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The main results obtained during the last ten years in the framework of the method of
hyperspherical functions are reviewed. New developments of the mathematical formalism of the
method are presented. The main results on the application of the method in the theory of many-
particle reactions are given. The results of application of the method of hyperspherical functions
in the investigation of collective excited states of light nuclei, and also of elastic and inelastic cross

sections for reactions with ions are reviewed. An approach to the solution of the Coulomb
problem in a hyperspherical basis is described, and a method for taking into account
simultaneously the nuclear and Coulomb interactions is formulated. The main results of the
application of the method of hyperspherical functions for the study of the structure of multiquark
systems are presented. A review of results on the development of the hyperspherical approach to

the solution of the Faddeev equations is given.

INTRODUCTION

The last two decades in nuclear physics have been char-
acterized by the rapid development of few-body theory, and
this has stimulated experimental investigation of various
properties of few-nucleon nuclei and of nuclear reactions on
such nuclei. In this theory, one of the methods often em-
ployed is the method of expansion with respect to a basis of
hyperspherical function, which became popular quite quick-
ly after the publication of the well-known papers of Simonov
and Badalyan.' The results of the first decade of the develop-
ment and application of the method of hyperspherical func-
tions (MHF) was summarized in Refs. 2-5. During the last
decade new trends in the development of the MHF have
occurred, making possible further theoretical development
of its applications.

For example, the Raynal-Revai transformation has be-
gun to play an important part in the theory of a hyperspheri-
cal basis, and its use has led to an important simplification of
the computational technique. From the point of view of ap-
plication of the method, successes have been achieved in the
description of the continuous spectrum of many-particle sys-
tems and processes. In recent years the method has been
widely used in atomic and molecular physics and in elemen-
tary-particle physics (multiquark systems). A way of “hy-
bridizing” the methods of the Faddeev equations and hyper-
spherical functions has been found.

This has made it necessary to review the progress made
during the decade and to demonstrate the wide applicability
of the hyperspherical basis in different fields of development
of theoretical physics.

In the review we present new developments of the math-
ematical formalism of the method of hyperspherical func-
tions: the Raynal-Revai transformation for three and four
bodies, the algebra of hyperspherical functions, and the
problem of symmetrization in the hyperbasis not only for
systems with identical particles but also for systems contain-
ing a particle with different mass.
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We then give the main results on the application of the
method of hyperspherical functions in the theory of many-
particle reactions. We present a method for describing “tru-
ly” three- and four-particle scatterings, and we give the main
results on the description of many-particle reactions of de-
cay type. We give results on the application of the MHF in
investigations of collective excited states of light nuclei and
of the elastic and inelastic cross sections for reactions with
heavy ions.

We then present the solution of the Coulomb problem
in the hyperspherical basis. The bound states of charged par-
ticles, scattering, and many-particle Coulomb functions are
described, and a method for taking into account simulta-
neously the nuclear and Coulomb interactions is formulated.

The main results of application of the MHF to the study
of the structure of multiquark systems are presented.

Finally, we discuss a “hybrid” method for investigating
few-particle systems, namely, a partial expansion in the the-
ory of the Faddeev integral equations in the hyperspherical
basis, and application of the hybrid method to the investiga-
tion of three-particle processes.

1.DEVELOPMENT OF THE MATHEMATICAL FORMALISM OF
THE METHOD OF HYPERSPHERICAL FUNCTIONS

Unitary transformation in the method of hyperspherical
functions

During the last decade the mathematical formalism of
the MHF has been further developed. Some of the new devel-
opments in this area were presented in Ref. 6. An important
aspect of these developments is the use of the Raynal-Revai
transformation. This transformation was introduced for
three bodies,” and was subsequently generalized for four bo-
dies.® We shall consider briefly these transformations.

We consider a system of three particles with different
masses. The corresponding hyperspherical functions form a
complete set of orthonormalized basis functions and have
the form
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where K is the “grand” orbital (hypermoment),

l,1,.m,,m, are the orbital angular momenta correspond-
mg to the three particle Jacobi coordinates x;, y; and their
projections; P " are Jacobi polynomials, ), = (a,, X,, §,) is
a set of five angles, four of which determine the directions of
the Jacobi vectors, while the fifth is introduced by the rela-
tionsx, =p cos a;, y;, = psina;pis the hyperradius, and
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In Egs. (1} and (2) theindex / takes the values 1, 2, 3 corre-
sponding to the three sets of Jacobi coordinates. If the hyper-
spherical functions are taken in the form (1), the matrix
elements of the interaction of particles j and k, namely, ma-
trix elements of the type {®, (Q,) | V(x, ) [P, (Q,)), canbe
calculated comparatively easily. However, in a calculation
with the same functions of the matrix element of interaction
of a different pair of particles, for example, the matrix ele-
ment (@, (Q,) V(x,) ®,(Q;)), great difficulties arise.
Raynal and Revai’ introduced coefficients of a unitary trans-
formation between the three-particle hyperspherical func-
tions (1) defined on the different sets of Jacobi coordinates:
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The introduction of this transformation was an impor-
tant stage in the development of the theory of hyperspherical
functions. In Ref. 7 Raynal and Revai obtained an analytic
expression for these coefficients and found their connection
with the Talmi—-Moshinsky coefficients. Calculation using
the analytic expression is a rather laborious problem, par-
ticularly for harmonics with large values of the grand orbital
K. The computational technique can be greatly simplified by
using recursion relations. A number of such relations were
obtained by Smorodinskii and Efros® by using the connec-
tion with the Talmi-Moshinsky coeflicients. In Ref. 10 a set
of recursion relations was obtained that made it possible to
find all possible Raynal-Revai coefficients without recourse
to the cumbersome general formula. The use of the Raynal-
Revai coefficients leads to an important simplification of the
scheme for constructing hyperspherical functions with a giv-
en symmetry."'

We now consider a system of four particles with differ-
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ent masses. The corresponding hyperspherical functions
have the form®
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where u and K are the grand orbitals for four and three bo-
dies, respectively, /., 1, [,, m, m,, m_ are the orbital angu-
lar momenta corresponding to the four-particle Jacobi co-
ordinates x, y, z and their projections, and w = (a, B, %, ¥,2)
is a set of eight angles, six of which determine the directions
of the Jacobi vectors, while two are introduced by the rela-
tions
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In Egs. (5) and (6) we have omitted the indices that fix the
set of four-particle Jacobi coordinates. In Ref. 8 a unitary
transformation of the four-particle hyperspherical functions
defined on different sets of Jacobi coordinates was intro-
duced:
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where (1,070, 1 K'|l.11, LK}, are the four-particle
Raynal-Revai coefficients, and
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Analytic expressions were found for the four-particle coeffi-
cients of the unitary transformations® and their connection
with the three- and two-particle Talmi—-Moshinsky coeffi-
cients.'? In Ref. 13 some recursion relations that lead to a
simplification of the computational technique were ob-
tained.

This scheme for treating the three- and four-particle
basis hyperspherical functions can be naturally generalized
and used for systems with a larger number of particles, and,
particularly importantly, it can be conveniently used not
only when the investigated system consists solely of all iden-
tical particles or all particles with different masses but also
when there is a particle with a different mass alongside iden-
tical particles. In Refl. 14 five-particle coefficients of unitary
transformations of the hyperspherical functions were intro-
duced, and their connection with the four- and two-particle
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Talmi-Moshinsky coefficients was found. In Ref. 15 a sim-
ple expression was found for the coefficients of the transfor-
mations of the hyperspherical functions of & bodies in the
case in which the grand orbital is equal to the total orbital
angular momentum of the system. The coefficients found in
accordance with this expression can be used as initial coeffi-
cients, and the coefficients with larger grand orbitals (for the
previous value of the total orbital angular momentum) can
be found by means of the recursion relations.

Algebra of few-body hyperspherical functions

Hyperspherical functions are a generalization, to multi-
dimensional spaces, of ordinary spherical functions. There-
fore, some (and perhaps all) of the relations that hold for the
latter may have analogs in the space of hyperspherical func-
tions. In Ref. 16 some results were obtained that facilitate
the development of the algebra of few-body hyperspherical
functions.

Let = (E1sEpseevs
which we construct hyperspherical functions ¥,

£, ) beaset of vectors, on the basis of
(2,,) that
realize a representation of the group O(3#n), where v, is the
set of the following quantum numbers: /,, /,,..., {,,, the orbi-
talangular momenta; L,, L,,..., L, the total orbital angular
momenta of the subsystem; M, the projection of the total
orbital angular momentum; and X, X,,..., K, |, the grand
orbitals of the subsystem.

From the expansion of an #-dimensional spherical wave
with respect to the hyperspherical functions we obtain
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In (9), K, _, takes all non-negative values of the same
parity as m that do not exceed m, while Z ., means that the
summation is over all quantum numbers apart from 7 and

p=[& +& +..+E&]"~
Solving the infinite system (9), we obtain
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Applying to both sides of (10) different differential opera-
tors and going to the limit p’— p, we obtain the relation
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In Ref. 16 some other formulas were obtained. As one
would expect, Eqs. (10)-(16) for n =1 go over into the
well-known expressions for the spherical functions.

Hyperspherical basis for a system of three identical particles
and one particle with a different mass

In numerous physical four-particle problems it is neces-
sary to separate the degrees of freedom of one of the particles
(investigation of four-particle hypernuclei, form factors, nu-
clear reactions with emission of one particle, etc.). When
one is considering systems that consist of three identical par-
ticles and one particle with a different mass, the symmetriza-
tion procedure represents a three-particle problem with the
choice of a (3 + 1) configuration. Possessing a basis of four-
particle hyperspherical functions symmetrized with respect
to three particles, one can construct by means of Young op-
erators a basis of functions symmetrized with respect to the
four particles and find the corresponding coefficients of frac-
tional parentage. This program was implemented in Ref. 17.

For the four-particle hyperspherical function symme-
trized with respect to three particles, we have
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where C /' 1/1"171(],1,) are the three-particle symmetriza-
tion COC]ﬁClel’ltS (Ref. 6 gives relations between these coefli-
cients and the three-particle Raynal-Revai coefficients and
also tables for these coefficients for several principal values
of the quantum numbers); [ /1 is the Young diagram of the
three-particle system; A7, is a row of the representation
[ f1; and v,z 1s the number of the appearance of the repre-
sentation [ f] for given K and /,,. We introduce the coeffi-
cients of the transformation of the function (17) under per-
mutations of the particles:
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On the other hand, the functions W/77" (@) transform un-
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der permutations of the particles by means of the four-parti-
cle Raynal-Revai coefficients®®
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From Egs. (17)—(19) we obtain for the transformation coef-
ficients
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By means of the coefficients (20) it is possible to find the
coefficients of fractional parentage for the four-particle sym-
metrized basis, i.e., one can construct a basis of symmetrized
four-particle hyperspherical functions using the basis (17}.

The coefficients of fractional parentage for the hyper-
spherical four-particle symmetrized functions are deter-
mined by
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where [ f1, 4, . v; s are, respectively, the Young diagram,
the row of the representation, and the number of the repre-
sentation [ f] for given g and L relating to the group of
permutations of the four particles; [ ] is obtained from [f]
by removing the cell corresponding to the fourth particle.

In Ref. 17 Young operators were constructed and used
to find the connection between the coefficients of fractional
parentage and the coefficients (20).

2. THEMETHOD OF HYPERSPHERICAL FUNCTIONS IN THE
THEORY OF MANY-PARTICLE REACTIONS

Truly three- and four-particle scattering

Hyperspherical functions are eigenfunctions of the ki-
netic-energy operators. It is therefore natural that the wave
functions of the final states of many-particle reactions (con-
tinuum functions) can be expanded with respect to a com-
plete set of corresponding hyperspherical functions. Such an
approach offers hope of a unified description of the initial
and final states in reactions in which several particles partici-
pate. Use of expansions of the three- and four-particle func-
tions of the continuum with respect to hyperspherical func-
tions has made it possible'™'® to generalize the
variable-phase method™ ' for quantum-mechanical three-
and four-body problems. Such a generalization is possible
only for truly many-particle scatterings.

We consider the process 3— 3 when three free particles
are present at the beginning and end of the process. The
process of three-particle scattering is rather complicated,
and fundamental difficulties arise when the theory of two-
particle scattering is generalized to the case of three or more
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particles. In the coordinate representation these difficulties
are associated with the boundary conditions. The corre-
sponding questions are discussed in more detail in the review
of Ref. 19. If in three-particle scattering two-particle bound
states arise, or if two-particle scattering occurs on the energy
shell, a hyperspherical basis for solution of the Schrodinger
equations cannot ensure the necessary asymptotic behavior
of the three-particle wave function. This is due to the fact
that hypercoordinates are collective, and a transition to
them is convenient when there is “democracy” in the system
{(no pair is distinguished in the sense of the formation of
bound states or scattering on the energy shell). If such de-
mocracy is observed, we shall say that the scattering is truly
three-particle scattering. In the final section of this review
we shall show that in the solution of the Faddeev equations
the possibilities of the MHF can in principle be extended.

We expand the three-particle continuum wave function
with respect to hyperspherical functions (the case of noni-
dentical particles):
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For the hyperradial functions we obtain from the three-par-
ticle Schrédinger equation a system of coupled one-dimen-
sional differential equations:
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here U,,, is the potential energy of the three-particle system.

The solution of one equation of the system (23) (the
theory can be readily generalized to the case of any number
of equations®'”) can be represented in the form
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where ji , 5 (kgp) and Ny . - (x, p) are a Bessel function of
the first kind and a Neumann function of order K + 2;
5’,& (p) is the phase function, which is obtained by solving a
nonlinear equation of Riccati type; and 4 o (p)istheampli-
tude function, the equation for which can be solved by quad-
rature. The amplitude functions determine the normaliza-
tion of the wave function and are associated with the
boundary conditions.

Similarly, one can consider truly four-particle scatter-

ing by introducing four-particle phase functions 6:;,’;1“’ (p)
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and amplitude functions 4 :;:\f;_‘""'(p). Are there such pro-

cesses in nature, and how important is their investigation?
Of course, it is not possible to realize experimentally pro-
cesses of truly three- and four-particle scattering with accel-
erators. Nevertheless, the detailed theoretical study of these
processes may give very valuable information about many
aspects of the problem of many-particle systems. Many re-
sults from the theory of two-particle scattering can be ex-
tended and generalized to the case of truly many-particle
scattering. The variational principles of Hulthén and Kohn
and also of Schwinger have already been generalized for the
phase shifis of truly three-particle scattering, and the corre-
sponding optical theorem has been formulated.*? This direc-
tion of generalization can undoubtedly be taken further. Fin-
ally, in atomic and nuclear physics there is a large class of
many-particle reactions in the final states of which truly
many-particle scattering is dominant. These are complete
breakup reactions. '

Complete breakup of three- and four-particle nuclei

The process of complete breakup is determined by the
matrix element
G0 =\ vy v, (26)
The wave function ¥, of the initial state decreases rapidly
with increasing hyperradius p (p is the radius of the hypers-
phere on which the interactions between the particles take
place). Therefore, the terms in the wave function ¥, of the
final state that contribute to the matrix element (26) are
those that correspond to a small value of the hyperradius p
and, ultimately, to short interparticle distances. Indeed,
p*=Z,_;r;, wherer; is the relative radius vector of the pair
i, ], and the situation in which all r;, are small corresponds to
asmall value of p. Thus, for the matrix element (26) the only
important part of the configuration space in the continuum
is that in which the truly many-particle scatterings occur
(democracy is not violated in complete breakup, in which
the subsystems cannot rescatter on the energy shell because
the remaining particles are also at short distances and con-
tribute to the energy balance). In Ref. 19 the results of early
investigations of complete breakup of light nuclei induced by
elementary particles were discussed. Further investigations
of this kind using the MHF have been made. For example, in
Ref. 23 different potentials of the nucleon-nucleon interac-
tion were used to investigate the reaction of pickup of a nega-
tive muon by the tritium nucleus:

we 4+ 9H v, L 3n. (27)

The wave functions of the initial and final nuclear states
were obtained using the same nucleon—nucleon potentials
(the S1 and S2 Afnan-Tang, Volkov, and Eikemaier—Ha-
kenbroich potentials). The inital-state wave functions ob-
tained by Mukhtarova and Efros with allowance for K<24
were chosen, while the final-state wave function was ob-
tained by solving the system of equations (23) by the vari-
able-phase method with allowance for two harmonics. It was
shown that the final-state interaction between all the neu-
trons has a strong influence on the process—the energy dis-
tribution of the neutrinos is changed qualitatively, and the
rate of . capture is strongly increased. It seems evident that
this is due to the fact that inclusion of the final-state interac-
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tion leads to spatial localization of the three neutrons, as a
result of which the overlapping of the wave functions of the
initial and final states for the given NN potential is increased,
this leading to an increase of the rate of u capture. It was
shown further that allowance for the final-state interaction
enhances the sensitivity of the rate of u capture to the form of
the VNV potential. An analogous approach to the study of the
initial and final nuclear states was used in Ref. 24 to investi-
gate the reaction of double charge exchange of pions on
three-particle nuclei with complete breakup:

™+ 3lle— nt + 3n; } (28)
T3] 4 3p.

It was shown that the effect of the final-state interaction
between the products of the complete breakup of the nuclear
system is decisive and leads to the appearance of a maximum
in the differential cross section in the region of low energies
of their relative motion (Fig. 1). In Ref. 24 good conver-
gence of the reaction cross section with respect to the grand
orbitals was demonstrated for both the initial and final
states.

To study processes of truly many-particle scattering, it
is convenient to use the hyperspherical formalism in the mo-
mentum representation.'' In this representation the wave
function of an unbound state of three interacting particles
can be represented in the form of the expansion

qf'-!ali'o (qh pi)
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where pi + g5 = k3 = 2mE /#, E>0 is the energy of the
three particles in the center-of-mass system, (), and (), are
the sets of hyperangles corresponding to the six-dimensional
momentum spaces (q;, p,) and (qy,. p,, ), and the grand orbi-
tals K and K characterize the system before and after the

truly three-particle scattering, respectively.
; ; bk
For the hyperradial functions ¢ ;% (x.x,) a system of

coupled one-dimensional inhomogeneous singular integral
equations is obtained:
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FIG. 1. Dependence of the differential cross section of the
+ ‘He—7 ' + 3n reaction on the kinetic energy E of the three neutrons.

The experimental data are taken from Ref. 25 the continuous curve is for
a potential, the broken curve for a potential [ Translator’s note: the Rus-
sian does not state which potentials {(words probably omitted) |, and the
chain curve for the Eikemaier—Hakenbroich potential.
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Expressions analogous to (29) and (30) hold for a bound
state of the three particles. A difference is that an expansion
of the type (29) contains one hyperspherical function in the
momentum representation, and instead of the system (30)
there is a system of coupled one-dimensional homogeneous
integral equations.

The theory can be readily generalized to the case of four
bodies.'* In particular, for a four-particle bound system in
the momentum representation we have the expansion
AN

olyaly (ar) Hilalial:
i f.l‘.‘;\:L[j‘ (%) YRS (o), (31)
R sty
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where p, q and r are Jacobi momenta;

o, =(a.f,p,at),p=Kkcosasinf; g=xsinasinf; r=x '

xeos B k> =p + g’ + 1.

Such an approach has often been used in investigations
of the structure and complete-breakup reactions of light nu-
clei and hypernuclei. For example, the problem of hypertri-
tium was investigated in Ref. 26 in a basis of hyperspherical
functions in the momentum representation. The binding en-
ergy and wave function of hypertritium were calculated. For
the first time an investigation of mesonic and mesonless de-
cays of this hypernucleus with allowance for the final-state
interaction was made. It was concluded that the MHF in the
momentum representation makes it possible, without invok-
ing model representations, to describe satisfactorily in a sin-
gle scheme both the bound state of the } H hypernucleus and
the continuum states. It was shown further that the effect of
the final-state interaction between the nucleons of the reac-
tion yH7~ + p + p + n has a strong influence on the proba-
bility of the process. Only with allowance for this effect can
one obtain a reasonable value for the decay probability. It
was also concluded that the channel of mesonless decay } H
—p 4+ n + nisstrongly suppressed because of the fragility of
hypertritium.

In Ref. 27 the MHF in the momentum representation
and the assumption of a truly many-particle nature of the
rescattering of the decay products were used to develop a
unified approach to investigation of the structure of the hy-
pernucleus $Be and the nuclear reaction 1 Be
—a+a+p+ 7 . It was shown that such an approach
makes possible a comparatively comprehensive investiga-
tion of the physics of the hypernucleus |, Be in the framework
of a single formalism. If the potentials of the aa and Aa
interactions are comparatively soft, the three-particle clus-
ter structure of this hypernucleus can be reproduced basical-
ly by the minimal harmonic, although the following har-
monic makes a significant contribution to the binding
energy. The effect of the final-state interaction between all
the particles of the & + a + p system is decisive and leads to
both a quantitative and a qualitative change of all the consid-
ered characteristics of the ! Be—a + a + p + 7~ reaction.
The energy spectrum of the pions in this reaction has a pro-
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nounced peak in the region of high energies of the pions,
while in the distribution over the relative energies of the
particles there is a narrow peak at low energies, due primar-
ily to the effect of the interaction between the  particles in
the final state. It was shown further that the & particles from
the reaction } Be »a + a + p + 7 must be omitted mainly
in opposite directions. The investigated characteristics were
found to be fairly sensitive to the chosen form of the poten-
tials of the aa and ad interactions, and qualitative features
of these characteristics were established. All this makes the
problem of detailed experimental investigation of the i Be
—a + a4+ p+ 7 reaction very interesting. The noticeable
quickening of interest in recent years in the development of
hypernuclear physics offers hope that this problem will be
solved in the near future.

In Ref. 28 an iterative solution of the three- and four-
particle equations of the MHF in the momentum representa-
tion [of the type (30)] was proposed, and double hypernu-
clei and charmed supernuclei were studied on its basis.

3. THE METHOD OF HYPERSPHERICAL FUNCTIONS IN
INVESTIGATIONS OF COLLECTIVE EXCITED STATES OF
LIGHT NUCLEI AND OF PROCESSES INVOLVING LIGHT IONS

In this section we present the results of investigations
on the application of the MHF to the study of the structure
of light nuclei revealed in elastic and inelastic scattering of
ions. Particular attention is devoted to the effect of the
change of the nuclear properties with the excitation energy,
which is automatically taken into account in the MHF.

Effect of the change of the nuclear properties with the
excitation energy in the method of hyperspherical
functions®

In recent years there have been many experimental in-
vestigations with heavy nuclei in which the nuclei are in
highly excited states in the process of deep inelastic colli-
sions. One of the results of these investigations is the fact that
the properties of the nuclei change with the excitation ener-
gy, and these changes influence the reaction process (fis-
sion). On the other hand, various theoretical attempts have
been made to describe the temperature dependence of such
nuclear properties as the density distribution, size, and
shape of nuclei. In Ref. 30 a realistic microscopic effective
Hamiltonian was used in the framework of the spherical
Hartree—Fock approximation with finite temperature in or-
der to study the thermodynamic properties of the nuclei 'O
and *’Ca. It was shown that the temperature dependence of
the properties of these nuclei is much stronger than for the
corresponding results obtained with phenomenological
zero-range forces. This effect is more pronounced for light
than for heavy ions. In Ref. 29 a different approach was
proposed for studying the dependence of the density distri-
bution and sizes of nuclei on the excitation energy without
the direct introduction of a temperature parameter 7 in the
method of calculation. A collective Hamiltonian with an ef-
fective NV interaction was used to describe the nucleus as a
many-body system consisting of 4 nucleons. This makes it
possible to study the change in the collective properties of
nuclei with increasing excitation energy.

The system of equations for finding the eigenvalues and
radial eigenfunctions is written in the form
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Figure 2 shows the effective potential

Bt Ly (Lg--1
Ver = 5 2280 Wi (o),

the eigenvalues, and the first three radial wave functions ob-
tained as solutions of Eq. (32) for the '°O nucleus using the
Brink-Boeker B4 potential.* 1t can be seen that the effective
potential automatically expands for states with higher ener-
gy. Because of this, the formalism correctly reproduces the
expansion of the radial wave functions with increasing exci-
tation energy of the nucleus. In the theory of the average
field, in which an oscillator potential is used to describe the
interaction, this effect is created by changing the number of
basis states and the value of the oscillator radius with in-
creasing parameter T, which corresponds to high excitations
in the nuclei. Figure 3 shows the dependence of the rms radi-
us on the excitation energy for the '*C, 0, and "°0 nuclei®
in a comparison with the results of Ref. 30 for 'O in which
the expression for calculating the rms radius has the form

"rars (E%)
= 2.74 (1.0056 + 6.51-10~2 ')/ F* 4 1.89. 10-3F%).
(33)

The numbers 1 (B1) and 1' (B4) correspond to the nucleus
"*C, 2 (B1) and 2’ (B4) to '*0, and 3 (B1) and 3" (B4) to
'*Q. The brackets describe the set of parameters of the NN
interaction.
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FIG. 2. Effective potential, eigenvalues, and the first three radial wave
functions obtained as solutions of Eq. (32) for the "0 nucleus.
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£ MeV

FIG. 3. Dependence of the'rms radius on the excitation energy for the
nuclei *C (1,1'), 0O (2,2}, and "O (3,3'). The chain line shows the
results of Ref. 30.

Thus, in Ref. 29 the dependence of the properties of
light nuclei as functions of the excitation energy was studied.
The results of the calculation were compared with the corre-
sponding results in field theory in which one uses a realistic
microscopic effective Hamiltonian at finite temperature.

The predictions for the change in the properties of the
nuclei with increasing excitation energy that are obtained in
the MHF differ from the results given by the theory of the
average field. In particular, the calculations made in Ref. 29
showed that the rms radius as a function of the excitation
energy tends to infinity at an excitation energy near the bind-
ing energy, whereas the theory of the average field predicts a
finite value of the radius in this case. This discrepancy may .
be due to the fact that in the MHF the entire excitation ener-
gy of the nucleus is concentrated on a single degree of free-
dom, which is associated with the collective variable 2
whereas in the Hartree—Fock method the excitation energy
of the nucleus is distributed over a large number of particle—
hole excitations of different natures. In agreement with the
results obtained in the Hartree-Fock method at finite tem-
perature using a realistic microscopic effective Hamiltoniun,
the method proposed here indicates a stronger temperature
dependence for light nuclei than for heavy ones.

In Ref. 32 a study was made of the influence of a change
of the nuclear properties with excitation energy on the re-
sults of calculations for giant multipole resonances.

Giant monopole resonances

Study of the nature of giant monopole resonances in
light nuclei is stimulated by the fact that the problem of
experimental detection of giant monopole resonances is not
trivial and for the majority of light nuclei has not yet been
finally solved. An MHF basis is extremely convenient for the
microscopic description of monopole vibrations. Excitation
with respect to the collective variable p corresponds to mon-
opole vibrations of the nucleus as a whole, i.e., the density is
a dynamical variable.

The results of the calculation of the excitation energy of
monopole states and of the distribution of the energy-
weighted monopole sum for light nuclei with 4<4<16 (Ref.
5) showed that the shape of the distribution of the monopole
sum is the same for all the studied nuclei, namely, the first
monopole-excited state takes 70-80% of the monopole sum
rule, while the second takes about 10%. These results are not
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FIG. 4. Folding potential with Skyrme forces for the
150 + '°0 system; the dotted curve is for ¥, the continuous

curve for ¥, ., the chain curve for ¥, 0 and the broken
0, i

curve for V.

00, 7

very sensitive to the choice of the NN potential, as follows
from a comparison of these values for the '°O nucleus with
the corresponding results obtained in Refs. 34 and 35.

As the next step it is interesting to consider the influ-
ence of a change in the properties of nuclei with the excita-
tion energy on the interaction potential of two heavy ions
and on the cross section for nucleus-nucleus inelastic scat-
tering. It can be expected that this effect plays an important
part for the description of processes in which giant reson-
ances are excited in the region of 20 MeV in the inelastic
scattering of heavy ions. Such an investigation was made in
Ref. 36. The nuclear densities obtained in the method of
hyperspherical functions were used to construct folding po-
tentials for the '*O + '°0 system. The properties of the inter-
action potentials of two heavy particles were studied in both
the ground state and monopole-excited states with energy
20-40 MeV. The results of the calculation are shown in Fig.
4. It can be seen that the interaction potential for both nuclei
in the ground state is the deepest. In principle, it becomes
broader with increasing excitation energy of the system, but

26, a8
|
3He +12C,E =108 MeV
i
i
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03 . ) ! 1 I
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FIG. 5. Angular distribution of 'He + "C inelastic scattering at E .
= 108 MeV: the continuous curve gives the calculation of Ref. 38, the
broken curve is the phenomenclogical description of Ref. 39, and the
points are the experimental data.
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the potential for both fragments when in the first excited
state is deeper than the corresponding potential for such a
combination in which one nucleus is in the ground state and
the other is in the second excited state, despite the fact that
the total excitation energy of the system is higher in the first
case. This fact is explained by the different structure of the
wave functions that characterize the different nuclear states
determining the radial distribution of the nuclear densities
and, therefore, the shape of the folding potential.

A first attempt at a microscopic description of the angu-
lar distribution in inelastic nucleus—nucleus scattering with
excitation of one of the nuclei was undertaken for the system
2¢ (PHe,He)'’C"*, E¥%... =203 MeV at energy
E ;. = 108 MeV of the incident particles and for '°C (*He,
‘He*)'2C, E¥,». = 20.1 MeV at E.y, = 65 MeV (Refs.
37 and 38). The results shown in Figs. 5 and 6 are in good
agreement with the experimental data. This means that in
the calculation of the cross section of the inelastic scattering
process it is necessary to take into account the expansion of
the nucleus with increasing excitation energy.

Giant dipole resonances

Figure 7 gives the results of calculations of isovector
states of the '®O nucleus with J7= 1", T'= 1, which are
known as the giant dipole resonance."” In the shell model, in
which the change in the nuclear properties is not taken into
account, the total dipole sum is concentrated in the region of
excitation energies up to 30 MeV. In the MHF the dipole
sum is redistributed to the region of higher excitation ener-

w? —\

1077

26/d52

702

103 1 i 1 P I
o w0 Z20 O, d€Q

FIG. 6. Cross section of *He -+ '*C inelastic scattering at £, = 65 MeV
(Ref. 40). The curves have the same significance as in Fig. 5.
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FIG. 7. Giant dipole resonance in the '"O nucleus.

gies. This fact is in good agreement with the experimental
data of Ref. 33, which show that about 30% of the dipole
sum in 'O is beyond the giant resonance.

Thus, allowance for the change in the properties of the
nuclei with increasing excitation energy makes it possible to
give a description of the properties of giant multipole reson-
ances in good agreement with the experimental data.

Study of the structure of the 12C nucleus in ion scattering

The excited states of the '*C nucleus have been investi-
gated in a number of theoretical*'™* and experimental®
studies. The spectroscopic characteristics of this nucleus
have been investigated, and the problems of elastic and in-
elastic scattering by "*C have been solved.

In the theoretical investigations the nature of the low-
lying excited states has been studied in various models. For
example, in Ref. 41 the MHF was used to make detailed
calculations of four-particle excitations in the '*C nucleus. It
proved possible to describe the lowest excited 0 ' state (en-
ergy 7.65 MeV). It was shown that this state has an internal
wave function corresponding to four-particle excitation, and
that it can be satisfactorily described by one K, + 4 har-
monic. Later, in Ref. 42 the structure of the states of positive
and negative parity in '*C was described successfully in the
framework of a microscopic 3a-particle model.

In Ref. 43 an attempt was made to calculate the binding

energy and characteristics of various types of 0 * levels of
the "*C nucleus in an orthogonal scheme with the most sym-
metric Young diagrams having K =K., K... +2, K.
~+ 4. Finally, in Ref. 44 a detailed study was made of the
transition density for 0 * {ground state) =2 * (4.44 MeV) in
"*C in an intermediate model. In this case states of the giant
isoscalar quadrupole resonance are mixed with the states of
the shell model.

In Ref. 45 various types of excited states of the '*C nu-
cleus were studied in the MHF. Calculations were made of
the spectrum of excited 0 * and 2 * states in this nucleus, the
densities, the rms radii, and the reduced probabilities B(E2)
for the investigated transitions. Folding potentials and cross
sections for elastic and inelastic scattering with participation
of *C ions were found. The investigation made it possible to
give an interpretation of the structural features of excited 0 *
and 2 ' states in the "*C nucleus.

We briefly describe the scheme for calculating the var-
ious properties of the excited states of nuclei with allowance
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for three harmonics: K, K., + 2, K., + 4. The wave
function of nucleus 4 is sought in the form of an expansion
with respect to K-harmonic polynomials,

|
¥ q % - FEA-1) o
(Lo 24 v dl) f h__\._vy_x‘l. () | AK ), (34)

where ¥ = [ f]eLST. In the nucleus *C, in the approxima-
tionK = K, ..K . +2,K,,,, + 4, thedetermination ofthe
eigenvalues and radial eigenfunctions involves solution of
the system of coupled differential equations
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where W {7 (p) are the matrix elements of the potential en-
ergy of the nucleon-nucleon interaction,

A
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which can be expressed in terms of the two-particle coeffi-
cients of fractional parentage in the form
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For the ground state of the '*C nucleus, LST = 000. If one
includes in the scheme the most symmetric Young diagram
[444], then for the states K ;., Kin + 2, K, + 4 the fol-

lowing configurations will be considered:

min
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Thus, in the approximation K = K;,, a restriction is
made to the consideration of one equation, in the approxima-
tion K =K,_,, +2 a system of four coupled differential
equations is solved, and, finally, in the approximation
K=K, + 4thereisasystem of seven coupled differential

equations. This system is written as follows:
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Solving the system of equations (38), one finds the binding
energy and spectrum of excited states of the '*C nucleus, and
also the corresponding wave functions.

Figure 8 shows the effective potential and the first two
solutions in it for the "“C nucleus in the approximations
K=K,., K,.. +4% The computational scheme included
the NN potentials from Ref. 41. Note that the depth of the
effective potential increases sharply with increasing global
moment K, this being due to the allowance for the Pauli
principle.

Using the functions y . (p) that were obtained by solv-
ing the system (39), we can construct densities of the ground
state and excited states of the nuclei, and also transition den-
sities***” in accordance with the general formula
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FIG. 8. Effective potential V. and the first two solutions y in it for the °C
nucleus.

Nyagar (r) = <Jr|:
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where J” and J'™ characterize the initial and final states of
the nucleus, and the multipole expansion of the density has
the form
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where the radial components n’_,. .. (r) are expressed as fol-
lows:
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Thus, the ground-state density of the '>C nucleus is obtained
as
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where y,* (p) is the radial wave function of the ground state
of '2C, and the density is normalized by

43’[ -\‘ Ho+p+ (?) ridr= ;1- (43)

The rms radius of the nucleus is

C trort dr
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The density of the excited 2 * state is expressed as
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FIG. 9. Excitation spectrum of 0 ' and 2 ' states of the "°C nucleusin the
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The transition density with excitation of the 2 * state is ex-
pressed in the form
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The reduced probability of the multipole transition is given
by the expression
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47)

and the energy-weighted sum rule is éxpressed in the form
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where J” and J'™ are the initial and final states of the nu-
cleus, and L is the angular-momentum transfer.

Figure 9 shows the results of calculation of the excita-
tion spectrum of the 0 * and 2 ' states of the '2C nucleus in
the MHF with the NN potentials of Refs. 31 and 41. The
experimental data are given on the left. It can be seen that the
lowest excited 2 * state with inclusion in the computational
scheme of the potentials of Refs. 31 and 41 is in the region of
energies 1.4-1.8 MeV and has as its main component a wave
function without a node with K = K. Theexcited 2 ' lev-
elsin the region of energies 18-22 MeV have wave functions
with a node and K = K ,,,. The 0% levels with excitation
energy 7-10 MeV have as their main component a radial
wave function without a node and with K = K, + 4. The
excited 0 ' levels in the region of energies ~20 MeV have
radial wave functions with a node with the main components
K=K,...K,, -+ 4 Thus, when we use the MHF to calcu-
late the ground and lowest excited states of nuclei we obtain,
as a second solution of the system (39), resonances of corre-
sponding multipolarity.

Figure 10 gives the densities of the ground state and
various types of excited 0 ' states of the ">C nucleus. In the
left-hand part of the figure the continuous curve shows the
ground-state density of the "*C nucleus, the broken curve
shows the density of the monopole resonance lying in the
region of excitation energies of order 20 MeV, and the chain
curve shows the transition density with excitation of the gi-
ant monopole resonance. The right-hand part of the figure
gives the density of the “mysterious” 0 ' state in the region
of energies 7-10 MeV.

Figure 11 shows three different density distributions of
the "*C nucleus: for the ground state [n0.,. (), continuous
curve ], monopole resonance at energy 20.3 MeV [#).,. (),
broken curve], and transition density with excitation of the
monopole resonance [ny,. (), broken curve with crosses]
we also give the components of the density for the lowest 2
state (#5.,. (), n3 5 (r),chain curve) and of the transition
density with excitation of the lowest 2 ' state [n2, (r),
chain curve with two dots].

Table I gives the rms radii for various types of excited
states of the '°C nucleus, calculated with the NV potential of
Ref. 31. The results given in Figs. 10 and 11 and in Table I
reflect the structural features of the studied states. Indeed,
there is a clearly expressed effect of expansion of the nucleus
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FIG. 10. Densities of the ground and excited 0 ' states 6f different nature
of the '*C nucleus.
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FIG. 11. Densities of excited 0 * and 2 ' states of the "*C nucleus.

with increasing excitation energy. On the other hand, the 0 *
state at excitation energy 9.7 MeV has an rms radius greater
than the higher-lying 0 * state at 20.3 MeV. This is ex-
plained by the specific nature of the function of the *“myster-
ious™ low-lying 0 * state.

Table II gives the probabilities of E2 transitions with
excitation of a 2 * state, obtained with different NV poten-
tials,”' the results of calculation in the shell model,** and also
experimental data. It can be seen that the values of these
quantities depend strongly on the choice of the NV potential.

One of the interesting problems in the investigation of
the structure of the *C nucleus is the distribution of the
energy-weighted quadrupole sum B(E2). This question was
studied in Ref. 44, where it was found that B(E2) = 1412
e* F*MeV for the °C nucleus. The lowest 2 ' state takes
13% of the energy-weighted quadrupole sum. In experimen-
tal investigations it was shown that in the C nucleus in the
region of energies below 30 MeV only 20% of the energy-
weighted quadrupole sum is observed. Moreover, in differ-
ent investigations the position of the quadrupole resonance
in the *C nucleus has been predicted differently. In Ref. 44 it
was estimated at 56 MeV, but in Ref. 48 the value 28 MeV
was found. In Ref. 45 an estimate was also made of the distri-
bution of the energy-weighted quadrupole sum of the '*C
nucleus. The calculations showed that the lowest level takes
8.6% of the guadrupole sum, and a higher-lying level at
21-22 MeV takes about 8.1%. Thus, in the region of excita-

TABLE 1. Excitation energies and rms radii
for states of different nature of the "*C nu-

cleus.
I, MeV rpas F Jrr
{ 2.63 0+
(.8 2 84 24
9.7 3227 00
2005 3.05 [451]
220 2.28 2()
25.4 3.6% =0
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TABLEII Probabilities of E2 transitions
with excitation of the lowest 2 ' state in

IEC—

Potential B(EY)
13 (Ref. 31) 1.0
V7 (Ref. 31) 85.4
Shell model (Ref. 44) 17.5
Experiment 42.2

tion energies up to 30 MeV about 16.7% of the energy-
weighted quadrupole sum is exhausted. This result is in good
agreement with experiment.

The densities of the ground state and excited states of
various natures found in the MHF was subsequently used to
construct double-folding potentials.*

Figure 12 shows the folding potential for the "He—'>C
system calculated with the densities obtained in the MHF
(Ref. 36) with different NN potentials [Figs. 12a (Ref. 41)
and 12b (Ref. 31)]. The thin continuous curve (sic) shows
the results of the calculation when both nuclei are in the
ground state, the broken curve shows the corresponding re-
sults when the ““C nucleus is in the monopole resonance
(20.3 MeV), and, finally, the thick continuous curve shows
the folding potential for the case when the '*C nucleus is in
the “mysterious”™ 0 ' state (at energy 7-10 MeV ).

Asone would expect (see Table 1), the folding potential
with excitation of the lowest 0 ' state is higher and broader
than with excitation of the more highly excited 0 * state,
Comparison of the results of the calculations shown in Figs.
12a and 12b demonstrates the dependence of the shape of the
folding potential on the choice of the NN potential in the
calculation of the nuclear density. For the deeper variant of
the NN potential of Brink type, which gives a smaller nuclear
radius, the folding potential is narrower and deeper (for ex-
ample, at the origin by 20 MeV).

These folding potentials were then used to calculate the
elastic scattering cross sections. The angular distributions of
the scattering were calculated in the coupled-channel meth-
od. It was assumed that the imaginary potential must have
the same form as the real potential, so that

v.MeV 7 2

20

s
4o}

FIG. 12. Folding potentials for the "He—"*C system in the ground state and
monopole-excited states of different nature in the '°C nucleus.
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U - -I},ﬂ‘n (1 = CX). (49)

The parameter & was found in the elastic channel by fitting
the theoretical differential cross section to the experimental
data. The fitting criterion was usually minimization of

aexn (61 — Tiheor (91) )

zt ) 50
r=x Ao (0) (30)

where o, (8;) are the calculated differential cross sec-
tions, and Ag,,, (8,) are the measured experimental errors.

Figure 13 shows the angular distributions of the cross
section for °Li + '*C elastic scattering at energies 30.6, 90,
99, and 156 MeV of the incident particles.* Despite the sim-
plicity of the potential, which was used in this case with just
one free parameter, the agreement with experiment was
good and the parameter was found to be 0.7-0.9. Compari-
son with the results of the phenomenological description, in
which six free parameters are used, illustrates the advantage
of the proposed microscopic approach, which has just one
free parameter.

Nuclear interaction potentials of light nucleiin the ground
state and in monopole-excited states

In Ref. 50 the interaction potentials were investigated
in the energy-density formalism for the nuclei >C~"2C and
'°0-'°0 in both the ground state and the 0 * excited state.

In the energy-density formalism, the nuclear part of the
interaction potential has the form

Vi (R) = | fe [p4 (r £ R

— pB(r — R2)] — & lp2 (1)]
— e [ ()]} d, (s1)

107
SLi 12

£,;=756 MeV

do/ds /(do/dR),

g 20 40 80 & @..,.,deg

FIG. 13. Angular distributions of the cross section for “Li 4 "C elastic
scattering at energies 30.6, 90, 99, and 156 MeV of the incident particles.
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where p” and p® are the distributions of the nuclear density.
The energy-density functional is written in the form

€ (p) = tor - Vo, @) - n (Ap)?, (52)
where a is the neutron excess, p is the total density, and
o = (f'n v i’p) ‘(PF! A PP)‘

The kinetic-energy density is determined in the Thomas—
Fermi approximation:

3 h*
Wit s e o
IE 5 2m

re| —

3 1273 e
(7)1 — o3 (1 o) 5] 5,

(53)

where m is the nucleon mass. The functional V(p,a) is the
potential-energy density for infinite nuclear matter:

by (1 - awx?) p ¥ by (1

= (l:i'f/.:) \“-')1'3‘
(54

This scheme, in the energy-density formalism and using the
nuclear densities obtained in the MHF, was used to calculate
the nuclear potentials for the *C-"2C and'°0-'°0 systems
when one’or both of the nuclei are in the 0 * excited state.

The results for '°0-'°0 are shown in Fig. 14, which in-
cludes a comparison with the nuclear potential of the system
in the ground state.

In both cases in which the 0 excitation is encountered
the depth of the potential increases, the minimum of the po-
tential well is slightly shifted to smaller distances, and the
repulsive core disappears. In the surface region, where the
nuclear forces become attractive, all the potentials are very
close together. The calculated potentials (see Fig. 14) differ
from the similar ones constructed in the folding model. They
are deeper and do not have a repulsive core. This happens
because the Pauli principle is not taken into account in the
folding procedure. The use of the hyperspherical density of
monopole-excited nuclei in the folding procedure leads to a

| L
§ 7 & RF

[}

"
NF
o
+
t -

FIG. 14. Nuclear potentials for the '"Q + ""Osystem when both nuelei are
in the ground state (00}, one of the nucleiisina 0 * excited state 00y,
and both nuclei are in an excited state (0 ' 0 '), calculated with two sets
of parameters: I (Ref. 51) and 11 (Ref. 52).
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decrease in the depth of the potential, and the potential be-
comes broader. Thus, in the peripheral region the potentials
for the monopole-excited states behave in the same way in
the two different methods of calculation. A difference ap-
pears in the internal region through the effect of the antisym-
metrization in the energy-density formalism.

Recently interesting results have been obtained on the
use of the MHF in the cluster model of light nuclei. In partic-
ular, cluster hyperharmonics were introduced in Refs.
53-55, and excitations of monopole degrees of freedom in
nuclear collisions were investigated. The approach makes it
possible to generalize the algebraic version of the resonating-
group method, and this makes it possible to take into ac-
count the formation of compound states in nuclear processes
with the participation of clusters. In addition, *‘cluster” hy-
perharmonics make it possible to establish a certain hierar-
chy of internal functions of the nucleon systems.

4, THE METHOD OF HYPERSPHERICAL FUNCTIONS IN
COULOMB FEW-BODY PROBLEMS

In the quantum mechanics of few-body systems Cou-
lomb problems have come to the fore in recent years. Many
studies have been devoted to investigation of Coulomb ef-
fects by means of the Faddeev integral equations, various
approximate schemes for taking into account the Coulomb
forces having been proposed and used in the face of some
fundamental difficulties. The MHF has been little used to
investigate Coulomb scattering in a system of three or four
particles. In Ref. 56 truly three- and four-particle Coulomb
scattering was considered using the MHF.

Truly three- and four-particle Coulomb scattering

We consider truly three-particle Coulomb scattering of
particles with charges Z, e, Z, e, Z,e and masses m, m, m,m,
m,m. After elimination of the center-of-mass motion, the
corresponding Schrodinger equation takes the form

(Ax -+ Ay)

Zm

1]J'qp{x. V) U s (X, ¥) l_pqp (x, y) ‘*—quqp (x. ).

(55)
where
Ups (x, y) = THII“’IT;(;: %;_ )
4, = VT;?:Z—L 7,248, a,= me”l“Tm;a ZZ et
By = % ZyZe®
o=V i n,); (56)

i.j, k form a cyclic permutation of (1, 2, 3); q and p are the
Jacobi momenta corresponding to the Jacobi coordinates x,
and y,, where

B /,.f m (mjo-my) 1__ i mjl'j—imhl‘h)
Yi ] my-t-ma-| my { mj-+mp

In Eq. (55) we go over to the hypercoordinates p and £,
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= (a,,X;,y;) and we represent its solution in the form of the
expansion (22). For the Coulomb hyperradial functions we
finally obtain the system of coupled one-dimensional differ-
ential equations

P | 1 SO0 | e K2
dp? p ap ‘ [
=Skt (0) % ). (57)

where
2m ¢ gl QF @ tly as
iy 131,05 el i 38 = |
w \,r‘l frf NIAL L \\ (DJ\L\I( } (-“"1 + £y + 2y )
s QY
Dz, (1) €
Zy= COSCy; Ly == COSO,; Tz== (L0850
% o 2 s, 3 )
®E=g+ pi= i+ pi= it =5 (58)

E>0is the total c.m.s. energy.

Of the three terms of the angular integral (58) only the
first can be calculated with comparative ease (the indices of
the hyperspherical functions are equal to the index of the
operator). Great difficulties arise in a direct calculation of
the remaining two terms. It is here convenient to use the
unitary transformation (3), which makes it possible to find
the connection between different basis hyperspherical func-
tions defined on different sets of Jacobi coordinates x, and y,
(i =1,2,3). When this transformation is used, Eq. (58)
takes the form

2
iids Lo 2w 1 Lidh1s
lhh‘LL"U\I’(n) TR a YR
= R i Tinli1e
& Ly 21 (hlglhfﬁm. (‘71{2‘!11:)-“('1{ JJ\"J"‘EL},‘.T:.\I’
T
+as = LWl sL iy Z ” l)rn JJ'“IEELIJI.'{N‘T)'A! }’
rgicend o
Lilalilg
(59)
where
. 4 o g e doP
J 5 JffLL AN T \ Wicidr (€0) Diefar (Q)—— (60)

COs o

The integral (60) can be solved analytically. Further, in the
system of equations (57) we go over to new unknown func-
tions and to a new variable in accordance with the expres-
sions

GRE )

7R () = === (61a)

Z = —2ixp. (61b)
Finally, the system (57) takes the form

du i 2) 1 T*“‘ ,

[ W b
- 7‘ /_, "r\'i\m f?)‘l[‘l’ (ZJ' 0, (62)
k' 111’2

where
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(64)

I' is the gamma function, B is the beta function,
n=4K—1I —L),andn' = (K' — I, —L).

In the approximation of the minimal harmonic for fixed
values of the orbital quantum numbers /,, [,, and L there
remains from the system (62) only one equation (diagonal
approximation):

1 .
,d"lf"l" (‘/) _'_ _L+ 71_* (1\'; 2)
dz* & VA

—i 11{

i ) ;
B J R (2) = (65)

and this can be solved analytically. Solutions (irregular) are
the Whittaker functions

q t‘gm (7) :H'_‘”} }lr . ( 2ixp); }
AN +2

Il (2)
il (

qf\' ] _Z) = 'i’t‘_‘igfz (2]%}’).

KRL,K+2 (66}

Using the asymptotic expressions for these functions,
we can readily find the asymptotic form of the Coulomb
functions describing truly three-particle Coulomb scattering
in the approximation of the minimal harmonic for fixed val-
uesof I, ,, and L:

.J.p L'W:L/p— ARRE (%) 1, 200

—y K+ Da—F ] (67)

3 /
CLE (xp) = |

: Lzl 9.
n | s — AR (n) [, 2u0
o 8 l: P KK ( ) n i

—%(f\— 2~ l%:k“']» (68)
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where 0y} is the phase shift of the Coulomb three-particle
scattering.

It can be seen from (67) and (68) that 4 4%- (k) plays
the role of a parameter of the Coulomb scattermg If we
consider S-wave scattering (I, =/ =1] = 15 =L=0),
then, using Eq. (63), we obtain for this parameter

Agg (n)

[y |1 CO0]OOY }\U| as+ Y UOIUO)KUI ay) of s

_h/

(69)

where

sy ¥
— ) °
2 3
=0 (v 4 DT (K I .
K2 _1:;7\_,
— (=)~
/_1' T DT (K= 32 T (K 2—~" [ DT (v 39
vt
S BIvAV 1, K — (v ) 4 372
(70)
In the special case with K = 0 we obtain from (70)
16
Agg () = i (g + a1+ ). (71)

We can also readily find an expression for determining the
phase 7} . To this end, we shall proceed from Eq. (65) and
go over to a new function in accordance with

2K+5
GRL (2 =2 °

ITHPDRE (2). (72)
For the function ®}; (Z) we obtain the equation

R AL,

Lyl
_:_(2}(.;“5_2}4_‘“5&

dz2 dZ
—Ted pialdy () | Dl (2) - 0. (13

This equation is solved by the confluent hypergeometric
function:

DR (2) = F (K g+ 1408 (). 2K 45, Z). (74)

Further, using the well-known representation of the hyper-
geometric function

. P 7)1 G ’ 2
Fla e 2) =559 (- 2)"G (0, a— et 1; -2
. 1§c§ Z2=G(c—a, 1 —a; ), k92)
where
ab afe | )bB-+1)

G ((1, Uy :) -= 11'-

1z AV T (76)

we finally obtain for the phase of the truly three-particle
Coulomb scattering

o e D Lils
2inftle I (f‘ -y AR (e )
I K 3 Ll “
L g — iR, ) (77)
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Having in mind (77), we can readily find the following rep-
resentations for the regular and irregular Coulomb functions
of truly three-particle Coulomb scattering in the approxima-
tion of the minimal harmonic for fixed values of /,, l,,and L:

Alilz (-,,.)__

Iyl 1 ;o2
A ) =5V e

(%) ) 1/2

T (K—i—%——ifiﬂ}‘éﬁ )

5
r (A AR

E29 T
R -
€ LW —ially o0, K+2 (= Zixp)

S Y i .

1 ( Koo = UL () e B
B]
=

c Wity go. xes (Zioepd ¢ (78)
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12

—iAY R (""))

; —li—%lf\'a—i)—%-
f B
T (K i )

@

W (2iup) ¢ . (79

I
'-‘“I:'KL (7 K2

The approach presented here can be readily generalized
to the case of truly four-particle Coulomb scattering. In par-
ticular, instead of (77) we obtain for the four-particle phase

hishsls  Tu -4 iphiferetagy)
e 1K e , (80)

T (- 4—ivgar, 2o

where 4k " («) can be specified in analytic form and plays

the role of the parameter of the four-particle Coulomb scat-
tering.

In particular, for the case of s-wave scattering we obtain
for this parameter

Vuxe (%) = - 104+ [1(00000]00000)y0 2 2,

- [100000]00000)54 |2 a;

+ |1(00000] 00000y 4|2 @, -+ [100000]00000)5 |2 a5
+ [+(00000|00000) 14 |2 ag]  u x»

00000 00000 dw
J}LK“ ‘\ (bp.K ((1)) (DuK (u)} COSﬂ .

(81)
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where ' (|}, are the four-particle Raynal-Revai coefficients
[see Eq. (7)], and

Nahl r mym s w1
(;1:1,/‘A ‘422382; o == ]//-411_. Zi/;ael;

my-my my-t-ms
T mama MM .
My == '!, —71‘ Zl Zae%; a, = 1/ 4_‘_1 4 Z Z&BE, ‘
iy -p Mg = Cmy
Aty o 7 m.im4 I
as - 2t T LT dg=- 1/ Fgl %
g ) ErE | g ony €7

(82)

The results obtained in the present section can be used
in developing a method for taking into account simulta-
neously the Coulomb and nuclear interactions between par-
ticles in a microscopic description of three- and four-particle
systems.

Method of simultaneous allowance for Coulomb and nuclear
interactions in the investigation of systems of three and four
particles

The investigation of systems of a few particles between
which the interaction potential contains both a short-range
part and a long-range Coulomb potentialis a very complicat-
ed but also very important problem from both the funda-
mental and practical points of view. In recent years such
problems have come to the fore in the theory of few-body
systems.

It was shown in Ref. 57 that the use of a hyperspherical
basis makes it possible to generalize the variable-phase
method to the case of three and four particles when both
nuclear and Coulomb interactions are present. Equations for
the corresponding phase and amplitude functions were
found. The partial amplitudes of truly three- and four-parti-
cle scattering were determined, and their connection with
the corresponding phases of Coulomb and nuclear scattering
was found. Equations were also found that permit determin-
ation of the binding energy of the bound states of three and
four particles with allowance for the nuclear and Coulomb
interactions. In particular, the three-particle phase function
8% (p) and the amplitude function 4 i} (p) in the approxi-
mation of the minimal harmonic with fixed values of the
orbital angular momenta satisfy the equations

e _

M oariyhi
o =TT Nerm ()0
. [eos ‘lﬁml’r};z (%0) — sin Oty W2 (0) GRE (xp1)%; (83)
LR ) i
—a =T Nk iml0)

X p [sin S () FR® (up) -+ cos SR (0) GRY (up)]
s [eas 630 (p) FRE (xp)

—sin 83 (p) GRE () | ARE (0), (84)

where
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Nt (p) =

1) d2s (85)
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V,(x)i 15 the potential of the nuclear interaction; F 1% {xp)
and G} (kp) are the regular and irregular Coulomb func-
tions of truly three-particle scattering, which are expressed
in analytic form by (78) and (79).

The four-particle equations analogous to Egs. (83) and
(84) have the form

dﬁ:‘l;‘;i[ aly (o)

_ 1 rbilsbindi
o M ()

[(,U‘_.i'lf 1yaly ((l) Ffll;‘;_}-"ml;« (%)
— SIGRE T () G (up) 1 (86)

dA bt (p)
dp
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lalyals 3
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AN (o) (87)

U yriydatyat,
— g N WKL 4 (0)

lilalyaly Zm Ulaly sl
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K AVoy (8) + Ve (Ba) =+ 1y, ha)‘"l 1 (8) b Vi (85) Ty (B4l
(I).f;ti\'},',\.'h(“lj) dwf, (88)

where F 1" (kp) and G [i¢i" (kp) are the regular and irreg-
ular Coulomb functions of truly four-particle scattering,
which are also given in analytic form.® )

It can be seen from the results of the previous sections
that in the few-body Coulomb problem the MHF has a very
important advantage over other methods of treating such
problems. When the MHF is used, a large proportion of the
calculations can be made analytically. Analytic expressions
are obtained for the basic characteristics in a definite ap-
proximation. These expressions can be used in a more accu-
rate solution of the problem. The results of the following
section confirm this conclusion.

Approximate analytic solution of the problem of a three-body
bound state in atomic physics

In Ref. 58 one of the possibilities for developing a mod-
el-free approach to the investigation of the three-body prob-
lem in atomic physics was described. In the first approxima-
tion of this approach analytic expressions are obtained for
not only the wave functions but also the energy spectra of the
atoms.

If the wave function of the bound state of three charged
particles is represented as an expansion with respect to hy-
perspherical functions,

z\ Y (0) Dt (© ), (89)

Wix;, yi)= TSR VKM

Kyl

then for the hyperradial functions @ ' (p) a system of cou-
pled differential equations is obtained:

- 1
diy 1t (p) . (K 2)* =
D — et
= E T(K, K% 4y Ly DL gl "‘“ - (0).
K, (90)
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where I(K, K ';1,1,,17,/}) is an analytic function of its argu-
ments:

T, K L, b U, Ly =222 qbtlits (o)), (91)

mn

.'.'If,

(k) 1s given by Eq. {63).
We consider the problem of the helium atom and he-
liumlike jons. In the system (90) we equate all the orbital

angular momenta to zero and retain the first equation with
fixed K:

1
) (A 1 )) =y
d>qy 2 ? (
ot —[ ] Lpﬁ}* Or=7 1Ky ax (o)

(92)

Taking into account the asymptotic form of the solution of
this equation, we seek the general solution in the form

02 (0) = Ceo™ T oxp () U (), (93)
Substituting (93) in (92), we obtain for U (p) theequation
U (ry-FI12(K4-52) —r Uk (r)
—[(K 452+ - 1K) | U (1) =0, (94)
where r = 2k, p. The solution of this equation is a confluent
hypergeometric function of the form

K4S (F45), r]. 95

Now, using the standard method, we shall take as our start-
ing point the fact that the three-particle system is bound and
impose on the function (95) the condition that it become a
polynomial. We obtain a quantization condition for the en-

ergy:

Ug(r)- 4 }:—Df(f\'). 2

5 =
K A=+ (I (K)up)= — N, (96)
where N =0,1,2,... .

From (96) we obtain for the energy spectrum of the
helium atom and heliumlike ions

By = — | J (K) [22J (K)?, (97)

where J(K) =N + K + 5/2.

With allowance for (89), (93), and (95), and using the
connection between the confluent hypergeometric function
and the generalized Laguerre polynomials, we obtain the
following general analytic expression for the wave functions
of the helium atom and heliumlike ions:

ooty [ — E— 2L 1
IP‘(‘\‘ .“)=’(_-)Kll)‘}|: o ] [(J :,]\',173‘,'2)!]3:2

B

- J BR 4 . ey
CpRexp (— xpo) Li ki (Zxhe) Oy (8).

(98)

We now consider definite atoms.

For n-helium we have a completely symmetric state
and, therefore, grand orbital X = 0. From (98) for the wave
function of #-helium we obtain

(e ) — (Pdye LB
W (xy) = (Zug)? m{ TR
> exp ( —xl0) Lisgin (Zudp) O, (Q (99)
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where (/)= — 2mE?; and E, is the energy of the atom
corresponding to the level with quantum number J. The en-
ergy spectrum of n-helium is determined by

E=—( T [2/207), (100)

where J = 5/2,7/2,9/2,.....

For the ground state J = 5/2, and from the expressions
(63), (91), and (100) weobtain E /* = — 68.1eV, whichis
about 86% of the experimental value of this quantity. The
wave functions of the excited states of n-helium are obtained
from (99) for J=7/2, 9/2,... . Of course, they are all or-
thogonal to each other and to the ground-state function.
Further, from the expression (100) we obtain for the first
excited state of n-helium the value E /* = —34.7 eV, which is
about 60% of the experimental value. With increasing exci-
tation energy the contribution of the first equation to the
energy of the atom decreases, and this indicates that in these
spatial configurations of z-helium the electron states become
so inequivalent that the restriction to one equation of the
system (90) is a very rough approximation, and it is neces-
sary to take into account more terms in the expansion (89)
than in the case of the ground state. Such a result corre-
sponds completely to the picture in n-helium. The excita-
tions mentioned above are single-particle excitations, and
only one electron participates in them, while the other elec-
tron together with the nucleus of the atom forms a hydrogen-
like core.

In the case of O-helium the two electrons in the atom are
in an antisymmetric spatial state, since their spins are paral-
lel. Therefore, the grand orbital K = 01is forbidden for such
a state, and the grand orbital K = 2 must make the main
contribution. From (98) we obtain for the wave function of
0-helium

3 R 1,2
Wi (x. V) ;%(AJWH::—,—
g exp ( — ®in) L?;;;z (Znﬂp) @i, 192),

(101)

and the energy spectrum of 0-helium is determined by

ES (12 P2y, (102)

where J=09/2, 11/2, 13/2,... For the ground state
(J=9/2) we obtain from (102) the result —48.7 eV,
which is about 86% of the experimental value.

1t is interesting to note that in this scheme there is no
connection between the ground states of para- and orthohe-
lium, this being expressed by the fact that the function
I(K,K') vanishes identically for K =0 and K'=2. This
leads naturally to an explanation of the existence of two
forms of helium in nature. This fact, as is well known, is due
to the symmetry of the wave function, which in this scheme
is very different for K =0and K' = 2.

The energy spectrum of the levels of heliumlike ions
with two electrons, H , Li*, Be ™ , also consists of two-
systems of levels, one of which contains singlet levels (para-
ions) and the other triplet levels (ortho-ions). Therefore,
the states of the para-ions and ortho-ions can be described by
the functions (99) and (101), respectively, and the energy
spectrum can be calculated in accordance with (100) and
(102) with the only difference that these expressions contain
the values of ¥ and I(K) corresponding totheions H ,Li ",
Be ' *.One can easily show that here too the results repro-
duce the qualitative picture.
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Adiabatic approximation in the method of hyperspherical
functions

Recently use has often been made in the MHF of an
adiabatic approximation of Born—Oppenheimer type, which
was first applied in the helium problem in Ref. 59. Later, a
similar approximation was used for other atomic systems, in
particular for HH~ (Ref. 60), for (pe “e* ) (Ref. 61), and for
(ete e ) (Ref 62). The part played by correlations in
calculations of autoionization states of the helium atom was
investigated in the same approximation in Refs. 63 and 64.
An original variant of the adiabatic approximation was pro-
posed in Ref. 65. This approximation uses not an expansion
with respect to the hyperspherical functions (89) but an ex-
pansion of the three-nucleon wave function with respect to a
complete set of orthogonal basis functions B, (p,{2) that are
solutions of the equation

{_[LZ(Q)_Q___M]

x 02V (p, Q)} B, (p, )=, (p) By (p, @), (103)

where L() is the operator of the total orbital angular mo-
mentum in a space with dimension D (for three bodies,
D=6).

Equation (103) differs from the original three-particle
Schrodinger equation in hyperspherical coordinates in that
there is no operator term d°/dp* and the eigenvalue
K2 =2mE /# is replaced by the function w, { p), which de-
pends on p as a parameter. We expand the function B, ( p,(})
with respect to three-particle hyperspherical functions,

1.

.1 [
Bip. Q= > amn, @ @5 Q).
XU

(104)

We use the orthonormality of the basis functions B, and

(Dif“,, on the hypersphere, and from (104) we obtain for the
function ,y}’l 1 () the condition of orthonormality

1

N K S

l.\' iy
We substitute (104) in Eq. (103), multiply the resulting
expression by Cb’h'}_w and integrate on the hypersphere of

unit radius. As a result, we obtain the matrix equation

Ly (Lg—r) iR R
3 [_HT);_)_ BucicB, g8y 1o KLy |3 | K u,>]

KLy

. 1.1
Syl ) = (0) Ler !, () (105)

where the eigenvalues w;(p) and the eigenvectors
}(f,\i_ , (p) are parametric functions of the variable p.

The solutions of the system (105) for the functions
)(i; » ( p), make it possible by means of Eq. (103) to obtain
new basis functions B, (p,€1). Expanding the three-particle
wave function with respect to the new functions,

¥ (x, E):v-ﬁfﬂ;“_-zuw B, (p, ), (106)

and introducing this expansion in the original three-particle
Schrodinger equation for the hyperradial functions £, (),
we obtain a system of coupled equations. In the unbound
adiabatic approximation® we restrict ourselves to a single
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term in the expansion (106). In this approximation we ig-
nore the change of the new basis functions B, (p,0?) with p,
this being equivalent to separation of the composite motion
in the three-body system into hyperorbital and hyperradial
motion. In Ref. 65 the fairly high accuracy of such an ap-
proximation was demonstrated for the example of some po-
tentials with repulsion at short distances.

In Refs. 63, and 64 the part played by correlations in the
autoionization states of the helium atom was investigated by
means of the adiabatic procedure of Ref. 59, in which the
point of departure is an equation of the type (103), but the
determination of the wave function reduces to solution of the
system of equations

[(T;;)—_,#ﬁé-z_ Uyl QE) Oy
+(®,, My ) 7;:74.‘{‘1’;1' r

o0 i

a

=) | Fetoy=0.

(107)

The channel functions &, are eigenfunctions of the operator
A* — p¥(w) corresponding to the eigenvalues U, (p), which
depend parametrically on p. When the eigenfunctions are
found, the Sturm-Liouville problem is reduced to the solu-
tion of a system of homogeneous algebraic equations. For
this, one uses the eigenfunctions of the operator A% of the
total orbital angular momentum, which can be expressed in
terms of Jacobi polynomials and bipolar harmonics. The ex-
tent to which the radial correlations are taken into account
depends on the highest power of the Jacobi polynomials in-
cluded in the complete set.

The determination of the potentials U, (R) is based on
a procedure of extrapolation with respect to the dimension of
the subspace with /, =/, =0, on which the operator 12
— pV(w) is diagonalized. The calculations show that the
values of the potentials U, (p) obtained when the dimension
of the subspace is increased tend to their asymptotic values
but do not reach them. Knowing the potentials for several
values of the dimension of the subspace, one can extrapolate
their values to infinite dimension in accordance with the Pa-
dé formula
a; (p) = n2h; (p)

1-4+n02C; (p)

wherea,, b,, and ¢, are parameters that are to be determined.

The values obtained for the extrapolated potentials
have good asymptotic behavior. The values of the energy
obtained in the adiabatic approximation are given in Table
ITI. Also given there are the results obtained by the authors

() - Jim 087 () = lim (108)

e H—=20

of Refs. 59, 65, and 67 and the available experimental data. **
It can be seen from the table that the values of the energy
obtained in Refs. 63 and 64 (except for 2s”and 3s2) are in the
best agreement with experiment. This result shows that for
inequivalent electrons an important part is played by the
radial correlations, which to a certain degree are taken into
account in these studies. With regard to the 2s® and 3s’
states, it appears that the angular correlations, which were
not taken into account in these studies, are important for
them.

The problem of convergence in the method of hyperspherical
functions for Coulomb problems

The system of MHF hyperradial equations (57} is infi-
nite, and there is therefore a problem of convergence with
respect to the number of equations taken into account. In the
review of Ref. 69, devoted to the MHF in the microscopic
theory of bound states and scattering of many-particle sys-
tems, this problem is discussed for nuclear systems. The
problem of convergence in the MHF for Coulomb problems
has been discussed in many studies.”””* When the number of
necessary equations increases, the difficulties of numerical
solution of such a system of coupled equations also naturally
increase. To simplify the problem a variational approach to
the solution of the hyperradial equations is often used. The
realization of this approach involves the so-called physical
basis of hyperspherical functions constructed by Efros.” To
solve the system of hyperradial equations, one uses a method
of expansion with respect to a certain complete (on the inter-
val [0,00 ]) hyperradial basis {R, (p)}.

it ) = S €2 IR, (o),

“— “nHKL
"

(109)

where R, (p) are special hyperradial functions satisfying an
orthogonality condition.

By means of the expansion (109) the problem of the
bound state of a three-body system is reduced to the problem
of finding the eigenvalues and eigenvectors of a symmetric
matrix. The dimension of this matrix depends on the form
chosen for the basis hyperradial functions R ,(p). In Refs.
76 and 77 artificially chosen basis hyperradial functions
were proposed for the first time, the free parameter in them
being chosen to achieve the best convergence of the expan-
sion. This parameter, and also the form of the basis functions
do not depend on either the orbital angular momenta
(I,,1,,.L) or the grand orbital (K). For the Coulomb three-

TABLE I11. Energies of the autoionization state of the 'S helium atom converging on the

n =2 and n = 3 thresholds of the helium ion (He ' ), eV.

GSK method Configuration E )
& o o t
State Re &3 superposition Aperimen
and 64 f Ref. 59 f Ref. 66 |method(Ref.67)j (Ref 68)
g2 D834 57 44 BRI 5761 a7 B2
2sds G213 G410 6(2.64 (3. 01) 2,94
2sds 6417 64 .25 64.21 (4.20 64.18
2355 654.068 B4.71 64.70 — 64.67
2sbs 64.93 — 6494 — —
3s2 69.71 — G678 -
Jshs 71.34 — 71,30 —
3s5s 72.06 — — =
3sbs 72.38 — =
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body problem such a basis was used in Ref. 73. In Ref. 72 a
hyperradial basis of a different form, in which a dependence
on the grand orbital is present, was proposed, but in this
basis too the free parameter fiw is selected. Of course, the
successes of the MHF depend to a large degree on the choice
of an optimal hyperradial basis. In the Coulomb three-body
problem the most accurate values for the energy are obtained
by applying variational methods. In particular, if we use an
expansion with respect to exponential wave functions that
depend on the interparticle distances, then, taking into ac-
count the large number of terms, we can ensure record accu-
racy from the point of view of atomic spectroscopy. '* For the
problem of a two-electron atom such a wave function arises,
strictly speaking, only in the approximation in which the
repulsive interaction between the electrons is ignored. On
the other hand, it has frequently been emphasized™ that
allowance for the interaction between the electrons must sig-
nificantly change the analytic form of the wave functions of
three-particle atoms. This circumstance strengthens the in-
terest in approximate analytic solutions of the initial three-
particle equations.™

In Ref. 74 a method was developed for solving systems
of one-dimensional coupled differential equations using
power series. The possibility of using this method in few-
body theory with a hyperspherical basis was studied. The
helium atom and the ground states of the positron ion and
negative hydrogen were considered. Power series of the ar-
gument and its logarithm were used to solve the coupled
radial equations of the MHF even earlier in Ref. 81. In Ref.
74 it was shown that application of a power-law expansion in
the Coulomb three-body problem ensures convergence with
respect to the number of harmonics taken into account for
the wave function, 1/K 2,, and for the energy, 1/K ;,.

The method of hyperspherical functions in molecular physics
and chemistry

So far in this section we have considered problems of
atomic physics that can be successfully solved by means of
the MHF. This method is applied with no less success in
molecular physics and, particularly, in chemistry. A com-
paratively detailed bibliography can be found in Refs. 82 and
83. A triatomic molecule has been studied by the MHF using
two-body potentials of van der Waals type.** Molecular scat-
tering has also been considered with these potentials.® Dou-
ble excited states of molecular type were investigated by
means of hyperspherical coordinates in Ref. 86.

5.INVESTIGATION OF THE STRUCTURE OF MULTIQUARK
SYSTEMS USING THE METHOD OF HYPERSPHERICAL
FUNCTIONS

In this section we shall present the main results ob-
tained by using the MHF to investigate the structure of mui-
tiquark systems.

The structure of multiquark systems

In recent times the MHF has been used intensively in
the nonrelativistic model of quark systems. The method has
been used to make numerous calculations of the structure of
heavy baryons and other multiquark systems using various
potentials of the interquark interaction. The MHF was first
used in the physics of heavy baryons in Ref. 87, in which the
quark system CCC was considered, and the low-lying radial
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excitations of this system with spin and parity 3/2 © were
investigated. Baryons made from quarks with the same
masses were also investigated by the MHF in Ref. 88. In
Refs. 89 and 90 the same method was used to study baryons
formed from guarks with different masses. Recently, wide
use has been made of the Cornell potential,”" by means of
which quark systems were very intensively studied in the
framework of the MHF in the papers of Badalyan’s
group.”" The same method was used in the semiclassical
approximation in Ref. 94 to calculate the spectra of some 6g,
9¢, and 12g states. A logarithmic potential of the quark-
quark interaction was used in the MHF in Ref. 95. Earlier,
the method was used in Ref. 105 to study the properties of
heavy baryons.

In Ref. 96 the MHF was used to study the problem for a
system of three quarks. Analytic expressions for the effective
potential were obtained. It was shown that the contribution
of the spin—spin interaction is nonadditive, this leading to a
change of the width of the core and the depth of the well for
the effective potential. The states corresponding to a breath-
ing excitation mode were found by a second solution of the
eigenvalue problem in the three-quark system. The spectrum
of the 3g system, the rms radius, and the form factor of elas-
tic eV scattering were studied. We shall dwell on the results
of this paper in more detail.

In the nonrelativistic potential model®” '*® the Hamilto-
nian of the system of quarks, H=T + ¥V (where
T=2,(p}/2m,) + Z,m,), can be expressed, with the cen-
ter-of-mass motion separated, as follows:

T=£1TP2+—£F 2 ( :: — :f}_ ) mgm; - Me (110)
1<)

where P=3,p, and M =ZX,;m,. The potential energy
V=23, ;A A V(ry) of the system consists of a central term
V.(r) = Br' + C, which determines the confinement, and a
spin—spin term V, =o,;a,;6(r), or V, =0, 0;e FIN
which determines the N—A mass difference. In Refs. 91-99
study of the properties of three- and six-quark systems in the
framework of a nonrelativistic model with harmonic-oscilla-
tor functions led to the proposal of some forms of quark—
quark potentials:

Vi = (k) 17 (rip)

f@) = der¥2 — By 4 ¢ + K§ (1),

< {o;0)) g (ri)]s (111)
(112)

where

g{r-):%[fé(z') or g‘(r)féKE"'ff'\;

ashe

2 S Teghit
f) = —ar+20 ;

tim%e

gir)=— ok

V= (hihy) L—(Jr'ij+ —:;f—}—— ke (1 =+ —i— O’sﬁj} 5 (r!—;)] .

dm?
(113)

This model was successfully developed and made it possible
to obtain a number of important results both on the masses
and on the decay propertics of light baryonic systems. How-
ever, the use of harmonic-oscillator basis functions has the
consequence that to describe the masses of the #-quark sys-
tem and reproduce its size one must use different values of
the oscillator radius &, (&, = 0.4 and b, = 0.8, respective-
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ly). But the parameters of the employed quark—quark poten-
tial are very sensitive to the value of b,. We illustrate this fact
by the example of the parameter K, which determines the
N-A mass difference:
2
Vy (r)== 2, LA, K (1 T3 UiU;') 8 (rij)-
B

The mass difference AM =M, — M, = 293 MeV is deter-

mined as

(114)

(Wal Vi () [ W) — (WU |V, (0| Wy) =AM (115)

For the three-quark system the corresponding wave func-
tions have the symmetry

‘ys 1131 {312 < [3)s) 131 g5

Vg 2 1191 Bl 121y X [21))(:

[3374*

where for the spin functions y, we have

2= — _

[ &

then for the A particle the spin-isospin part of the wave func-
tion has the form [3],5 = 7,y,, and accordingly for the N
particle [3]yc = (1/v2)(T.x, + Tu¥,). The, mean value
over the functions y; and y, of ,-¢, for S=11is {y,|o,
‘o;ly)} =1, and for S=0 it is (y,|0o,oa|y,) = — 3.
Further, one can find the matrix elements of the spin-spin
interaction for the N and A particles:

<IP-N|E}'i;“jaioj[s(rij)lqu\f) )

ij

; 2 f :
=3 ( __3*) 5 AT+ ToXol 010, | T4,

\
+ TpXo) {058 (r) |0s) = 2F;
N |\‘ L h;6,0;0 (1) |Wa) = — 2V, ) (116)
where
v 1 ; ': f
V= (0s]6{r) |U0s) — EETEE \ o 20 (r)dr_:ij'L)n",F-

(117)

We now find the spin-spin matrix element for N and A parti-
cles,

]

(FnlVyl¥y) =K (=2 +

\-.L-' (84

=S EUNTAYN

K (=24 2 (—2))T, (118)

and the mass difference.

K 1

(Zﬂ):l‘iﬂ b!] 2

(119)

AM - (W4 |V Wy ~ (W [V [ W - —

161 Sov. J. Part. Nucl. 20 {2), March-Apr. 1989

Then the constant K is determined by

K= ﬁ% (2m)32H3A M. (120)
In the case, for example, when b, = b, = b, = 0.8 F, we
have K = — 886 MeV-F".

One can determine the oscillator parameters for the
wave functions of the NV and A systems by analyzing the re-
sults of the calculation in the method of hyperspherical func-
tions. In this case 6, =0.39 F and b, = 0.42 F, and this
leads to the value K= (2m)'?AM/(1/b} —5/b))

— 173 MeV-F*. Thus, the estimates show that the pa-
rameter K is strongly changed when allowance is made for
collective effects in the model of the three-quark system. It
should be noted that in Ref. 104, in which the structure of
baryons was investigated on the basis of the Faddeev equa-
tions, the need to take into account these effects was demon-
strated. In Ref. 96 a method that makes it possible to deter-
mine more accurately the parameters of the quark—quark
potentials in the nonrelativistic quark model was proposed.
In this case one uses the method of hyperspherical functions
in which the oscillators do not have a free parameter, the
radius, but there is a collective variable p, so that as a result
one obtains a self-adjusted quark system in which the param-
eters of the gg interaction determine the size of the system. In
this approach the spectrum of the 3¢ system, the size, and the
elastic-scattering form factor are studied in a unified man-
ner. We shall dwell in somewhat more detail on the method
of calculation.

In the MHF the wave function of the #n-quark system is
represented in the form of an expansion with respect to K-
harmonic polynomials:

w1, 2, ..., n):p_l_”“—.); Kaes () (K, (121)
where y = [ fle. LST and [y%, (p)dp = 1. The Hamilto-
nian has the form

H o = i (077 ) = Ao+ (o),

(122)

and the system of equations for finding the eigenfunctions
x(p) and the eigenvalues E is written as

= 7 u"h‘—ﬁf () Lry (0)- (123)
Koyt Ky

where L =K + (34 — 6)/2, and W’}\-']'.(p) is an effective
potential. The calculations are simplified appreciably if one
uses the two-particle coefficients of fractional parentage, by
means of which one can integrate over the coordinates of
n — 2 particles. In this case the effective potential H( p)
takes the form
WY ()~ (K [ 6 LST V| nK |fle LST)
e —1) —
-z 2
Kol talk ,LafaTaLoSoT g AL K

X (nK [fle LST|n—2|K,[f,]

£,.L,8,T,. A(L"R"y;

‘r"ﬂ‘S 10{"Dcr (2005070”’1 3‘«7'1'0[-g 7 Y Hﬁ I‘n(ﬂ) {124)
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where REX, (p) is the orbital part and
{€0eSoTo| Wior |€0cSoTy) 1s the color-spin—isospin part of
the matrix elements of the two-particle quark—quark inter-
action. Further, one obtains analytic expressions for the ef-
fective potential in the MHF for the three-quark system with
L = 0 (three particles in the s state) having symmetry [3],,
[31ss, [1]1%. For the Nisobar ST = 1/2 and 1/2, and for the
A isobar ST = 3/2 and 3/2.

In accordance with Eq. (124), the effective potential
for this case takes the form

1
Wi ==\ V(122 VZ(I—2)dz.

T
0

(125)

Making the simple integration over Z for the quark—quark
potentials (111) and (113), we obtain the expressions

rtw“ gL (‘ﬂ’r-z b'r T

K| 21yn?
p* e

WAp) [~ 040 ap | —a'p® I, {p¥a?)

where I, (p°/a*) is a modified Bessel function.

An important feature of the 5-function spin-spin inter-
action is that its contribution to the effective potential acts in
the complete region of the collective variable p.

In Ref. 96 calculations were made of the effective poten-
tial, the eigenvalues, eigenfunctions, densities, rms radii, and
form factor of elastic eV scattering for the investigated three-
quark system. The results of the calculations are given in
Tables IV and V and in Figs. 15-22.

In the MHEF calculations the constant C of the Harvey
potential®” (first row of Table IV) was renormalized in such
a way as to reproduce the nucleon mass, and the parameter K
of this quark—quark potential was changed in order to de-
scribe the mass difference (M, — M, = 293 MeV). Figure
15 shows the effective potential, the first two solutions in it,
and the corresponding wave functions for the three-quark
system without allowance for spin—spin splitting (K =0)
(see also Tables IV and V).

It can be seen that the calculation in the method of hy-
perspherical functions leads to a significant increase of the
constant C. In the three-quark system there appears a collec-
tive monopole level with energy ~ 1.8 GeV. In Figs. 16 and
17 and in Tables IV and V we show the results of calculation
for the N and A particles with inclusion of the d-function
spin—spin interaction. In contrast to the results of the calcu-
lation with harmonic-oscillator functions, in which the spin-
—pin interaction enters additively, the inclusion of the spin—
spin interaction in the MHF changes the width of the core
and the depth of the well (the width of the core is less and the
depth of the effective potential greater for the nucleon). Be-
cause of this, the energy of the monopole-excited state for the
N particle is less ( ~1.7 GeV) than for A (1.9 GeV), and the
radius for N (ry = 0.39 F) is less than for A (r, = 0.42 F).
In addition, the calculations show that there is a strong
change (by about 1.6 times) in the radius of the system in the
excited state: #% = 0.6 F and #% = 0.64 F for the N and A
particles, respectively. Calculations were made for the three-
quark system with allowance for a Gaussian spin—spin inter-
action (A = 0.2 F) (Figs. 18 and 19). This leads to a slight
renormalization of the constant C and to an increase, by 1.2
times, of the parameter K (namely, K = — 0.61 MeV-F'for
A=0and K= — 73 MeV F'for A = 0.2 F). Thus, the fol-
lowing effects are found when the three-quark problem is
solved in the MHF:

1. A renormalization of the parameters C and K from
the values proposed in the harmonic-oscillator model.

2. Nonadditivity of the contribution of the spin—spin
interaction, this leading to a change of the width and depth
of the level for the effective potential.

3. States corresponding to the breathing mode of excita-
tion were found by a second solution of the eigenvalue prob-
lem in the three-quark system.

Study of the 6g system in a minimal approximation of the
method of hyperspherical functions

In Ref. 111 calculations were made of the properties of
the 6g system in a minimal approximation of the method of

TABLE IV. Parameters of the quark-quark potential in the methed of hyperspherical

functions.
b=a,F| A4, MeV |B,MeV-F ?| C,MeV | K, MeV-F'| A.F Model
0.5 38100 2.0 —419.8 —4il.0 0 Harvey
0.4 A810.0 —12.5 —1715 0 ] Fig. 15
0.8 3810.0 2.5 10614 —1il 0 Fig. 16
0.8 3810.0 —12.5 —1614 -0l i Fig. 17
(1.8 3810.0 12.5 —1618 -7 2 Figz. 18
0% | 381000 495 1618 T 0.3 Fi 19
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TABLE V. Results of caleulations of the mass and rms radii for the three-quark systém.

M., MeV | M, MeV E,.MeV |E, MeV| #, F rn.F Model
1086 186 1] 1858 (.34 .60 Fig. 15
H40.5 — - 145 5 1681 h.59 .60 Fig. 16
— 1432 144 .1 1889 (r .42 U.64 Fig. 17
138 .4 — 1476 1673 .39 .60 Fig. 18
— 1228 .3 142,37 1864 0.42 0.63 Fig. 19

hyperspherical functions. The quark—quark potentials from
Ref. 96 were used with allowance for the spin—spin interac-
tion in Gaussian form. The mass and radius of the 6¢ system
were studied in a unified manner, together with the proper-
ties of the highly excited monopole states. In the minimal
approximation of the MHF the wave function of the six-
quark system has the characteristics

[ s (6], 127 [33lerle =08 =1 7 =4), (126)

Using the two-particle coefficients of fractional parentage,
we can express the matrix element of the effective potential
in terms of the two-particle matrix elements of the quark—
quark interaction in the form

Wio) — 0] 129 133 gp LST

010 Ty ] 151, 1270 33y LST

So=1 Sg

010y - ;—lr—' Wi olo)— % Wi 8- (127)

where W' ( p) is determined in accordance with (125).

Figure 20 shows the effective potential and the first two
solutions in it for the investigated six-quark system.

To reproduce the mass of the six-quark system, the con-
stant C was renormalized in Ref. 111 (C = — 1618 MeV for
the three-quark system and C = — 1994 MeV for the six-
quark system ). Here, as for the three-quark system, a mono-
pole-excited state appears at excitation energy 1.43 GeV. In
the calculation the effect of the expansion of the system with
increasing excitation energy is manifested. Thus, the rms
radius for the ground state is ryp = 0.38 F, and the rms
radius for the monopole-excited state is #%, = 0.52 F.

# vGer
k- ’
: HIJJ‘//\\\ : |
gl S >
|
bl -
Zﬂ \\ -
4
\/ £p

L 1 [} 1
a a.z2 0.4 GO.fF P F
FIG. 15. Effective potential W(p). the first two solutions £, and E| in it,
and the corresponding wave functions v, () and y, (p) for a three-quark

system without allowance for the spin-spin splitting (K = 0),
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Elastic Nscattering in the three-quark system

By means of the radial functions y, ( p) it is possible to
find the densities of the ground and excited states in the
three-quark system:

-8
g =N (L ned (128)
and the rms radius
J nyi (r)rtdr
rNH:W 1 (129)
where 1, (r), the density, is normalized by
4m 5 ni (M) r*dr = n. (130)

Figure 21 gives the results of a calculation of the nu-
cleon densities in the ground state and monopole-excited
state, and also the transition density. The calculation was
made using the wave functions for the systems shown in Fig.
18 with parameters of the quark—quark potential from Table
IV. Further, these densities were used to make nonrelativis-
tic calculations of the form factor of elastic eV scattering in
the three-quark system:

Fxg (g% —% \ ny; (r) elr dr. (131)

Figure 22 shows the nonrelativistic form factor (g”) (con-
tinuous curve). It can be seen that satisfactory agreement
with the phenomenological dipole form factor

Fa (@) = (1 + ¢8/0.71)2 (132)

is observed only for g <M 3. To describe the form factor of
elastic scattering of the nucléon at momentum transfers ¢°
Z M3 it is necessary to take into account relativistic ef-
feCtS 106 107

To this end the method of relativizing the form factors

!

2 ]
g 0z g4 06

PoF
FIG. 16. Effective potential and the first two solutions in it for a nucleon

with allowance for the spin-spin interaction in a 8-function form.
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FIG. 17. Effective potential and the first two solutions in it for the A isobar
with allowance for the spin-spin interaction in a §-function form.

proposed in Refs. 106 and 107 was used. Essentially, it takes
into account the effect of Lorentz transformation of the lon-
gitudinal distances on the transition from the Breit system to
the laboratory system. Then the relativistic form factor can
be determined fairly easily in terms of the nonrelativistic
form factor:

2y 1 i
FH (Q‘ )* (1 —f—ql,f/hlfi-a)""l FNR ( i—l— qg 4‘;”% ) ]

(133)

where # is the number of quarks in the system, and M , is the
effective parameter of the transformation, for which the fol-
lowing relation was proposed in Refs. 106-108:

411?4 = S (m“fr) = nmg.

i

(134)

Here, m, is the quark mass, which in the calculations was
chosen in the form m, = 1.086/3 = 0.362 GeV, from which
it follows that M % = 0.393 GeV~. We note that the relativis-
tic form factor for ¢>»> M7 satisfies the quark counting
rules'™:

A

q®

n-1
Fo(t— o) ~ (—2 ) Frp(42L,). (135)

An important point in the calculations is the fact that
allowance for the relativistic effects leads to an increase of
the rms radius of the n-quark system:

y 5 F(n—1)
"RTINR T T

(136)

It can be seen from Fig. 22 thatinclusion of the relativization
effect leads to good agreement with the dipole form factor.
Very important here is the fact that the description of
el scattering in the complete region of measured momen-
tum transfers ¢° <24 GeV? requires information about the
nonrelativistic form factor in the region of small momentum

Wy, GeV
~N G o N G

T T

|

|

|

|

|

|
o

2 1 | 1 { |
0 0.20.40608 p,F

FIG. 18. Effective potential and the first two solutions in it for the nucleon
with allowance for a Gaussian spin-spin interaction.
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FIG. 19. Effective potential and the first two solutions in it for the A isobar
with allowance for a Gaussian spin-spin interaction.

transfers g° < 1.6 GeV?, i.e., the contribution of the so-called
high-momentum component to the nonrelativistic wave
function is negligibly small.

As we noted above, relativization leads to an increase in
the size of the investigated system. Thus, for the nucleon
=0.66 F, and this agrees with the experimental nucleon
radius r,,, = 0.78 .

The effect of relativization is manifested more strongly
for the 6g system than for the three-quark system: r, = 0.72
F and r} = 0.80 F for the ground state and monopole-excit-
ed state, respectively.

In conclusion, we note the following results obtained in
Refs. 96, 111, and 115:

1. In the MHF with a quark-quark potential of
the type ¥V, =244, V,(r), where V,=(de "/
+Br 4+ C) + K(1+2/36,0;)e """ =V + VY,
which leads to an analytic effective potential W(p) of the 3¢
system, it is found that with the parameters given in Table IV
one can describe:

a) the N-A mass difference;

b) the rms radius of the nucleon;

c) the form factor of elastic eV scattering.

2. The excitation energies and densities have been found
for the ground state and monopole-excited states of the &N
particles.

3. It has been shown that inclusion of the spin—spin po-
tential V7 significantly changes the effective potential W(p)

(the core and depth), i.e,, V' occurs in ¥, nonadditively.

W, GeV

!
0.2 0.4 25  pF

FIG. 20. Effective potential and the first two solutions in it for the six-
quark system.
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FIG. 21. Density distributions for the nucleon in the ground state (contin-
uous curve) and the monopole-excited state (broken curve) and the tran-
sition density (chain curve).

Universal description of mesons and baryonsinthe ground
state in the potential model of Refs. 120 and 130

In Ref. 120 the ground-state masses of all mesons and
baryons were calculated using the Cornell potential in the
approximation ¥, = 1V .. The results of the calculation for
the meson and baryon masses are presented in Tables VI and
VII and are in satisfactory agreement with experiment.

The spectra of all baryons from the lightest to the heavy
baryons were studied in the nonrelativistic potential model.
It was shown that the ground states of baryons can be de-
scribed using a universal Coulomb potential in conjunction
with a linear potential of the quark—quark interaction. The
calculated baryon masses and the spin-spin splitting were
compared experiment. Table VIII gives the results of calcu-
lations of the spin—spin splitting of (udf) baryons in com-
parison with experimental data. In Ref, 114 a simple poten-
tial model was proposed for investigation of the properties of
baryons in the framework of the nonrelativistic quark model
using the technique of hyperspherical functions. The quark-
quark potential is expressed in the form

Vig= —Vo+ Ary;

&t T . f_ i, 4 ©;0;
+?wh,-0t.s{rij +c—.3~6(fij){mi +rn;—|—__T ——7 )}

i

(137>

The first two terms describe ordinary confinement. The
third term derives from QCD. The additional parameter C
was introduced into the term with the §-function interaction
in order to take into account approximately the terms absent
in the standard Fermi-Breit potential. In this sense, the in-

TABLE VI. Masses of 'S, and °S, mesons.
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w0

=707
-~

7073

1%

0 5 W g%Gev

FIG. 22. Form factor of nucleon elastic scattering. The continuous and
broken curves represent a nonrelativistic calculation, and the chain curve
gives the dipole form factor.

teraction used here is phenomenological. In Ref. 114 the
value o, = 0.4 is retained, and V),, 4, and C are regarded as
parameters.

The baryon wave function is expressed as follows:

¥ = (S Ug () Bx (@)} YerYe, (138)
K

where Uy () are hyperspherical functions. They are ex-

panded with respect to reduced Laguerre polynomials;

Ur (?) — E ai'\KLﬂ (E]i"} exp (—[)” 2) (139)

34
n

In this expression only the # = 0, K = 0 terms are retained;
S is regarded as a variational parameter. Writing
E=(V|H|V¥), we obtain, with the function ¥ given in
(138), (139),

E = p*h2/4m

— 3V, 4+ 424 (b2 4 12— 1/2)/f*— 32Bag { B c;;} /’45:1
+ (ase?/45m) {(m® + m3® + 4 (0,0,)/3mym.,)
+2(m® +mP b (o0 mmy) /(b2 |- 1332, (140)

In this case it is possible to reproduce the ground-state
masses of the baryons for the following values of the param-
eters of the potential: ¥, =132.02 MeV, 4 =40.96
MeV-F * and C = 3.4366, For the quark masses the values
m, =m,; = 336 MeV and m, = 565 MeV are adopted.

Table IX gives the results of the calculations of the
masses of the baryons in the ground state, and also the corre-
sponding experimental data. In (140),

State i s uc uh 53 5¢ e
MCS,), MeV:
: 758 | 887 | 1082 | s324 | 1022 | 2008 | st01
theory experument | -5 | wqo | 5006 | 3325 | 1020 | 2110 | 3007
M('S,), MeV:
theory 107 | 494 | 1832 | 5206 | 781 | w70 | 2077
P N 135 | 493 | 1865 | 5277 | 770 | 1970 | 2980
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TABLE VII. Masses of baryon ground states, GeV.

|
Baryon Theory Experiment | Baryon Theory Experiment
\
N 0.93% 0.939 Ef 2.566 —
A 1.24 1.232 o
A 1117 1,115 2 e =
2 1.200 1.163 — )
Tk }Jggg éggg Bk i 3.680 —
A 2.2 .282 i =
5 27435 2,450 2 ( 2) e 25748
= 2.4 — 3
Ay 5.505 5.50 Qe (5) 2.830 -
5, 5.80 == { _
xx 5.82 - Qce (?) 3.73 —
3 1.330 1.318 3
=s 1.528 1.533 Qe (—\ 3.80 —
Q 1.064 1.672 27
zA 2.462 2.460 Qece 4.793 e
B (140) monics in the coordinate representation was discussed in
Ref. 118. A unification of these two approaches appears very
(E mim;) 3 promising. '
N P - | 2 2. = i
m=22——; Cy =1; €4y = Cop = (b + 6% In Ref. 117 it was proposed that the Faddeev equations
S_‘, m; in the momentum representation should be solved by the
i=1

b2+ by = (my + my) (my + 2mg)/ (2my (2my + my)).

The baryon rms radius was calculated in accordance with
{(F|r2/6| W= 1T/

The proton rms radius was found to be 0.794 F, in good
agreement with experiment (0.8 F). Also calculated was the
baryon form factor {normalized to unity for angular-mo-
mentum transfer g = 0). The expression for the form factor
with the wave function is obtained as

3

Fpp=@& >
=1

wxexp (ig (r; — R) | W) 3 = (1 + ¢¥3p77=

Figure 23 shows the proton form factor, and also the
value of the experimental form factor. The two results agree
well.

6.HYBRID METHOD FOR INVESTIGATING FEW-PARTICLE
SYSTEMS

The MHF in the momentum representation'''® can be
used to solve the Faddeev integral equations.''” The connec-
tion between the Faddeev method and the method of K har-

TABLE VIII. Spin—spin splitting of (udf) baryons.

method of partial expansion, though not, as is usually done,
in a two-body Hilbert space but in a three-body Hilbert
space, in which three-particle hyperspherical functions in
the six-dimensional space of Jacobi momenta are introduced
in place of spherical functions in three-dimensional space.
The Faddeev functions and ¥ (K ,,p;), ¥'" (K,,,p,) and
P2 (K,,,p») are expanded with respect to basis hyperspheri-
cal eigenfunctions, and the three-body bound-state problem
is reduced to the solution of three infinite systems of one-
dimensional homogeneous integral equations. These equa-
tions contain three-particle matrix elements of the two-par-
ticle S matrix, for the determination of which an infinite
system of one-dimensional inhomogeneous integral equa-
tions is obtained. In such an approach to the solution of the
Faddeev equations essential use is made of a Raynal-Revai
unitary transformation. The method of “hybridization™ of
the Faddeev method and the method of hyperspherical func-
tions proposed in Ref. 117 was realized for specific problems
in Refs, 119 and 120. The corresponding questions were dis-
cussed in Refs. 69 and 121.

Bases of hyperspherical functions for the Faddeev wave
functions

We consider a bound state of three particles with masses
m,, My, and m,. As is well known, in the Faddeev method
the total wave function is represented as a sum of three
terms,

AESD, MeV
Particle species Baryon ES Mev
theory experiment
A—N 314 294 N —157
T2 83 78 A -153
OE 198 215 A —162
Fe—dg 177 168 Ap —174
ZE_3 198 215
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TABLE IX. Masses in baryon ground states, MeV.

Baryons N A (2 | (E) A (s ! (Z) Q- | (A
Theory 038 1149.8 | 1484 | 1344 | 1232 | 1379.4 | 1534 | 1667 | 1406
Experiment 939 1115.6 L 1193 | 1317 | 1232 | 1385 1530 i 1672 | 1405
W — gres 4 = G e ]
' =T (K, py) + VYO (Kyy, p) + VO (K, pa), WO (K, p)=_ 2 (PR‘ (") (I)J’HELHB}JL( Qi);
KUk yolpy

(141) (145)
where each term depends on its own set of Jacobi momenta.
In accordance with this, we introduce three bases of three- WO (k,, p,) — N (Pi\ a1y ) LDK u:z (@), (146)
particle hyperspherical functions in the momentum repre- o by, ¥

sentation,

fDKgﬁup (Q3), qJKl%:]n;l(QT)a (Dxnm (Q3), (142)

where K, K, and K; are the grand orbitals corresponding
to the three different bases of hyperspherical functions, and
Q7 are the hyperangles in the momentum space for the i-th
basis.

A connection between the functions (142) is estab-
lished by the Raynal-Revai unitary transformation. The for-
mula analogous to (3) corresponding to this transformation
is written as

i
fl)zé;‘fﬁk (Qk) = El ey, 1o 1 o Y iy o DK,LLM' ().
Kyi 0

(143)

The indices K, L of the Raynal-Revai coefficients indi-
cate that under the transformation (143) the grand orbital
K, and the total orbital angular momentum of the three-
particle system do not change.

We represent the Faddeev functions in (141) in the
form of expansions with respect to the corresponding basis
hyperspherical functions (142):

he k. In
Pro i (%) D iiar” (F);

¥ (K!21 ps) = E

1'(3![{12 P,

(144)

g%,GeV?

FIG. 23. Proton form factor (continuous curve); the points show the
experimental results.
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Using the expansions (144)—(146) we can readily find the
connection between the Faddeev functions on the basis of
the transformation (143). This fact plays a decisive part in
the hyperspherical approach to the solution of the Faddeev
equations.

Of course, using the direct connection between the dif-
ferent sets of Jacobi momenta, we can reduce the arguments
of each of the Faddeev functions in (141) to a single set
(standard approach). However, this introduces the angles
between the Jacobi momenta, and this greatly complicates
the calculation. The approach proposed in Ref. 117 makes it
possible to avoid these complications and reduce the prob-
lem to the solution of infinite systems of one-dimensional
integral equations for any form of the local two-particle po-
tentials.

Faddeev equations in a hyperspherical basis

The system of Faddeev equations for the individual
terms of Eq. (141) contains three coupled integral equa-
tions. These equations have the same form and can be ob-
tained from each other by cyclic permutation of the indices.
Therefore, one of the three equations can be considered in
the hyperspherical basis, and to obtain the other two the
indices in the final expression can be cyclically permuted.
We consider, for example, the equation

WO (Kyy. po) =Dy} (Kpy, by 2) [ | (Kool 7o (2) Ko

X YW (Kys, py) nggdp,+§ (K:psl T1a (Z) | Kyipa)

% WO (K, p,) dKs, dpg] : (147)

where the Green’s function in the hypermomenta can be rep-
resented in the form

Dy (Kyy, Py Z)= —

(148)

0

For a bound state we have here Z= — ¢, where
€ = #i'xy /2m is the binding energy of the three particles.

In (147) the integrand contains the matrix elements of
the two-particle S matrix, which are taken in the three-body
Hilbert space and depend on the three-particle energy Z. In
contrast to the standard approach, to calculate them we
shall not go over to the two-body Hilbert space (transition
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from the matrices T, to the matrices {,;) but will proceed
from the original equation

Tz (Z) = vys + 0120, () T1o (Z) (149)

and consider it in the basis of three-particle hyperspherical
functions. In this equation, v, is the potential of the two-
particle interaction, and ¢, (Z) is the same three-particle
Green’s function that is present in the Faddeev equation.

In the basis of hyperspherical functions in the momen-
tum representation the solution of Eq. (149) in matrix form
reduces to the solution of the infinite set of one-dimensional
inhomogeneous integral equations''™""’

+ .

le g sl
12 fpyi LTy 12 Py Py my .
TK3 ’ T (n, %', x.])ﬁVKq r (%, ®)

2
— B

1;1}’0. z;iz ;,,
g I '!l( T s
12 Py Kyp'Pyys K

(ZK Sl L)

pa— P i ’
x” dx Koipipg "Rt ,,
X S Hg_l_ung VK;]KlL (“: x )

b Lo T
Py Lnlp , w '
X TK_,;%?:‘;LS (‘M y Hy ‘KO):' (150)

where

L 1 1 ¢
Ve P = { 0 dpTxyra (ep)
0

g p ‘K !;J
b VK1121 PR () Trpae (%0);

(151)
12 Ipyi (mfi’ { gk Ip
VKa * ! (P) = S ';1[-21‘473 {Q‘p)
0
X v (p cos af) (IJK;’ b, (628) d25; (152)

Vi igl Ty Toom

tKulps: li{mt;) d K (lh lpl .

(EKI |I]\ I >K o (? ]E]\ l >h’
(153)

(I, tp, 12 1\23'5 1>K1L Uk ! 3”:{23 pl)K L

. e g 17
The matrices T 3" ™ (x.k"%,) are present in the

Faddeev equations expressed in the hyperspherical basis,
and therefore to calculate the binding energy and construct
the hyperradial functions in the momentum representation
by means of Eqs. (144)~(146) we must first solve the system
of equations (150). The equations for the hyperradial func-
tions are obtained after substitution of the expansions
(144)—(146) in the Faddeev equation and the completion of
the calculations that are usual for the scheme of the hyper-
spherical basis. As a result, we obtain for the functions
@ K L "(k), and @ & X "'"’(K) three infinite systems of coupled

one-dimensional mtegral equations. We write down one of
them!'71"%;
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(PK-;H pa( %)= — 02 (M2+Ho) 1
K1—-K
x[2 % 2 Z‘ P
RRLSTU R TKI;[JDH TKga'py

X (Uit Vi To 0 xn (o 1l Do e (s B, Vi oo

r ’ ey ’
s Ik, Ips Lk lp Ik A
12 73 12 3 P ’
<\ T #yr (%y %y %) g3 7 (o) %" d”
;

+2 2 2 X 2

Kyl 0 h 4t mve % dg 1
K plny Ugtny Ik, fn’; a1 Pz

 (Tic o, i, b b 1

X x lo i 5 Yxor ey oy |l Gl D 0

3

lolp:i I 12 p:] 31 [’3 '3
\Tk (%, %, xo)tpK (%) %3 dx’.

(154)

The other two equations are obtained by cyclic permu-
tation of the indices.

Thus, in the new approach of Refs. 117 and 119 to the
solution of the Faddeev equations the problem is not divided
into two stages as is usually done (the two-particle S matrix
t,, is found from the two-particle problem on the energy
shell, and then the analytically continued ¢, matrix is insert-
ed in the Faddeev equations). Here it is necessary to solve
simultaneously the systems of one-dimensional integral
equations (150) and (154) and the similar systems obtained
from them by cyclic permutation of the indices. It is here
particularly important that one-dimensional integral equa-
tions are obtained for any form of the potential without a
preliminary separable expansion of it.

The variety of orbital quantum numbers give a compli-
cated form to Egs. (150) and (154), but this is inherent in
the method of partial expansion for the Faddeev equa-
tions.'?* For a system of three bosons, when all the orbital
angular momenta are zero, these equations take a simple
form.

When allowance is made for the symmetrization of the
Faddeev wave functions, the expansions must be made with
respect to symmetrized basis hyperspherical functions. The
remaining calculations must be repeated.

Hybrid method of investigating three-particle reactions

The MHF can also be used to solve the problem of the
continuous spectrum using the Faddeev equations. This was
first done in Ref. 120. It is necessary to proceed from the
system of Faddeev integral equations for the continuous
spectrum,

Wi g0 (Kya, o) =8 (Ki; — K3,) 8 (o —p))

iy

+ D7 (K, py, Z) [\\ (Kop;| T2 (Z) | Kyp,)

x g% e (Kyi. p,) dK;, dp,

0
1{3[’

+ \ (Kybal Ty (Z) K b))

X Wi o (Ko, py) dKypdy |,

(155)
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and from the other two equations obtained by cyclic permu-
tation of the indices.

In (155), D5 ' is the Green’s function,

B . s
Dyy (Kyg, py, 2)= =g (P —wp —le);
P =K+l =K+l = KY5 4 pf* = 22 7,

(156)

where Z=FE > 0 1s the total energy of the three particles in
the center-of-mass system.
Using the integral representation of the function §(X ,,
K9,)8(ps—pi) and expanding the six-dimensional
plane wave with respect to hyperspherical functions, we can
readily obtain the representation

6 (Kyp — K3,) 8 (ps—13)

_blom s @it dpnint ©F),

] .
Kalge, byl

(157)

where 1} and £}%" are the sets of hyperangles in the six-di-
mensional spaces of the Jacobi momentum (K,,, p;) and
(KY,,pY ), respectively.

By analogy with the expansion (157), we represent the
Faddeev functions that occur in Eq. (155) in the form of the
expansions

(3}
Wi zpd( 12+ Pa)
Lo 0 1 Il
= D 4Kl (o, ) Ol (@) Dt (@), (158)
KKolg g,
(1)
q‘rhgﬂ,ﬂ( a3 Py
Iy oy (K adbs oy
= Dl ) Oy (@) O (©F). (159)
Ko Kol Iy,
2 K
WLI Y o (K31, 2s)
i
= 3 el () D Q) D (@),
KoK T, 0 Ip,
(160)

where ¢ are the hyperradial functions of the continuous
spectrum in the momentum representation. In Egs.
(158)—(160) the grand orbitals K, K,, and K, characterize
the system after the three-particle scattering, while the
grand orbitals K, K/, and K’ are for the same system
before such scattering. In the general case these grand orbi-
tals can be different.

When the MHF is used to solve the Faddeev integral
equations, three different sets of grand orbitals occur in the
expansions: (K, K/, (K,,K ), and (K;, K{'). When the
same method is applied to solution of Schrodinger equa-
tions, only one set occurs. Therefore, when the Faddeev
equations are solved it is in principle possible to describe all
possible scatterings in the three-body system, whereas when
Schrodinger equations are solved one can describe only truly
three-particle scattering.

In Eq. (155) the integrand contains matrix elements of
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the two-particle S matrix that are taken in the three-body
Hilbert space and depend on the same three-particle energy
Z = E. To calculate them, as in the case of the discrete spec-
trum, we do not go over to the two-body Hilbert space (stan-
dard approach) but proceed from the original equation for
the 7', (Z) matrix, writing it in matrix form and calculating
each matrix element in the resulting equation in the basis of
three-particle hyperspherical functions. As a result, the
problem of finding the two-particle § matrix is reduced to
the solution of a system of one-dimensional inhomogeneous
singular integral equations. ' Further, using the representa-
tion of the matrix elements of the two-particle S matrix in the
basis of three-particle hyperspherical functions and the ex-
pansions (158)—(160), we obtain from Eq. (155) a system
of coupled one-dimensional inhomogeneous singular inte-
gral equations for the hyperradial functions ¢J b M (K.Kp).
This hybrid method was used to study double charge
exchange of kaons on three-particle nuclei, ™ to investigate
the y + "Be—a + a + n reaction,'** and to study kaon pho-
toproduction on three-particle nuclei with complete break-
up.'** We describe briefly the results of these investigations.

Double charge exchange of kaons on three-particle nuclei

In Ref. 120 the hybrid method was used to investi-
gate the reactions K  +'H-K ‘' +Z +4+n+tn and
K~ +'He—~K " +Z + n + p. The problem of investigat-
ing nuclear systems in which E~ particles are present has
recently become topical. The problem is interesting from
two points of view. On the one hand, investigation of the
interaction of £~ with nucleons at low energies is needed to
extend our ideas about the SU(3) structure of the baryon—
baryon forces. On the other hand, it has been suggested that
if appropriate conditions are satisfied, the two-particle
= + psystemcould go over to asix-quark H dibaryon. The
main conclusions of Ref. 120 concerning the above-men-
tioned reactions are the following: a) the interaction be-
tween the baryons in the final state significantly influences
the basic characteristics of these reactions; b) the experi-
mental investigation of double charge exchange of kaons on
three-particle nuclei may lead to a solution of the problem of
the possibility of observing a six-quark H dibaryon; ¢) the
momentum spectrum of the X ' mesons from these reac-
tions s fairly sensitive to the interaction between the baryons
in the final state and can be used to investigate the =~ N
interaction.

Three-particle photodisintegration of the *Be nucleus

The process of three-particle photodisintegration of the
Be nucleus by low-energy  photons has frequently been
investigated both experimentally and theoretically. A few
years ago interest in this problem was reawakened.'”® The
reawakened interest is due to the fact that the ground state of
the “Be(3/2 ) nucleus in the three-particle cluster model is
a state in which two « particles and a neutron are bound
more weakly than the neutron and proton in the deuteron.
Under the influence of the low-energy 3 [1.57 MeV <E . <g,
where € is the threshold of the (y,p) and (3,2) photoreac-
tions on the a particles] the nucleus can break up only into
three composite particles. This is a typical three-particle
photonuclear reaction. It can be investigated in “pure”
form, and thus one can obtain more or less unambiguous
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information about not only the structure of the "Be nucleus
in the ground state but also the dynamics of the three-parti-
cle system ¢ + @ + # in the continuum.

Interest in this reaction increased appreciably after dis-
tinctive behavior of the curve of the cross section near the
threshold had been found in experiments. It was found that
the assumption hitherto made, that an excited state (1/2 * )
of the “He nucleus makes the main contribution to the final
state, does not correspond to reality, and to fit the theoretical
results to the experimental data it was necessary to assume
the existence of a large contribution of the nonresonance
reaction mechanism.'?® However, the procedure used in Ref.
126 to separate the transition amplitude into resonance and
nonresonance parts and the use of ““bare” model wave func-
tions of the nuclear systems in their turn contain rather a lot
of artificial devices and model assumptions. At the same
time, one can develop a unified medel-independent ap-
proach to the investigation of processes like three-particle
breakup, in which one can, using the same realistic two-par-
ticle potentials in the same formalism, describe both the
structure of the ground state of the initial nucleus and the
dynamics of the three-body final state.'*

In Ref. 123 the basic conclusion was obtained that the
distinctive behavior of the cross section of three-particle
photodisintegration of the “Be nucleus near the threshold
can be described without the introduction of adjustable pa-
rameters and the artificial addition of the wave function of
the resonant final state. This behavior is determined by the
wave function of the final state, which is obtained by solving
the Faddeev equations with allowance for all the interac-
tions between the particles. Figure 24 demonstrates the de-
gree of convergence with respect to the number of harmonics
of the final state that are taken into account. The figure gives
the results of calculations of the total cross section of the
¥ 4+ "Be—a + @ + n reaction for the set of potentials of the
aa and aN interactions from Refs. 127 and 128, the results
being obtained with allowance for the interaction in the final
state between the three particles. The harmonics K, = 1,3, 5
were taken into account in the calculations to obtain the
wave function of the initial state, and the final-state wave
function was taken in the approximation of the minimal har-
monic K, =0 (continuous curve) and with allowance for
the first two harmonics: K, = 0, 2 (broken curve). It can be
seen that the addition of the second harmonic in the calcula-
tions of the final-state wave function changes the results for
the reaction cross section only slightly.

2 —
(']
§ s / N
3 / N
SR/
W J

a5
1 L ' 1 1
a g 70 75

Ey'f,kev

FIG. 24. Results of calculations of the total cross section of the reaction
3 + "Be—a + a + n. The continuous curve is calculated with allowance
for the minimal harmonic (K, = 0), and the broken curve with allowance
simultancously for the first two harmonics (K, =0,2).
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FIG. 25. Curves of the total cross section of the ¥ + "Be—a + a + nreac-
tion. The continuous curve is the calculation with allowance for the poten-
tials from Refs. 127 and 128, the broken curve is the result of the plane-
wave approximation (interaction potentials from Refs. 127 and 128), and
the chain curve is with allowance for the interaction between all the parti-
cles in the final state (potentials from Refs. 129 and 130); the experimen-
tal points are as follows: {) from Ref. 131, \7 from Ref. 132, and O and O
from Ref. 133.

The effect of the final-state interaction and a compari-
son with experiment are shown in Fig. 25, which gives the
curves of the total cross section of the ¥ + "Be—a +a +n
reaction. It can be seen from the figure that the results for the
different sets of two-particle potentials differ appreciably,
and this offers hope that further work to determine the ex-
perimental data more accurately may make it possible to
obtain unambiguous conclusions about these potentials. At
the present time, as can be seen from Fig. 25, the experimen-
tal data differ strongly and are not supported by the neces-
sary statistics. Thus, we have here an interesting experimen-
tal problem.

Photoproduction of kaons on three-particle nuclei

In Ref. 124 the hybrid method was used to investigate
the (3,K ™) reaction on three-particle nuclei. Such a reaction
is interesting from the point of view of the development of
hypernuclear physics. The point is that in hypernuclear
physics the main reaction used is (K ,7  ),which results in
the production of the hypernucleus. However, the intensity
of present-day K ~ beams is very low, and this hinders the
further development of hypernuclear physics in this direc-
tion. On the other hand, there is a possibility of investigating
hypernuclei by means of other processes induced by other
elementary particles for which the beam intensity greatly
exceeds the K — beam intensities. In particular, photopro-
duction of K * mesons on nuclei with the production of hy-
pernuclei has recently become topical. In Ref. 124 the fol-
lowing basic conclusions were drawn about the (y.K ')
reaction on three-particle nuclei: 1) the hybrid method can
be successfully used to investigate the structure of the nuclei
and hypernuclei, and also photoproduction of K © mesons
on three-particle nuclei, and good convergence with respect
to the number of harmonics taken into account is ensured for
both the binding energy and the reaction cross sections; 2)
the effect of the interaction in the final state between the
baryons is significant for the processes of K * photoproduc-
tion; 3) the influence of the nuclear medium on the photo-
production processes is basically quantitative in nature; 4)
in the case of photoproduction of K © mesons on three-parti-
cle nuclei it 1s much more advantageous for the produced 4
particle to remain in an unbound state with the baryons. The
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channel with production of the hypernucleus } Hin the final
state is strongly suppressed.

CONCLUSIONS

The present paper, being too short, cannot pretend to
give a complete account of the new tendencies in the devel-
opment and application of the method of hyperspherical
functions. Here we have considered only some aspects of the
question, in the selection of which, naturally, the interests of
the authors themselves were decisive. Of course, the litera-
ture that we have quoted also cannot pretend to complete-
ness. Some new studies on the further development of the
mathematical formalism of the method and its application in
the physics of quarks, in nuclear physics, in atomic physics,
in molecular physics, and in chemistry have not been consid-
ered. The number of such studies giving results of great in-
terest is increasing rather rapidly, and it may become neces-
sary to write reviews on the application of the method
separately in quark physics, atomic physics, etc.

The last decade in this field has been characterized by
the transition from calculations of the binding energy to
studies of the continuous spectra of many-particle systems
and of a diversity of processes using the method of hyper-
spherical functions. However, the method has largely been
used to solve the many-particle Schrédinger equation, and
this has undoubtedly restricted the class of continuum prob-
lems. On the transition to solution of the Faddeev equations
this class will naturally be extended.
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