave functions. The rota-
tional part of the Hamiltonian is diagonalized by a product
of D functions corresponding to matrices of finite rotations
in coordinate and isospin space:

y o~ D}TITLD_?JS—ZL. (61)

Here the indices have the usual meaning and take integral
values, since in this case we are dealing with bosons. Solution
of the Schrodinger equation for the vibrational degree of
freedom gives the mass spectrum shown in Fig. 5. The select-
ed values T, =0 correspond to dibaryon electric charge
QO = + 1. It is easily seen that the slope and location of the
bands depend significantly on the inclusion of the vibration-
al degree of freedom. The mass of the state with the quantum
numbers of the deuteron is about 80 MeV smaller than the
sum of the masses of the states with the nucleon quantum
numbers. Study of the model with the kg ansatz leads to the
following conclusions:

a) configurations with masses significantly smaller

2.1

2,0

18 ! 1 |
o 5 @ 15 20 25 F{j+7)

FIG. 5. Masses of dibaryon states: points—calculation including A vibra-
tions: solid line—calculation for T = 2 without vibrations.
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than allowed by the Skyrme-Witten ansatz can exist;

b) the quantum Hamiltonian leads to states with spin
different from the isospin, and rotational bands similar to
those predicted by the quark bag model appear;

¢) A vibrations can significantly change the slope of the
bands;

d) the binding energy of a state is determined by the
number of degrees of freedom involved in the motion (and
taken into account in the theoretical calculation).

Finally, it should be stressed that the calculation of the
absolute values of the masses requires the inclusion of the
change of the energy of zero-point fluctuations of the pion
field in the presence of the Skyrmion.

The authors of Ref. 53 studied configurations described
by two functions—the profile function F(z, p) and the angu-
lar function a(z, p), determining the direction of the field
vector and depending on the cylindrical coordinates (z, g) of
the system. Calculations show that the masses of solitons
with small B are smaller than BM,, _ |, i.e., such solitons are
classically stable. The density of the mass distribution for
these solitons given in Ref. 53 indicates that in this case we
have torus-like objects.

Since in a number of hybrid models of the deuteron
form factors the traditional form factor, determined by the
nucleon-nucleon component of the semiphenomenological
wave function, is augmented by the contribution of the form
factors of dibaryon (six-quark) (Ref. 54) states, it is inter-
esting to calculate the dibaryon form factor in the Skyrme
model. It was shown in Ref. 37 that all the features of the k¢
ansatz which distinguish it from the Skyrme-Witten solu-
tion cancel in a remarkable manner in algebraic calculations
of the isovector component of the electromagnetic current.
A difference remains in the isoscalar part and, naturally, in
the numerical values. It has been shown that the electric
form factor for the dibaryon corresponding to the ansatz in
the calculated region is closer to the form factor of the rela-
tivistic harmonic-oscillator model than that for the dibaryon
corresponding to the Skyrme-Witten solution.

The Skyrme model is already being used to analyze
some very hypothetical situations. For example, the authors
of Ref. 55 have studied the problem of reaching densities in
nuclear systems which are sufficient for the formation of a
quark—gluon plasma. Since a new hypothetical nuclear
state—a quark—gluon plasma—imust be formed at large dis-
tances (on the QCD scale), one can attempt to use the
Skyrme effective Lagrangian to see whether the necessary
spatial energy density can, in principle, be attained. It is as-
sumed that a Skyrmion with large baryon number (in a state
corresponding to the Skyrme—Witten solution) can repre-
sent a crude model of the initial stage of the transition to a
quark—gluon plasma, since here we are dealing with theoreti-
cal hadronic matter which is concentrated in a small spatial
region. Of course, such a state would be unstable and would
decay into nucleons. Those authors have calculated the
Skyrmion energy density as a function of the baryon num-
ber. On the basis of ideas about the quark—gluon plasma,™ it
is suggested that, if the spatial density of the Skyrmion ener-
gy is larger than the energy density in the nucleon by a factor
of two, then it is reasonable to assume that the Skyrme model
allows a transition to a quark—gluon plasma. The method of
adiabatic invariants, first applied to the Skyrme model in
Ref. 50, can be used to show that the energy density grows

V. A. Nikolaev 183



rapidly with increasing baryon number. Calculations con-
firm the result of Bogomol'nyi and Fateev for the classical
mass of a multibaryvon state, £ = 18.468(B + 0.8726). The
increase of the rms radius can be approximated by the depen-
dence rrms = 2.17B'*. Using this, it is easy to estimate the
dependence of the energy density on the baryon number for
large B. Already at B = 13, the energy density is 2 times
larger than for B = 1. Therefore, this criterion does not pro-
hibit the formation of a quark—gluon plasma even in nuclear
systems with a small number of nucleons. This result can
probably be extended to other modifications of the Skyrme
model (in relation to this, see Ref. 57, where the asymptotic
behavior of the mass at large baryon numbers was studied for
models with a Lagrangian containing stabilizing terms of
sixth order in the pion field).

THE SKYRMION-SKYRMION INTERACTION. COLLECTIVE
COORDINATES

The study of nucleon—nucleon forces in the Skyrme
model probably began with Ref. 58. It was shown that the
dependence on the Euler angles fixing the orientation of the
isotopic quantization axes relative to the spin axes in the
Skyrmion-Skyrmion interaction is similar to the depen-
dence obtained in rotations of quark hedgehog wave func-
tions. This fact was used to analyze the central, spin-spin,
and tensor components of the nucleon-nucleon potential.
Comparison with the corresponding components of the one-
boson exchange potential and the semiphenomenological
Paris potential showed that there is qualitative agreement.

In most of the studies published up to now,* the study
of the Skyrmion-Skyrmion interaction is based on the fol-
lowing representation for the field in the sector with baryon
number B = 2:

Up(x; ry, Ay ora, Ay)

= Uy (x — 1) A3ALU, (x — 1) AT = U0y, (62)

where U,(x —r,) fori = 1, 2 is a stationary solution local-
ized at r, and A, is a collective coordinate describing the
rotation. The Skyrmion-Skyrmion potential is defined as

3

= \Ee L (U Uy) — £ (Uy) — £ (Uy)).
(63)

Varosk (ris)

where r,, is the relative position coordinate for the Skyr-
mions.

Other definitions of the Skyrmion-Skyrmion potential
differ by the definition of the relative coordinate. For exam-
ple, Skyrme proposed the introduction, in the B = 2 sector,
of the coordinate determining the relative location of the

points at which U(r;) = — 1. Itis easy to see that this defin-
ition does not coincide with that in (62), particularly at
short distances. Moreover, at large relative separations both
definitions lose the clear physical meaning which we usually
associate with this concept for point particles. The Skyrmion
separation can be defined using a constraint, as was done in
Ref. 60. The entire set of possible definitions says only that
the relative coordinate r,, plays the role of a collective field
coordinate which can conveniently be used in variational
calculations. For example, in the sector with B =2 a set of
variational configurations of the form (62) has been consid-
ered in Ref. 61. The static energy is calculated as a function
of the relative isospin orientation 4 = 4 |* 4, and the half-
distance s = |r; — r,|/2 between Skyrmions localized at r,
andr, . Itis shown numerically that the minimum energy M ;
is reached for a configuration U, (x) with 4 = ir% The ex-
plicit form of the minimizing static configuration is U, (x)
= U, (x +5dz)7?U,(x — sdz) 7, where s, = 2.8/eF . For
our values of the parameters, e = 4.84 and F_ = 108 MeV,
we find 5, = 1.1F and M,; — 2M, = — 24 MeV. Next the
collective variables A(¢) and R(z) are introduced: U(x,t)
=AU, [R(t)x]A4 *. The Hamiltonian reduces to the qua-
dratic form

H = 11’.[,1 + KjX,'jKj.Q = K;Z;ij 4= L;Y”L}-.Q, (64)

where the static energy M, and the inertia tensors X, ¥, and
Z are functionals of U, (x). Here K and L are the body-fixed
isospin and spin operators, related to the “‘stationary” opera-
tors I and J by orthogonal transformations. The solution of
the problem reduces to diagonalization of a matrix with di-
mension (274 1)(2/+ 1) in the Hilbert space with basis
formed by the vectors |f, Iy, k3> [/, jas Li> ( — i<y, k< + 1
and — j<j, /i< 4+ /). Two states with similar features and
the deuteron quantum numbers / = 0 and j = 1 were found
(Table IT). The binding energy was not estimated, since the
difference of the zero-point energies of the field in the pres-
ence of a soliton with B = 2 and of two separated solitons
with B = 1 was not calculated. The appearance of two simi-
lar states with the deuteron quantum numbers may indicate
that the solution is only approximate or, possibly, that the
Skyrme Lagrangian is not a good enough approximation to
low-énergy QCD to correctly reproduce the ordering of the
nuclear levels.

NUCLEON-NUCLEON FORCES

The product ansatz (62) has certain technical advan-
tages. It allows the potential to be calculated directly from
the total energy of a static configuration, and the different
spin—isospin channels are easily separated. It automatically

TABLE 11. Somg static characteristics of states with the deuteron quantum numbers.

State Energy, MeV | al/2, F (Lt h @ F
d ‘ 1764 1.3 0.69 | 0.22
d’ 1767 1.3 0.66 0.21
Deuteron 1875,6 2.095 0.8574 1.285%

*4 is the magnetic moment and ¢ is the quadrupole moment of the states,
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gives the correct asymptotic form of the one-pion exchange
potential and permits a simple and qualitatively useful anal-
ysis of the potential to be carried out in terms of the quantum
numbers exchanged between Skyrmions.

In addition to the one-pion nature of its asymptote, the
phenomenological nucleon—nucleon potential is also, as is
well known, characterized by a strong repulsive central core,
which in traditional models arises from @-meson exchange.
Finally, there is yet another characteristic feature—central
attraction in the intermediate region, arising from exchange
of correlated pairs of pions (o mesons). It is this attraction
which ensures binding in nuclear systems.

It might be hoped that all these features will be repro-
duced in a systematic theory of nucleons as the solitons of a
scalar field. At present, when calculating the components of
the nucleon-nucleon potential ¥, it is no longer necessary
to use quark models for comparison.

It is sufficient to use the projection theorems® for the
matrix elements R,, = Tr[Adr,4 *r,]/2

(B Ry | B'Y = A (B. B) ;T, (65)

for an arbitrary baryon state |B ), where .S, and 7', are the
generalized spin and isospin operators and A(B, B') are
state-dependent geometrical coefficients, to verify that in
general

Vax () = Vair) + TiT, [8,-8,Ves (1)
-+ 8.2V 7 (r)] - higher rank tensors. (66)

Here we have used the standard component notation in the
theory of the nucleon-nucleon potential: V() is the cen-
tral, V¢ (r) the spin—spin, and V. (r) the tensor potential.
Of course, instead of the generalized spin and isospin opera-
tors, we can use the ordinary spin and isospin Pauli matri-
ces,*** if we use relations analogous to

(V' | Agedi | N) = — 5 (V| ok (ven) | V), (67)

where the matrices o and t* operate on the variables of the
k-th nucleon of the interacting pair. The G-parity structure
is revealed by comparison with the nucleon—antinucleon po-
tential.®” The radial dependence of the potentials found in
Ref. 66 is shown in Fig. 6 for the parameters F_ = 186 MeV
and e = 3.4, which gives g_,, = 14.3. The numerical calcu-
lations™**° can be summarized as follows:

1) ¥V and V. are in good agreement with the corre-

Ve, GeV Vs, MeV %, MeV
21 3a I~
ZE6r 20 S
O 4%k 0 =
1 L | 1 |
a 7 2 J g 7 2z 3 & 7 2 J
r.F r.F rF

FIG. 6. The central, spin—spin, and tensor potentials™ given by Egs. (62),
(63). and (66).
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sponding components of the Paris potential®’ at large dis-
tances (r>2 F);

2) the p-meson-like contributions, isolated using the G-
parity dependence of the potentials ¥s and V.., have the
correct order of magnitude (these contributions mimic m "
~500 MeV and £}y /47 =1.2-1.8);

3) the central part V- has a repulsive core of about 1

GeV.
. Therefore, on the whole the qualitative agreement with
the behavior of the nuclear forces is remarkable. However,
the core in the nucleon—nucleon potential V. is too wide and
suppresses the intermediate region of the possible attractive
potential. This makes it necessary to consider nonadiabatic
contributions,” contributions arising from deformations of
the Skyrmions during interaction,”' and also contributions
corresponding to pion-field fluctuations in the vicinity of the
interacting Skyrmions [ ~Q(N_)] (Ref. 72). In spite of the
notable success of investigations of the role of these contri-
butions, an attraction in the intermediate region sufficient
for nucleus formation in the traditional sense has not yet
been obtained. It is probably necessary to make some modifi-
cation of the model so as to organically include an additional
scalar field, which would lead to additional attraction in the
nucleon—nucleon forces.” Here mention should be made of
the important role of one-loop corrections in weakening the
strength of the repulsive core in the intermediate region.

THE SPIN-ORBIT NNINTERACTION

It can be shown that the spin-orbit and quadratic spin—
orbit NV forces arise naturally in the Skyrme model if the
orbital degrees of freedom are quantized along with the in-
ternal degrees of freedom.

The Hamiltonian for a slowly moving particle is con-
structed by the introduction of time-dependent coordinates
Rgi () for the center of the Skyrmion. For an individual
soliton the field U(r) = A()U(r — R )A T (2) can be
used to study the translational motion of the Skyrmion and
to calculate the effective Hamiltonian for the translational
motion, H = p*/2M, , where p is the Skyrmion momentum.
This is a completely nontrivial result.” Substitution of the
product ansatz into the Lagrangian density generates the
spin—orbit and quadratic spin—orbit interactions by terms
containing time derivatives. According to the quantization
procedure described above, one-nucleon operators for non-
interacting particles can be introduced. As a result, the con-
tribution of the quadratic terms of the Lagrangian to the
spin—orbit interaction, ¥, has the form

) whn

AT LI, (1) (2)).
LS 180 yhr Ty Ty (G + ¢ ) 1

e 1

# . . 1
\fi’gdﬁ’ \d:; sin? F (ry) sin? F (ry) (i) r#ﬁ’:). (68)

]
"

1] —5

In this expression 4 is the moment of inertia and

Fra= /R’f’-——%2 T Rrs; - Rer.
2= 7

Here we are omitting the contribution of the Skyrme term.
The resulting potentials at large distances are proportional
to F*(r) and are associated with the exchange of two pions
in a state with isospin 1 (p-meson exchange).
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More details about spin—orbit nucleon—-nucleon forces
can be found in Ref. 75.

ELECTROMAGNETIC MESON EXCHANGE CURRENTS

We shall restrict ourselves to isoscalar meson exchange
currents. As noted above, in the Skyrme model and all its
generalizations, where baryons are the solitons of meson
fields, the isoscalar-current operator is proportional to the
operator for the anomalous baryon current. The baryon cur-
rent is independent of the details of the dynamics in the mod-
el and is essentially determined by the mapping of the com-
pactified space onto the chiral sphere. On the other hand, at
the level of the SU(3) symnetry it is obtained as the Noether
current of the Wess—Zumino interaction required by the
chiral anomaly. In this sense, the isoscalar form factors of
nucleons and nuclei are determined in an almost model-in-
dependent manner (in the approximation of topological so-
litons).

The product ansatz allows us to split the isoscalar cur-
rent (half the baryon current) into two parts—the sum of
two one-nucleon currents and a two-particle operator which
should be identified as the exchange current:

Sy (ry, Ty, r):.fu (r—r)+J, (r— rz)‘l“Ju.ex(riv Ty, T)-
(69)

Using the projection theorems, the Fourier transform of the
spatial part of the exchange current can be written as™

Jor= Ty-Ty

i
T TamEN
WL 5 . i 5
exp [—2— Jq-R]q q dr exp [iq-r]sin2F (|[R+-r])

x {[a0) + 5r ]2y [2rr—g2]},
(70)

where £ = ¢, + 0, and the auxiliary functions a¢(R) and
7(R) are determined by the chiral angle F(R):
1

@ (R) = sin 2F (R);

, 1. (71)

The Fourier transform of the time component of the ex-
change current

flog = —1(‘11? q \ d3r exp [iqex]Te {UVU,  U,vU3) (72)
can be calculated in a similar manner. Here the indices 1, 2
correspond to the two Skyrmions and R is their separation.
This exchange current operator can be verified in calcula-
tions of nuclear electromagnetic form factors. One such cal-
culation was made in Ref. 76 for the deuteron. That calcula-
tion used the wave function of the Paris potential, which was
also used for averaging the current operator (as if the
Skyrme model reproduced the nucleon—-nucleon potential
leading to such a wave function). In Fig. 7 we give the deu-
teron magnetic form factor.™ Use of the phenomenological
profile function determined from a dipole fit of the isoscalar
electric one-nucleon form factor leads to agreement between
the calculated deuteron magnetic form factor and the experi-
mental form factor up to g~ 1.7 GeV/c. It should be noted
that the calculation of the meson exchange-current contri-
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FIG. 7. Magnetic form factor of the deuteron. ™ The contribution from the
total topological current and the impulse approximation are shown, and
exchange-current contributions are absent. The chiral angle was deter-
mined from the isoscalar electric form factor of the nucleon [see (50)].

butions in this scheme is unrelated to perturbation theory,
and it is almost impossible to indicate which Feynman dia-
grams correspond to the calculated quantity (however, see
Ref. 77 in this regard).

NUCLEARMATTER

Nuclear matter is a system with large baryon number
and constant spatial density of the baryon number. The aver-
age binding energy per nucleon in the ground state
(16 MeV/nucleon) is small compared with the nucleon
mass. The multibaryon states which we have considered do
not possess such properties in the limit of large baryon num-
ber. A number of attempts have been made to obtain the
nuclear-matter equation of state in the Wigner—Seitz ap-
proximation.”™ As was shown in Ref. 79, the result of such
studies depends significantly on the details of the short-
range repulsion (and, consequently, on the contribution of
terms with higher derivatives in the Lagrangian) and does
not ensure the saturation of the forces in the system.

A Skyrmion with a given fixed orientation in internal
space corresponds to a coherent superposition of different
rotational states: NV, A, (5/2, 5/2),.... If the interaction
between Skyrmions is smaller than the splitting in the rota-
tional band, Skyrmions will mainly be found in the nucleon
state with a small A admixture. In the opposite case, Skyr-
mions simply oscillate in the vicinity of the configuration
with maximum attraction.

If we recall that, in general, the energy gain per nucleon
due to optimal orientation in internal space is determined by
the relative position of the Skyrmions in coordinate space,
we see that it may be possible for ordered nuclear matter to
be formed.

The authors of Ref. 80 considered the physically inter-
esting case of cubic symmetry—aneutron crystal. The forces
acting between Skyrmions, which strongly depend on the
relative orientation in internal space, can cause the ordered
crystalline configuration to be preferred. The main factor
working against this model is the zero-point fluctuations of
the Skyrmions near the localization points. For the density
range studied in Ref. 80, 0.1<p, <1.5 F 7, the result
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should not have a strong dependence on the form of the sta-
bilizing term in the Lagrangian. Let us choose a variational
field configuration in the form of a product of Skyrmions
with some relative orientation and centered at points R, :
. —R; +

Uy (r) = H A exp (1F(|r—R!—|)1-|:_—RI_|) Af. (73)
The SU(2) matrices 4, = a{” + a‘”- 1 specify the orienta-
tion of a Skyrmion localized near R,. Using the fact that for a
pairof well separated Skyrmions in the chiral limit the inter-
action potential is

7 p B a 1
rim (r, A) ~e;;(4) R T (74)
where

17 (4) = 5 Tr (4*,A1y);

3{a-r)—a’r?

Lm V (r, 4) ~ : : (73)

r—+co ¥

we conclude that the most attractive asymptotic potential
satisfies the condition

a-r =20, a®=1. (76)

Among the configurations which are nondegenerate under
translations, satisfy these conditions for each pair of neigh-
boring Skyrmions, and carry unit topological charge, there
is a configuration in which the points R, obeying
U(R,) = — | form a cubic lattice.

The assumption (73) about U,(r) leads to a crystal
whose classical energy is very close to the lower topological
estimate. For example, the classical energy per baryon is
~32F_ /e (the topological estimate is 29.6F_ /¢), which for
our values F_ = 129 MeV and e = 5.45 gives a contribution
to the binding energy of about 105 MeV (the mass of the free
Skyrmion has been subtracted).

If we introduce collective variables 4 (¢) corresponding
to the overall orientation of the crystal in isospin space,
U(r,) = A(1)U,(r)4 '(1), then, just as in the one-nucleon
case, we can determine the isospin by integrating the density
of the isovector current and the angular momentum over the
density and arrive at an expression for the total energy tak-
ing into account the rotational degrees of freedom for the n-
baryon state:

1
2nh

Evt=nM + Jrot(Jrot 4 4y (77)
where A is the moment of inertia in isospin space. It should
be emphasized that only the total isospin I, satisfies the
angular-momentum algebra and is a quantum observable.

For finite nuclei this rotational energy leads to the well-
known symmetry energy 25(N — Z)/A MeV and to ob-
vious relations for the splittings between analog levels in nu-
clei.®!

For the neutron crystal studied in Ref. 80, Eq. (77)
givesthevalue M, + 1/84 for theenergy per nucleonin the
crystal, which increases the binding energy even more (!).
However, an estimate of the kinetic energy of vibrations
about the Skyrmion position shows that the crystal is very
unlikely to be a stable state.

An attempt was made in Ref. 82 to theoretically calcu-
late a cubic lattice, where the number of nearest-neighbor
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Skyrmions satisfying the optimal condition (76) was re-
duced to twelve. The variational estimate of the energy of
this configuration indicates that it may be favored at densi-
ties significantly larger than the normal nuclear density p,,.
Reference 83 is also devoted to detailed investigation of the
symmetry of a Skyrmion crystal.

CONCLUSIONS

The richness of the structures presented by this model
for investigation should be noted; most investigations have
been carried out only in the semiclassical approximation.
There is a clear manifestation of an analogy between the
results obtained in quark models and in the Skyrme model
(the stiffness of the states under uniform deformations, the
type of spectrum—rotational bands in spin and isospin for
multibaryon states, the form factors, the nature of the repul-
sive core in nucleon—nucleon forces, and so on). This analo-
gy is probably not accidental and supports the fact that the
Skyrme model is only an effective model representing de-
grees of freedom which are convenient to work with.

The model is useful for studying many hypothetical si-
tuations, including some which are difficult to study by per-
turbation theory (meson exchange currents).

The model-independent results which have been ob-
tained so far are in very good agreement with experiment.

The model predicts relations between quantities which
are not at all obvious a priori in other theories of the strong
interaction (relations between the phase shifts in different
partial waves of 7V scattering™).

Of course, the broad spectrum of values of the constants
F_ and e used in the literature indicates that it is impossible
to obtain quantitative agreement with all known observables
using a single set of constants. Moreover, the inclusion of a
larger number of degrees of freedom in the quantization of
the model and in the calculation of the effective collective
Hamiltonian probably has a strong effect on the values of the
fitted constants in the baryon sector. The choice of stabiliz-
ing term in the original form, as it was made in the studies by
Skyrme, is very strong. A fundamental ingredient of any
generalized Skyrme model might be the scalar dilaton field,
which appears in the effective Lagrangian owing to the con-
formal anomaly in quantum chromodynamics.*™ ™ Study of
the two-current nucleon observables" (the nucleon polariz-
ability and the nucleon structure function) gives informa-
tion about the role of terms with higher derivatives in the
effective Lagrangian.

The most attractive feature of the Skyrme model is the
unification of the ideas and methods first used to study bar-
yon and multibaryon nuclear states.

In conclusion, it is my pleasant duty to thank M. K.
Volkov, V. K. Luk’yanov, G. Holzwart, D. O. Riska, D. L.
D’yakonov, and also V. B. Kopeliovich, V. A. Andrianov,
and V. Yu. Novozhilov for critical remarks made during
various stages of writing this review.
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