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The review considers the testing of some exotic hypotheses about the properties of the nucleon in a
nuclear medium in phenomena of traditional nuclear physics. The hypothesis of nucleon swelling
proposed to explain the EMC effects is considered in detail. The consequences of this hypothesis
for the charge densities and cross sections for scaltering of fast electrons and protons by nuclei are
analyzed. Also considered are the Nolen—Schiffer anomaly, the Coulomb sum rule for inelastic
electron scattering, y scaling, and some other nuclear processes. It is shown that one can estimate
the possible scale of nuclear exotics by analyzin g many of these phenomena. Thus, examination of
high-precision data on the elastic scattering of electrons with energy 500-700 MeV using density
distributions calculated on the basis of the self-consistent theory of finite Fermi systems yields a
restriction on the amount of nucleon swelling: & = 8r,, / *n 5 10%. A similar analysis for protons
with energy 0.8-1.0 GeV using Glauber theory gives @ < 6%. An even more stringent restriction,

a % 3%, follows from data on p scaling in *“Fe.

INTRODUCTION

At the present time it is widely accepted that the quan-
tum chromodynamies of quarks and gluons is the exact theo-
ry of the strong interactions. In this sense, the quark and
gluon degrees of freedom determine the structure of nuclei.
However, in practice one can describe in the framework of
QCD consistently only hard processes associated with the
interaction of particles at short relative distances r< 1/M,
where M is the characteristic hadronic mass. The descrip-
tion of phenomena at larger distances is intimately related to
the unresolved problem of confinement and comes up
against as yet insuperable technical difficulties. In particu-
lar, the problem of describing the properties of the nucleon
in terms of quarks and gluons in the framework of QCD is
still unsolved. In the light of this one cannot in the foresee-
able future hope for the construction of a theory of the nu-
cleus on the basis of the first principles of QCD. For this
reason, it appears more promising for the description of nu-
clei to use simpler approximate approaches motivated by
QCD in conjunction with microscopic theories of traditional
type that operate with nucleon and meson degrees of free-
dom.

Extremely important for modern nuclear theory is the
question of how well these degrees of freedom are chosen. To
what extent are we justified in describing nuclei in terms of
nucleons, mesons, and A isobars? Should the wave function
of a nucleus contain multiquark configurations (6g, 9¢, etc.)
with an appreciable weight? To what extent do the proper-
ties of nucleons in a nucleus differ from those of free nu-
cleons?

The answers to these questions are severely restricted
by the impaossibility of finding exact solutions of many-body
problems. Such solutions exist only in the case of the lightest
nuclei. For medium and heavy nuclei the greatest success is
achieved by microscopic approaches with phenomenologi-
cal interactions. These include the Hartree—Fock method
with effective forces and the self-consistent theory of finite
Fermi systems, which here we shall also call the quasiparti-
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cle Lagrangian method. In these approaches one introduces,
in place of nucleons, quasiparticles corresponding to excita-
tions of the system near the Fermi surface. The interaction
between the quasiparticles has a short range and is charac-
terized by a few experimentally determined parameters.

There are many nuclear processes in which the nuclear
structure is represented basically by a single-particle density
distribution. In these cases the quasiparticle description
makes it possible to draw conclusions about the properties of
the particles themselves—the nucleons. This possibility is
based on the well-known theorems of Hohenberg and Kohn'
and Kohn and Sham” on the equality of the densities of the
particles and quasiparticles. These theorems are derived in
the framework of many-body theory and have a general na-
ture.

If we now turn to the quark and gluon degrees of free-
dom in nuclei, one would expect a direct and explicit mani-
festation of them under certain special conditions, for exam-
ple, hard interactions at high energies. There has been
considerable interest in recent years in searching for “‘nu-
clear exotics™ in such processes. A well-known example of
this kind is the EMC effect discovered in 1983.% It consists of
a pronounced difference between the structure functions of a
free nucleon and a nucleon bound in a nucleus.

This effect generated numerous explanations, the ma-
Jority of which appeal to nuclear exotics. Thus, it was sug-
gested that there is an appreciable admixture of multiquark
configurations, that the nucleon swells in the nuclear medi-
um, and so forth. This hypothesis* arose naturally as a quali-
tative explanation of the softening observed in the EMC ef-
fect of the momentum distribution of the quarks within the
nucleons of a nucleus. The swelling of the nucleon, i.e., the
increase in the confinement radius that determines the re-
gion in which the quarks move, can be related to the proba-
bility of overlapping of the wave functions of the nucleons at
short distances,* However, other mechanisms of the swelling
effect are also possible.”

In what follows we shall see that there exists a possibil-
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ity of testing exotic models and hypotheses in low-energy
nuclear physics by using high-precision experimental data
and modern methods of nuclear theory.

The authors of Refs. 6-8 were apparently the first to
recognize the importance of testing exotic models of the nu-
cleon in different low-energy nuclear processes. Unfortu-
nately, in many cases they used the results of somewhat im-
perfect nuclear-structure calculations. As will be shown
below, this led to results in conflict with those that follow
from a more accurate analysis.

In this review we shall consider various phenomena in
traditional nuclear physics in which the effect of swelling of
the nucleon in the nucleus could be manifested. These in-
clude the longitudinal and transverse response functions in
inclusive quasielastic electron—nucleus scattering (e, ¢'); y
scaling in the (e, ') reaction at high energies; details of the
charge densities of nuclei (?°*Pb, *°*Pb—"""T1 density differ-
ence); elastic scattering of electrons and protons of interme-
diate energies by nuclei; the total cross sections for interac-
tion of high-energy hadrons with nuclei; and the Nolen-
Schiffer anomaly in the mass difference of mirror nuclei. We
shall show that the elastic scattering of electrons and protons
by nuclei is a very sensitive and effective means of studying
the swelling effect. It enables one to establish fairly stringent
upper bounds on the possible increase in the radius of the
nucleon in nuclear matter.

1.INCLUSIVE (e, ) SCATTERING
Response functions

The study of the response functions of nuclei in inclu-
sive inelastic scattering of electrons has a long history.” It is
well known that the inelastic scattering of unpolarized elec-
trons by nuclei is characterized by two independent response
structure functions, longitudinal R, (|q|, @) and transverse
R (|q|, @) (qis the momentum transfer to the nucleus, and
@ is the energy transfer). The doubly differential cross sec-
tion d 20/d(),dE- can be expressed in terms of R, and R as
follows:

d2a
a2, dF,
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a = 1/137, © is the scattering angle, and E, and E, are the
initial and final energies of the electrons.

The functions R; and R can be expressed in terms of
the imaginary parts of the scalar (spin §=0) and spin
(§=1) components of the photon polarization operator
[17(ry, 1y w):

Ry, r({lal, v)
S { dory direians=rall, | (ry, 1y ). (2)

The polarization operator is determined by the sum of the
two diagrams shown in Fig. 1, in which the first diagram
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FIG. 1. Diagrams whose imaginary parts determine the response func-
tion.

describes the response of a system of noninteracting parti-

cles, while the second takes into account the nucleon correla-

tions (T, is the total two-proton interaction amplitude).
Besides the response functions one studies the integrals

Sy r(al) =\ doR, ¢ (lal. @), (3)

0

Theintegral S| is particularly interesting, since for it there is
an exact asymptotic Coulomb sum rule:

Sy (l9l) 52 Z CR (la))e (4)

Here, Z is the charge of the nucleus, and G%(|q|) is the
electric form factor of the proton, including the relativistic
Darwin—Foldy correction:

GE (Ja) = GE (y/(V 1+ [q[24m?), (5)

where G'#.(g) is the intrinsic proton form factor, and m is the
proton mass.

An expression identical to the right-hand side of (4)
arises from the imaginary part of the diagram in Fig. la un-
der the condition |q| > 2pg (py is the Fermi momentum).
The correlation contribution, shown by the diagram in Fig.
1b, must decrease as |q| — oo much faster than the right-
hand side of (4).'¢

Experimental data in which the longitudinal and trans-
verse responses are separated exist only for a few nuclei at
|| 500-600 MeV/c.” The asymptotic sum rule (4) ex-
ceeds the corresponding experimental values by about 20—
40%. It is known that the contribution, ignored here, of the
exchange currents to S, is appreciably less than this value.

In Refs. 6, 11, and 12 it was proposed that the resulting
discrepancy should be interpreted as evidence of a modifica-
tion of the proton form factor in a medium. The part played
by correlations was not analyzed. To describe the data, an
increase of the proton radius by about 20-30% in '*C was
required.

In Ref. 7 a modified nucleon form factor was calculated
in the framework of one of the variants of the soliton model.
In this model, the quarks in a nucleon are confined by a
certain nonlinear scalar field y. The influence of other nu-
cleons on the quark wave function was taken into account in
the approximation of the Hartree average field formed by the
scalar meson ¢ (attraction) and vector meson @ (repul-
sion). The scalar field decreases the mass of a quark, and this
leads to an increase of its kinetic energy. This is associated
with an increase of the internal pressure within the soliton
and an increase of its radius. This radius depends on the
density p(r) of the nuclear matter.

In Ref. 6 the functions R; and R were calculated for
the nuclei '*C, **Ca, and 3°Fe, for which, in accordance with
the conditions of the experiment of Ref. 9, |q| =400-600
MeV/c. The diagram of Fig. 1a was calculated in the Fermi-
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FIG. 2. Dependence of the longitudinal response function R, (g.0) for
the *C(e.e’) reaction on the energy transfer w. The broken curve repre-
sents the calculation with the free nucleon form factor, and the continuous
curve is for the calculation with the medium-modified form factor.”

gas model and in a relativistic single-particle model. The
relativistic wave functions were plane waves for the contin-
uum states and solutions of the Dirac equation in the poten-
tial field for the bound states. It was found that when the free
nucleon form factor is used in the longitudinal response
function R, there is asignificant excess over the experiment,
on the average by a factor 2 (Fig. 2). In the transverse re-
sponse function R, a reasonable description of the data up to
the quasielastic maximum is observed (Fig. 3).

If a nucleon form factor modified by the nuclear medi-
um is used, © there is a significant suppression of the func-
tions R, and R,. It markedly improves the agreement with
the data in the longitudinal response, but at the same time
makes it worse in the transverse response. This is a direct
consequence of the more rapid decrease of the proton form
factor with increasing ¢° in the case of an increase of the
proton radius. It can be seen that the situation is rather un-
certain, but nevertheless it was concluded in Ref. 6 that an
effect of swelling of the nucleon in nuclei had been found
from data on the (e, ¢') reaction.

In Ref. 13 a more detailed analysis of the longitudinal
response in '*C, *’Ca, and *°Fe was made with allowance for
the nucleon correlations in the random-phase approxima-
tion (RPA). The effect of the finiteness of the nucleus was
taken into account in the approximation of a local density. In
this case the expression (2) takes the form

20 (e.e”)
g=550MeV/e

by
T

Rry 107 MeV 1

g 705 200 @, MeV

FIG. 3. The same as in Fig. 2 for the transverse response function.
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where pr. (R) is the local Fermi momentum. In the frame-

work of the RPS for nuclei with N = Z the function R, (g.o)
has the form "

Ry
g 1
RL (q. (!)) = —4Im \ Rz 4RI [W
1
_]_ 1—F- (g, w) ﬂ":ll ! (8)

where IT = I1°[ g, px (R), @] is the polarization operator of
the noninteracting Fermi gas, R, is the classical turning
point, and F * = F ™ 4 F " are the amplitudes of the effec-
tive interaction of the nucleons in the particle~hole channel.
The dependence of F* (g,») on @ was not taken into ac-
count, while the dependence on ¢ was taken in the form

2p2

L S (Qg)mfi(ﬁ); (9)
R Tl (10)

where m*(R) is the coordinate-dependent effective mass of
the nucleon, and i, and p . are parameters chosen for each
nucleus separately (u, ~400-500 MeV/c, P=2-3,
p_=1). 13

The function £ (R) was found from the well-known
relation of Ref. 14, which connects this quantity to the com-
pressibility modulus K of nuclear matter with allowance for
the density dependence of the amplitude. To find S (R), the
connection between this quantity and the symmetry-energy
coefficient'* was used.

The calculations made in the framework of this scheme
lead to a comparatively small contribution of the correla-
tions on the scale of 10% (Fig. 4). Therefore, to achieve
agreement with experiment it was necessary to increase the
proton charge radius by 13% in '>C, 23% in *’Ca, and 21%
in *°Fe (Ref. 13). These numbers were chosen to give the
best agreement with the Coulomb sum rule (Fig. 5).

It should be noted that the choice of the ¢° dependence
of the amplitude F * in the form (10) is very different from
the form of this dependence in the quasiparticle Lagrangian
method'” and in the Hartree-Fock method with Skyrme
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FIG. 4. The effect of correlations in the longitudinal response function for
the (e,e’) reaction on *"Fe (Ref. 13). The continuous and broken curves
are with and without allowance for the correlations, respectively.
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FIG. 5. The longitudinal response function, integrated over the energy,
compared with the Coulomb sum rule."

forces.'® In these approaches F*(g’) has the form
F*(g*) =a + bg". The coeflicient b is uniquely related to
the surface energy of the nucleus.'® Since 5> 0, F* (¢*) de-
creases rapidly with increasing ¢ In contrast to this,
F *(g%) inthe form (9) decreases rapidly, and thisleads toa
lowering of the correlation contribution at large g*. There is
also some danger if one uses the approximation of a local
density in the case of light and medium nuclei.

A more realistic calculation of the longitudinal re-
sponse function R in '2C using the wave functions of finite
nuclei was made in the first of the studies of Ref. 17. As an
effective nucleon interaction the G matrix constructed for
one of the variants of the Bonn NN potential was used. Be-
sides the ordinary 1p-1h configurations included in the
RPA, states of type 2p—24 were included. The analysis made
showed that the employed basis is fairly complete for the
description of the nuclear response at momentum transfers
g S 300 MeV/c. In this region it was possible to obtain very
good agreement with the sum rule using the free proton form
factor. At larger g the theoretical sum-rule value remains
appreciably greater than the experimental value. In the opin-
ion of the authors, this result is due to insufficient complete-
ness of the employed basis.

There have recently appeared several studies in which
the influence of short-range correlations in nuclear matter
on the Coulomb sum rule has been investigated.'” It has been
shown that when a realistic nucleon—nucleon interaction is
used one can almost completely reproduce the experimental-
ly observed suppression of the sum rule. We note also the last
of the studies of Ref. 7, in which the relativistic response
function was calculated in the framework of Walecka’s mod-
el. A degree of suppression close to that of experiment
(somewhat greater than in 12C, and somewhat less than in
#Ca) was also obtained.

It should be noted that there also exists purely experi-
mental evidence against the introduction of a modified pro-
ton form factor to describe the Coulomb sum rule. If a
change of the proton radius were responsible for the discrep-
ancy with this sum rule, then in accordance with (4) the
values of S; (g) for nuclei with the same Z should be very
nearly equal. But the experiment of Ref. 9, made on the *Ca
and “°Ca isotopes, gave S| (*Ca)/S (*’Ca) = 1.20 £ 0.04
at g~ 500 MeV/c. The deviation of this ratio from unity is
rather close to the value of the discrepancy between the theo-
ry and experiment in the case of one nucleus (see Fig. 5).

We note also that for the lightest nuclei *He and “He
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there exist rigorous relations that connect 5; (g) to the elas-
tic form factor of the nucleus.'® In the case of *He compari-
son with experiment shows that the corresponding relation
is satisfied to within the experimental errors (~3%) when
the free nucleon form factors are used.

Evidence against nucleon swelling also comes from the
situation that has developed in the description of the trans-
verse response function Ry. Good agreement with experi-
ment for R, is achieved if the free nucleon form factor is
used.® But the use of the form factor corresponding to an
enlarged radius necessarily leads to a worsening of the de-
scription.

Overall, it can be said that analysis of nuclear response
functions in quasielastic electron scattering does not provide
sufficiently weighty evidence for a modification of the pro-
ton form factor in the nuclear medium. The problem of more
correct allowance for the correlations still awaits its solu-
tion. The present level of nuclear theory makes it possible to
carry out the corresponding calculations, though technical-
ly they are rather complicated.

yscaling

We have seen that in the description of the nuclear re-
sponse functions in (e, ¢') scattering at g < 600 MeV /¢ and
@ <200 MeV there is a difficulty associated with the calcula-
tion of the correlation corrections. However, this difficulty
can be avoided by going over to consideration of the (e, ')
reaction at much larger ¢ and . In this region of the kine-
matic variables the cross section has an interesting property
known as y scaling. It was predicted theoretically'” and con-
firmed experimentally.”® The variable y arises naturally
from the energy conservation law at large @ and g when
correlations and exchange currents are ignored. It has the
significance of the longitudinal (along q) component of the
momentum of a nucleon in anucleus, y = k, = mo/g —¢/2
(the initial energy of the target nucleon and the transverse
component of its momentum are negligibly small in the giv-
en case). The property of y scaling takes the form that the
cross section of inclusive (e, ¢') scattering, divided by the
elementary cross section of the eN interaction and the
known function dy/dw, depends solely on y = y(gq,@), but
not on ¢ and w separately:

d " d
5 (4. @)/0ey (q) 4 = F (y). (1)

The function F(y) is the probability of finding a nucleon
with momentum y = k. The point y =0 corresponds to
elastic scattering on a nucleon at rest, and the region y <0
corresponds to the low-energy wing of the quasielastic peak.
The features of the scaling behavior make it possible to study
both the reaction mechanism and the properties of the nu-
cleon on which the scattering occurs (its form factor and
mass). Thus, if a bound nucleon is increased in size, this
leads to a change of the cross section o,y (¢) and, therefore,
to a g-dependent change of F(y). This signifies a breakdown
of y scaling. Tt will be particularly pronounced if for fixed y
the data cover a wide range in g.

Figure 6 shows the realization of the scaling depen-
dence for °Fe according to SLAC data (E, =2-36 GeV,
g =3-12 F ') in the case when the free cross section o,
was used in (11).%! The experimental points, taken for dif-
ferent & and g but for the same y, fit on the single line F(y)
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FIG. 6. Scaling function F(y) for the **Fe(e,¢’) reaction in the case of free
nucleon form factors.'

(realization of y scaling). If the radius of the bound nucleon
is increased, the quality of the y scaling becomes worse. This
can be seen in Fig. 7, which gives the dependence of Y
(which characterizes the degree of smearing of the line) on
the relative increase of the nucleon radius.?' Besides a
change of the radius, a change of the nucleon mass in accor-
dance with the relation Am/m = — Ar/r, which holds in
the bag model, was introduced. It can be seen that the mini-
mum of ¥ is attained at values of the radius close to the free-
nucleon radius. With allowance for possible uncertainties, it
was concluded®' that Ar/r 5 39%, i.c., significant swelling of
the nucleon in the nucleus is ruled out.

2.MANIFESTATION OF A POSSIBLE EFFECT OF NUCLEON
SWELLING IN THE SINGLE-PARTICLE NUCLEAR DENSITIES
AND THEIR DESCRIPTION IN THE QUASIPARTICLE
LAGRANGIAN METHOD

In this section we discuss the studies of Refs. 7 and 8, in
which an investigation was made of the manifestation of the
proton swelling effect in the charge density of 2*Pb and the
*°°Pb—"°*T1 density difference. The problem of calculating
the single-particle nucleon densities in self-consistent ap-
proaches of nuclear theory will be considered in detail. We
briefly describe a method for calculating these densities in
the quasiparticle Lagrangian method. We give the results of
calculations of the charge densities of various nuclei on the
basis of this method. It will be shown that they agree well
with experiment without the introduction of any nucleon
swelling.
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»ﬁﬂaf— |

1

; !

30001 j
i

2‘:‘7[717L L -

-5 -2 z2 5 e

FIG. 7. Dependence of y*, which characterizes the accuracy of scaling, on
the nucleon swelling parameter.*!

127 Sov. J. Part. Nucl. 20 {2), March-Apr. 1989

e ———
. \ 208, |
© 0.066 \\

FIG. 8. Charge density p, () in the central region of *""Pb, calculated in
the relativistic mean-field theory with the free proton form factor (chain
curve) and the form factor modified by the nuclear medium (broken
curve)'”; The continuous curve is the model-independent density g, (r).

Influence of proton swelling on the 208pPh charge density and
the 206pb-205T| density difference

In Ref. 7 these densities were calculated by convolving
the theoretical distribution densities of point protons with
the proton charge form factor modified by the nuclear medi-
um. The results of Hartree-Fock theory with effective den-
sity-dependent forces®® and of relativistic “mean-field” the-
ory” were used. In the case of mean-field theory an increase
of the proton radius when the convolution is calculated leads
to a better description of the ***Pb charge density (Fig. 8).
However, in the case of the Hartree—Fock density this proce-
dure leads to worse agreement with experiment.’ It is known
that the accuracy of the employed variant of Hartree—Fock
theory™ is basically much higher than the accuracy of mean-
field theory. There are also other calculations of the “pPp
charge density®*** that agree very well with experiment
without any modification of the proton form factor. Despite
this, it was concluded in Ref. 7 that analysis of the *"*Pb
charge density indicates an increase of the nucleon radius in
the medium ( ~25% at the center of 8ph)y,

We now discuss the difference of the charge densities,
Sp(*"*Pb—""T1), extracted from high-precision data on the
elastic scattering of electrons by the neighboring nuclei.”®
From this one can obtain information about the wave func-
tion of the proton added to **"T1 and its spectroscopic factor.
The difference is also sensitive to the form factor of the add-
ed proton and its possible modification in the medium.

\ﬁ -

~y

[
z 4 & 4 nF

5]

FIG. 9. Difference of the *"*Pb and *"*Tl charge densities calculated in the
Hartree-Fock framework with effective forces.”® The hatched region rep-
resents the experimental values.
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In Fig. 9 the difference 5p(r), determined from so-
called model-independent analysis of the cross sections of
inelastic electron scattering, is compared with the result of
the Hartree-Fock calculation.® In this calculation a unit
spectroscopic factor for the 3s,,, state and the free proton
form factor were used. It can be seen that the form of p(r)is
well reproduced, but there is a difference in the absolute
value.

In Ref. 8 this difference was eliminated by introducing a
medium-modified proton form factor, while the spectro-
scopic factor of the 3s,, state was taken equal to unity.
However, it should be noted that this last assumption con-
tradicts recent experiments on transfer reactions’’ and on
the (ee'p) reaction.?® These data indicate that there is a
fragmentation of the 3s, . state on the scale 20-30% in the
region of low excitation energies. This fragmentation is
largely due to coupling to the low-lying collective states
(phonons). Thus, the state |3s,; ) is strongly mixed with the
state |2d 5, ®27 ), _ 1,2 Where 2V is 2 phonon (J7=2")
in 29%Ph. With allowance for the experimental spectroscopic
factor [ ~ (0.7-0.8)] the difference 8p(?°°Pb—""T1) can be
well described without introducing a nuclear modification of
the proton form factor.! It will be shown below that a simi-
lar result is also obtained in the quasiparticle Lagrangian
method.

Density distribution of the particles in the ground state ofa
many-body system

In what follows we shall show that very stringent re-
strictions on the possible change of the nucleon radius ina
medium can be obtained by analyzing the cross sections of
clastic scattering of electrons and protons of intermediate
energies. In these processes the nuclear structure is basically
represented by single-particle nucleon densities. Therefore,
the problem of calculating them as accurately as possible is
very important. As we noted in the Introduction, in quasi-
particle approaches the calculation of these densities is based
on the Kohn-Sham theorem” on the equality of the densities
of the particles and quasiparticles. This theorem, in its turn,
is based on the Hohenberg—Kohn theorem,' according to
which the ground-state energy of a many-body system isa
functional of the particle density p(r): E = E[p]. The parti-
cle density of the ground state corresponds to the minimum

of this functional under the condition Jd *rp = N, where N

is the total number of particles.
We now suppose that we know the true energy func-
tional E[p]. We write it in the form

Eipl={ e [Zr@+W e ], (12)

where 7 is the kinetic-energy density. The factor pr/2m is
introduced in order to normalize the distribution 7(r) like
the ordinary density p. In the ground state, the function 7
can be expressed in terms of the function p and its deriva-
tives.?” In this sense the representation (12) does not violate
the Hohenberg-Kohn theorem.

Following the logic of Ref. 2, we shall seck p(r) and
7(r) in the form

p(r)=1; ol (1)12; (13)
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o) =5z 2 mIVe @1 (14)
*r

where n,, are the quasiparticle population numbers, equal to
1 and O for occupied and unoccupied states, respectively.
The condition of a2 minimum of the functional E[p] on vari-
ation with respect to @ * (r) leads to a Schrédinger equation
for ¢, (r) with the potential U = W/ 8p. Of course, the rep-
resentation of E[p] in the form (12) is not unique. For ex-
ample, in the Vautherin—Brink functional'® the kinetic term
is expressed in the form 7f(p). As a result, an equation for
@, (r) with a coordinate-dependent effective mass is ob-
tained.

By definition, the density (13) is the quasiparticle den-
sity. But since it realizes a minimum of the functional E[p],
it is equal to the particle density of the system. This factis the
fundamental basis for the application of the quasiparticle
approach to the description of nuclear reactions involving
nuclear densities.

In real calculations every employed energy functional
(we shall call it the quasiparticle functional E, [p]) differs
to some extent from the true functional. Accordingly, the
density o, that minimizes it also differs from the true density
p. Their connection can be expressed in the form

p (r) = \@rfy (r, 1) pg (), (15)

where f, (r, ') is the quasiparticle form factor. More pre-
cisely, the form factor is the coordinate-dependent Fourier
transform of the function f (r, r') with respect to the vari-
abler —r': f,((r +1')/2, g). We write its expansion in pow-
ers of g” in the form

5 Q):1+az(r’;r’) gy (rtr’)q’*-{—

(16)
The first term on the right-hand side of (16) is equal to 1 by
virtue of the normalization of p, to the number of particles.
Under certain conditions the coefficient a, can be made very
small. Essentially, the difference between f, and 1 is a mea-
sure of the difference of the quasiparticle energy functional
from the true one. The good agreement between the densities
calculated in the quasiparticle Lagrangian method and the
experimental densities®* makes it possible to assume that to
high accuracy f, =1, i.e.,p, (£) =p(r). If appreciable discre-
pancies for the densities were to arise, this should be regard-
ed as a signal for improving the energy functional. It is this
principle that we shall follow.

We note that in the Hohenberg—Kohn-Sham theorems
it is the density of point, i.e., structureless, particles that is
considered. The charge density p,, (#), which determines
the electron scattering cross sections, is obtained by convolv-
ing the proton and neutron point densities p, (r) and p,, (1)
with the corresponding charge distributions f, (r} and f, (1)
within the proton and neutron:

e (1) = N [y (£ = ¥) pp () + fu (£ — ¥') P (F)):
(17)

v

fq( 2

Asin Ref, 30, the functions £, (r) and £, (r) are chosen in the
form

o () = (Bmag) * exp ( — riay), ay=025F,
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In (r) = (8na)) ' exp ( — rla,) — (Bnad)t exp ( — r/a,),

@,=022F,a,=0242F,

The value of @, is increased by 10% compared with the cor-
responding value in Ref. 30 through allowance for the rela-
tivistic Darwin-Foldy correction (a2 —a2 + 1/8m? )- In
what follows, when calculating the electron and proton scat-
tering cross sections, we shall use the point nucleon densities
calculated in the framework of the quasiparticle Lagrangian
method.

Formalism of the quasiparticle Lagrangian method

The point of departure for the construction of the quasi-
particle Lagrangian'® is the form of the quasiparticle mass
operator X, (r, p, £) in the theory of a Fermi liquid. For it we
use the following form linear in p? and &:

g
0
Ep

=

\ 1
Iy, p, =";‘='—'e(f')+‘3m_a% pZp+

2, () =83, (1),

=l

(18)

where 5y =1, £, =§3/(2me} ), £, = 8/e3,62 = pL/(2m),
and p;. is the Fermi momentum of the nuclear matter. The
mass operator X, has the meaning of the average field that
-acts on a quasiparticle. In Hartree—-Fock theory only the first
two terms of the expansion (18) are present, and the term
~ 3, is absent. This term determines the weight of the quasi-
particle component in the exact single-particle wave func-
tion through the factor

Z(xr) = (1 — Z,(r) e}t (19)

The basic quantity in the quasiparticle Lagrangian
method is the quasiparticle Green’s function G,, which is
determined by the Dyson equation

e —efp — X, (r,p, )G, (r, ¥, 8) =6 (r — r). (20)

It can be seen from (20) that the operator G, is diagonal on
functions 9, satisfying the equation

[Fg, - () - ﬁpfip} Yo (1) = &0 (1 — X, (r}/eh) Py (x).
(21)

This equation is the equation of motion of the quasiparticles.
In Ref. 15 it was shown that there exists a quasiparticle La-
grangian L, such that the Lagrange equation of motion cor-
responding to it is identical to Eq. (21). The variational de-
finition of L is

8Ly (t)= | & [i 7 —ef— 3, (r. i e, i%)]

8G, (r. v'; 1, T){r,__r . (22)

T-»—1)

The Lagrangian L, can be expressed as a sum L,

=Ly =L, whereL? isthe Lagrangian of the noninteract-
ing quasiparticles. It can be seen from (22) that the density
of the Lagrange function "7 corresponding to L o s

(23)

i 3 d 1) !
(e, t):(]—(}?—ap)G;i(r, 5, )

rist
T=0

It is convenient to introduce the functions
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Wl B=Gy b b T= —O=T e gy (@)

vy (r, ) “ﬁVV’Gq (r, r'; £, T=—0)

[

1
o
2mep

z.‘n;\lvw (r, 1)]% (25)
A

i d
v, (T, tJ:;L; =@y (0 B, 'c)]

T+—10

~ g IR E DN, )W D 0 (26)
A

They are the quasiparticle density, the kinetic-energy den-
sity, and the total energy density of the quasiparticles, re-
spectively. In abbreviated form, these densities can be writ-
ten as

Vi(r, )=EG (v, r; t, 7= — 0= \ —dﬁj—Equ(r, r; t, 8),

Zni
(27)
where £; are defined in (18).
It follows from (23), (25), and (26) that
Zq(r, t) =ef[vy (v, 1) - v (r, 1)) (28)

The interaction Lagrangian L o 15 determined by the vari-
ational condition

§ s .0 ’
L, (1= — \ A%z, (rm t, I_EE) éGl‘. (r, r's ¢, 1) L

T==40

29)
Taking Eq in the form (18), we obtain

ﬁLf} (t) - = \ dsrzi (l‘, t) 6\"!' (I’, t)’ (30)

where, as before, the sum over ; — 0, 1, 2 is understood.
Thus,

5L,; (r)

Z;(r)= T v ) (31)
It follows from the definition of the densities v, that

av 6 d\‘l . A )y .

a%:nlq,” W_. 0,V (2mel); -

L iny(2e8); 2L — i (268,

oy G

By means of these relations we can readily show that the
Lagrange equation
8Ly 5 8L, 6z,

T LY T

0 (33)

with Lagrangian determined by Egs. (28) and (30) is identi-
cal to the quasiparticle equation of motion in the form (21).

For the Lagrangian L o dependent on the densities v, we
can readily calculate the 4-current. In accordance with the
canonical rules its spatial component is

, . i 0Ly ' 8Lg
Jo (r)=1i E [ll’x (T)m— Y5 (r) m] . (34)
i )

Using (32), we find
dL i
Ja (7) = iy 7w 1), (35)

where
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o= 3 (Vb — FaVal): (36)

%

The time component of the 4-current, which is the baryon-
charge density, can be found similarly:

) . O0Lq , 0Ly A Lq

jo () =1 20 [ W (¥) =—/— — W (1) T

Joll} %“1 ( )aﬁ(r) L 84 ml e waltl
(37)

Hence, using (19), (28), and (30), we find

vy (1) = Z (1) Jo (1) = Z (r) py (¥), (38)
where p, (r) is the ordinary quasiparticle density normal-
ized to the total number N of particles. It is equal to the
particle density p(r) by virtue of the Kohn—Sham theorem.
The density v,(r) is normalized to N with weight Z ~I(r)
because of the explicit dependence of L, on v,.

The total quasiparticle energy E, corresponding to the
Lagrangian L, is given by the integral

E, = g v 52, (), (39)

where the density of the quasiparticle Hamiltonian °, has
the form

SLq
8t (r)

+ 1y, (1)

ACERAU) |- 2,0 (40

dLq
87 (1)
Since our Lagrangian L, depends on W, and % only through
the density w,(r), the expression (40) can be written in the
form
8Ly

C’%Pq(r)="72(r)m‘—zq(r)' (41)
As was shown in Ref. 15, the energy E, is equal to the total
binding energy £, of the system. This assertion is analogous
to the well-known Landau—Luttinger theorem on the equa-
lity of the particle number to the quasiparticle number.

The densities v, and v, are analogous to the Hartree—
Tock densities p(r) and r(r) from Ref. 16. The density v,
does not have a Hartree—Fock analog; it arose because of the
allowance for the explicit dependence of 2, on the energy.

To construct the quasiparticle Lagrangian in the quasi-
particle Lagrangian method, a polynomial form L / in v; and
Vv, is used. The minimal Lagrangian that takes into account
the effects of the velocity and energy dependences contains
the densities v, and v, to the first power. This is due to the
fact that both the effective mass m* (r) and the renormaliza-
tion factor Z(r) can be assumed to depend only on the quasi-
particle density. In this case, as follows from (41), 77, (r)
does not depend explicitly on v,(r). In terms of the func-
tions, 1, %, (r) has exactly the same form as the corre-
sponding Hartree-Fock functional with effective Skyrme
forces.'® The entire difference between the Hartree-Fock
approach and the quasiparticle Lagrangian method is con-
centrated in the right-hand side of Eq. (21) for ;.

The Hartree—Fock equations are usually obtained on
the basis of an effective Hamiltonian by means of a variation-
al principle.'® Equation (21) can also be obtained on the
basis of J#',; it is merely necessary to require, in place of the
asual normalization condition for the single-particle func-
tions, fulfillment of the weighted normalization condition
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§ @t ) (1= (/o) a () = 1. (42)
It is obvious that one can go over to the functions
@ (I) =277 (1) Y (1), (43)

which have the standard normalization to 1 and satisfy the
equation

hapy, = £,Pr, (44)
where

b= 20 () [ 4 3 (1) g P21 (0] 24 (). (45)

In terms of the functions ¢, (r) the density p(r) has the
standard Hartree—Fock form (13).

To obtain Eq. (44) from the variational principle for
the energy, it is necessary to express the Hamiltonian density
(41) in terms of the functions p and 7. Then to the simple
expression for L, in terms of the densities v, there corre-
sponds a very complicated expression for 7, in terms of the
densities p and 7.

In the quasiparticle Lagrangian method an interaction
Lagrangian density .%; of the following form is used:

Lo= —Co { B2 1(7) 1 (T,

Ag
o 00 o ¥4 T ’ — s
) (Vo)E - Agyvgvi 4 g Vg vy

2 1
RV g V) Lot L

(46)
Here v;* = v} £ %,C, =300 MeV-F% Ao 4 0> Aot A 61
Aoz 7, 1 are free parameters; & and ¢, are the Coulomb
and spin—orbit terms of .2/ . Their explicit form is given in
Ref. 15.
In terms of the densities v, the Hamiltonian density 7",
also has a simple form:

g (1) =39 + o {22 [ i) — 73 (0w} 2]
Ag = .
-+ —E_U (vg)? + Agavg vy

f as—ag— 2 Pty feny?
+ A Vevy SRS g—"o‘l"’n"‘%}*lrr%’c-!- Hsn  (47)

o

where %, = — £ and ¥, = — 7.

We recall that v (r) = Z(r)p™"(r), where the factor
Z(r) itself depends on the density. For the chosen %", in the
form (46) we can show that

2
1+ V 1—4Cyhgs0™ ()/eF

Therefore, vy (r) depends on p(r) nonlinearly. The connec-
tion between v, (r) and 7{r) is more complicated:

Z (r) =[1—Cohgsvy (r)/ef) ™t =

. (48)

v P (r)=2Z(r) 7

1

az ot P dZ
g 7o Vel [ Va7

% dp p+] J

(49)
The use of these expressions for v,, v, and Z in (47) makes it
possible to express %, in terms of 7 and p and the deriva-
tives of p. However, the corresponding expression will be
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very complicated. It is simply impossible to devise such a
construction as an ansatz. Of course, one may also have the
opposite situation, in which a very complicated Lagrangian
corresponds to a simple Hamiltonian (for example, a
Skyrme Hamiltonian). We emphasize that more informa-
tion is contained in the Lagrangian than in the Hamiltonian,
Thus, the term ~ A,,v,v,, which determines Z(r), is present
in 0. But if #°, is specified, information about the factor
Z(r) is absent,

Results of calculations of the charge densitiesin the
framework of the quasiparticle Lagrangian method

The parameters of the quasiparticle Lagrangian density
(46) were determined from energy characteristics, namely,
the total binding energies and the single-particle spectra of
magic nuclei. A fairly good description of the charge densi-
ties was obtained. As exarnples, Figs. 10 and 11 show the
“’Ca, 2®Pb, and ''*'24Sn densities. Tt can be seen that the
degree of agreement with experiment does not require the
introduction of any modification of the proton form factor.
There is agreement of approximately the same quality for the
other nuclei calculated in the quasiparticle Lagrangian
method !

In this approach one can also describe fairly well the
charge-density difference 8p[**°Pb—2"T1] discussed above
(Fig. 12).%* The main reason for this is that, in contrast to
the Hartree-Fock method, the spectroscopic factor of the
single-particle state in the quasiparticle Lagrangian method
differs from 1(Z~0.8). This arises from the allowance for
the dependence of the effective interaction of the quasiparti-
cles on the energy.

The good description of the densities in the quasiparti-
cle Lagrangian method is a manifestation of the Hohenberg-
Kohn—Sham theorems. Indeed, the parameters of the energy
functional were chosen to give the best description of the
nuclear binding energies.

The “experimental” charge densities discussed in this
section were obtained from the cross sections of electron
elastic scattering on nuclei by means of the so-called model-
independent analysis. However, this procedure unavoidably
introduces errors in addition to those of the original data.
For this reason, the properties of the proton form factor in
nuclear matter are better studied directly in the cross sec-
tions themselves. In addition, in this case it is easy to sepa-
rate the region of large momentum transfers, where the
properties of the nucleon form factor are most strongly man-
ifested. This is the subject of the following section.

77

F-3

. 208,

-2
Peh, 10 e -

m F
FIG. 10. Charge densities of *'Ca and *Pb calculated in the framework

of the quasiparticle Lagrangian method" (broken curve) and the corre-
sponding model-independent distributions (continuous curves).

131 Sov. J. Part. Nucl. 20 (2), March-Apr. 1989

10_“_—‘——*__|

FIG. 11. Charge densities of the isetopes ''"Sn and '**Sn. The continuous
curve represents the experimental values, the dotted curve the calculation
in the quasiparticle Lagrangian method,*® and the broken curve the Har-
tree-Fock calculation with the forces of Ref, 25.

3.ELECTRONELASTIC SCATTERING

In Ref. 33 different self-consistent approaches to nu-
clear theory were compared from the point of view of the
quality of the description of the cross sections for elastic
scattering of high-energy electrons by nuclei.

The cross sections were calculated in the framework of
a phase-shift analysis for the Dirac equation in the central
Coulomb field of the nucleus. The corresponding expres-
stons are given in Ref. 34. It is known that at gS3F ! the
corrections to this scheme due to exchange currents and also
the dispersion corrections are small.

In this process the nuclear structure is basically repre-
sented by the charge density p_, (#). This density was calcu-
lated by the convolution (17) of the theoretical point distri-
butions of the protons, P, (r), and neutrons, p, (), with the
corresponding charge distributions within the proton, £, (r),
and neutron, £, (#}. In contrast to the quasiparticle Lagran-
gian method, the Hartree-Fock calculation also took into

10

a 2 % g 8 r,F

FIG. 12. Difference of the **Pb and ***TI charge densities calculated in
the quasiparticle Lagrangian method (continuous curve). The hatched
region represents the experimental values.
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FIG. 13. Cross sections for elastic scattering of electrons by ***Pb (E.
— 502 MeV) and *"Ca(E, = 400 MeV), calculated with different densi-
ties, The figure is taken from Ref. 33.

account the contribution to p., (£) from the spin—orbit den-
sity:

par ()= 23 ma (0101 (2) @5 () (50)

It was found that the Tondeur functional,” which cor-
responds to modified Skyrme forces, leads to the best de-
scription of the cross sections among the Hartree-Fock
functionals. However, the best result is obtained by using the
densities p, (r) calculated in the quasiparticle Lagrangian
method. This can be seen in Fig. 13, which shows the cross

TABLE L. Values of y;, (electron scattering), o, for different forms of
self-consistent calculation.

sections for elastic scattering of electrons corresponding t0
the charge densities in the various self-consistent methods.
The accuracy of the description of the cross sections
was characterized quantitatively in Ref. 33 calculating
N
= 3 (o — o) (51)

i=1

This quantity determines the mean relative theoretical error.
Calculations were made for five nuclei (*°Ca, **Ni, !"*'*8n,
208p})) for which there are high-precision experimental data.
The analysis of y2 covered the datain the regiong S2.5F ',
where the experimental errors are smaller and scattering
theory is more reliable. The results of this analysis are given
in Table L. It can be seen that in the case of the Hartree-Fock
caleulation with SITI Skyrme forces the error is very great
(about 60%). In the case of the Tondeur forces (T) the
error is appreciably smaller (on the average about 7% ). The
calculation based on the quasiparticle Lagrangian method
“heats” this variant too—the mean error is about 5%. Such
accuracy in the description of the cross sections with the
densities of the quasiparticle Lagrangian method is suffi-
cient to investigate the question of a possible change of the
proton charge radius in the nucleus. This question was ana-
lyzed in Ref. 36.

To estimate how a change in the proton charge radius
influences the value of the cross section, one can use the Born
approximation, in which

da

Fol [pen (D12 2 |f5 () pp ()2 (52)

and the proton form factor f, (), corresponding to the ex-
ponential distribution {17), is

fp(@ = (1 + gPap)™> (53)

In the expression (52), which is used only for an estimate,
the neutron contribution is omitted. In the exact calculation
it is, of course, taken into account.

Ifit is assumed that the nucleons swell in the nucleus, it
is natural to make the substitution a,—a,(1 + a). The pa-
rameter ¢ characterizes the relative increase of the radius.
Using (52) and (53) for the relative change of the cross
section, we obtain

do do\ 8q%a}
6(—&?2_)/(715)_ roag &
The coefficient in front of — a is 0.4 forg =1 F~', 1.4 for

g=2F ' and 2.6 for ¢ =3 F~' In the region ¢=3 F~'
there are experimental data on the cross sections with errors

(54)

Nucleus HF-SIII HF-T QLM
40Ca 49.6 0.3 13
BN = 7.0 2
11650 3.3 4.2
12457 — 8.7 2.3
208Ph 67.1 5.4 5.5
Average of y; over the nuclei — 7.3 5.5
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FIG. 14. Sensitivity of the cross section for elastic scattering of electrons
by *Pb (£, =502 MeV) to a change in the proton charge radius. The
continuous and broken curves correspond to @ = 0.2 and 0, respectively.

less than 5% for the nuclei listed above. In the ideal case of
validity of the Born approximation and an exact nuclear the-
ory for the nucleon densities one could rely on determination
of the value of & from (54) with an error not worse than 2-
3%. As we shall see below, this estimate is basically con-
firmed by an exact calculation in the framework of the
phase-shift analysis for the Dirac equation. The results of
such a calculation®® for ''"*Sn and ***Pb for different values
of the swelling parameter « are given in Figs. 14 and 15. The
effect of a change of the proton charge radius is evident.
Quantitatively, it can be characterized by the quantity 12
defined in (51). The results for each of the five considered
nuclei are given in Table II, from which it can be seen that

the value of ¥ hasa minimumata = — 10% for Caand Ni,
ata = 10% for the two Sn isotopes, and at @ = Qin the case
of Pb. Averaging over all these nuclei gives

TABLE II. Values of rf, (electron scattering) for different values of the
swelling parameter a.
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FIG. 15. The same as in Fig. 14 for '"Sn and '2%gp at E, = 500 MeV.

@ = (—3412)%.°® Thus, the analysis of the cross sec-
tions for elastic scattering of electrons gives evidence against
significant swelling of the proton in the nuclear medium. An
increase of the proton radius less than 10% is not ruled out.
If one makes the natural assumption that neutrons and pro-
tons placed in the nuclear medium behave similarly, the
same restriction can be applied to the neutron. A direct ver-
ification of the swelling hypothesis simultaneously for pro-
tons and neutrons can be made by analyzing the cross sec-
tions for elastic scattering of protons of the intermediate
energies by nuclei. This problem is discussed in the following
section.

4. ELASTIC SCATTERING OF PROTONS OF INTERMEDIATE
ENERGIES

If the radius of a bound nucleon were to increase in a
medium, this should lead not only to softening of its form
factor but also to an increase of its cross section for interac-

o, Y
Nucleus
-10 ] 10 24

1"Ca 0.103 0.130 0.168 0.214
SEN| 0.010 0.023 0.055 0.100
165y 0.135 0.042 0.007 0.015
1243y 0.103 0.027 0.003 0.017
Weph 0.024 0,021 0.038 0.070
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tion with an incident hadron. Among the various hadron-
nucleus reactions that include such a cross section, the elas-
tic scattering of protons with energy around 1 GeV by nuclei
occupies a special position.>” This region has been actively
studied by theoreticians and experimentalists. There are
here numerous meastrements with high accuracy of the dif-
ferential cross sections for elastic scattering in a fairly wide
range of momentum transfers, ¢53.5 F~'. On the other
hand, this is the region of applicability of Glauber’s diffrac-
tion theory of multiple scattering.”® In this theory the nu-
clear structure is represented by single-, two-, three-, etc.,
many-particle densities of the ground state, of which the sin-
gle-particle densities make the main contribution. As we
have already said, these can be calculated with high accura-
cy in the framework of the quasiparticle Lagrangian meth-
od. Thisis indicated, in particular, by the good description of
the inelastic scattering of high-energy electrons by nuclei
achieved using the results of the quasiparticle Lagrangian
method. As was demonstrated in the previous section, the
characteristic discrepancies between the theory and experi-
ment do not exceed 10-20%.

Of course, the electron scattering is determined practi-
cally exclusively by the proton distribution. However, it is
natural to assume that the neutron distribution can also be
calculated at approximately the same level of accuracy.

The accuracy of the Glauber approximation

There have been numerous attempts to justify the
Glauber approximation on the basis of Watson’s theory of
multiple scattering. The fullest study was made in Ref. 39, in
which corrections of three sorts were taken into account:
deviation from eikonal propagation between two successive
scatterings of the incident particle in the nucleus, the Fermi
motion of the target nucleons, and the kinematic corrections
associated with the transition from the many-particle scat-
tering operator to the physical two-particle amplitudes. For
the example of *He it was shown in Ref. 39 that there is an

0% \":Eu *2pg *cn 485g 481y

T T ITTI0]
ot
“‘_,-/

3
2
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3 3
T TTTI] f IlI[IH]
""-.:....r___
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10°

T

appreciable cancellation between the contributions of these
corrections. In this sense it is better to use the standard
Glauber approximation than to use it with one of those three
corrections but without the others.

We note also that, as was shown in Refs. 40 and 41, the
total effect of the correlation corrections is also small, since
there is a mutual compensation of the contributions from the
short-range correlations (repulsion of nucleons at short dis-
tances) and long-range correlations (virtual excitation of
collective states).

Despite all this work, the program of complete and sys-
tematic allowance for the various corrections to the Glauber
approximation is still not yet complete. In this situation, one
must appeal to the experience of practical calculations. At
the end of the seventies several calculations of the cross sec-
tions for elastic proton—nucleus scattering were made using
microscopic nuclear densities.*”~** The accuracy of the de-
scription of the data was at the level 20-30% at small mo-
mentum transfers g; however, with increasing ¢ the discrep-
ancy between the theory and experiment increased, reaching
a factor 2-3. It is obvious that such a level of accuracy is not
sufficient to analyze delicate effects such as swelling. How-
ever, it is noteworthy that all the features of the description
of the proton-nucleus cross sections (including the nature of
the discrepancies) repeated those in electron scattering, for
which the theory is fairly reliable. This fact suggested that
the main source of error in the description of the proton
cross sections came from the defects of the densities that
were used, and not from Glauber theory.

The existence today of much more accurate microscop-
ic nuclear densities makes the problem of testing Glauber
theory at the new level of accuracy topical. We have made
such tests for the example of elastic scattering of protons by
the nuclei *0#24435Ca, *Ti, and ***Pb (Ref. 45) (Figs. 16
and 17) at energy 1 GeV and by the nuclei 58N, *Zr, and
14,2166 4t 0.8 GeV (Fig. 18). The details of the calculations
are given in Refs. 43 and 44. As can be seen from the figures,

—

FIG. 16. Cross sections for elastic scattering of protons (&,

— 1.04 GeV)** by 424 Ca and *Ti (shifted relative to
each other by 3°), calculated with the densities of the quasi-
particle Lagrangian method.'*"'
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FIG. 17. Cross section for elastic scattering of protons (E,
= 1.0 GeV)" by *"Pb, calculated with the densities of the
quasiparticle Lagrangian method. 'S

the deviations from experiment are very small; they are of
the same kind and on the same scale as in electron scattering.
Such high accuracy of the Glauber approximation is some-
what remarkable and requires new theoretical examination.
But if it is accepted an an “experimental fact,” then there is
hope of obtaining new information about the scale of the
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putative nucleon swelling in the nucleus from an analysis of
the differential cross sections for elastic proton—nucleus
scattering at an energy near 1 GeV.

Analysis of the manifestation of swelling in proton scattering

In the Glauber method the amplitude of proton—nu-
cleus scattering can be expressed in terms of the amplitude of
the free NN interaction, which is usually parametrized in the
form®*44

ikG,, 5 " 9
v (@) =—g2 2 (A~ iy, Joxp (— B2 ) |

(35)
where at energy 1 GeV

0, =475F, g, = — 0,05,
o, =404 F?, Yo = — 0.5;

B?=021F%

and at energy 0.8 GeV (Ref. 49)

6, = 473F vp = 0.056, p* =0.20 F2:
0, = 3T9F, 5, = — 0.48.

In (55), k is the momentum of the incident proton, g is
the momentum transfer, o, and o, are the total cross sec-
tions for pp and pn scattering, and B~ is the slope of the
diffraction peak.

Ifitis assumed that a nucleon bound in a nucleus swells,
i.e., increases its radius, then it is natural to assume that the
parameters o and /3 change:

o —(1 ta)o; fp > (1 - a/2) B. (56}

It is obvious that the change of the nucleon radius in the
medium must depend on the density, and therefore on the
coordinate r, i.e., @ = @(r). With allowance for the small
expected role of this dependence, we shall assume that

FIG. 18. Cross sections for elastic scattering of protons (E,
= 0.8 GeV)™ by *Ni, “Zr, *'"*'>8 (shifted relative to each
other by 5°), calculated with the densities of the quasiparticle
Lagrangian model.!>-!
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a(r) = (ao/po)p(r), where pyis the density of nuclear mat-
ter. This assumption does not depend on the specific mecha-
nism of the swelling effect, provided it is not associated with
some phase transition of the QCD vacuum at normal nuclear
density. Such a phase transition could lead to a nonanalytic
dependence of & on p. To estimate the effect, we temporarily
ignore the coordinate dependence, using the parameter
5 =@/ 2, since it is basically the effective density p.g =po/
2 that works in Glauber scattering.

Note that the connection between the relative change of
the cross section, &, and the relative change of the nucleon
radius, ay [ry— (1 +ay)ry), isnot completely unambigu-
ous. If it is assumed that a nucleon that enters a nucleus
swells under the influence of the nucleon environment in the
same way as a target nucleon, then one must assume that
a~2a,. But if it does not change its properties, then
a~a,. Which of these possibilities occurs depends on the
ratio of the characteristic times of swelling and of passage of
the proton through the nucleus. The attempt to obtain an
estimate of the swelling time must necessarily involve a par-
ticular model of the phenomenon. As yet, such models do
not have a sufficient degree of reliability. We shall not at-
tempt to clarify this question, but assume that @y =a. From
the point of view of obtaining a stringent restriction on ay
this is the least favorable case.

For the example of *°Ca, Fig. 19 demonstrates the sensi-
tivity of the cross section for proton-nucleus scattering to
changes in o and B for three values of the parameter
Gor i@y = 0,8y =0.1, and @er = 0.2. Variations of o and f
separately and in combination were considered. The realistic
situation corresponds to a simultaneous change of these
quantities. As was to be expected, the sensitivity to varia-
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tions of o is appreciably greater than to variations of 5. Why
this is so can be readily seen in the example of the impulse
approximation. In this case the amplitude for proton-nu-
cleus scattering is proportional to the NN amplitude and,
therefore, to o. The variations of ¢ are proportional to the
variations of the proton—nucleus amplitude, whereas the
variation of the slope 8 * influences only the correction term
[exp( —B2q*/2)=1— B q/2], which isimportant only at
large ¢°. If we go beyond the impulse approximation, the
situation is not changed qualitatively.

The high sensitivity of the results to variations of ¢
makes protonfnucleus scattering in some respect, a more
suitable tool for studying the swelling effect than electron
scattering. In the latter case the cross section is determined
by the proton form factor, which has the same structure as
the ¢*-dependent factor in the NN amplitude. Therefore, the
sensitivity of the cross sections for electron scattering to a
change of the proton radius in the nucleus is approximately
the same as the sensitivity of the cross sections for proton
scattering to variations of 3.

It can be seen from Fig. 19 that swelling of the nucleon
leads to a significantly poorer description of the cross sec-
tion. For a quantitative characterization of the degree of
agreement with experiment, we shall use

N
y2 = _1,‘— Y (ot~ o%F)2j(Acy)?, (57)
i=1
where Ao, is the error of the cross section o7 at the point /.
In contrast to y¢ (51), each point here enters with weight 1/
(Ao, )? determined by the error Ao, . In the case when the
error at all points is the same, v’ and y3 are essentially equal.
Cases with energy of the incident protons equal to 800

FIG. 19. Sensitivity of the cross section for elastic scattering of
protons by *"Ca(E, = 1.04 GeV)*™ to the value of the effective
swelling parameter a,, . The continuous curves are fora; =0,
the broken curves for @,y =0.1. and the chain curves for
a.; = 0.2. On the left-hand curves only ¢is varied, in the central
ones only #°, and on the right-hand ones both erand 87,

7077 L .
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TABLEIIL. Values of ¥* (proton scattering) as functions of the effective
swelling parameter a,.

Co, To
Nucleus ai"
10 ' -5 ( 0 , 5 , 10 ( 20
90 15.1 9.0 7.3 5.8 | 17.3 49.2 —0.6
42Ca 5.4 4.7 7.8 14.5 25.5 62.9 —b6.6
44Ca 5.8 5.3 11.3 23.9 441 111 —~T.1
18Ca 19.4 13.4 10.2 9.8 12.8 31.0 1.9
48T 6.1 1:5 15.7 30.7 53.2 132 —8.5
208 Ph 29.0 26.4 2.5 44.3 G4.6 126 —n.8

MeV are not included in the y* analysis. The reason for this
is that at this energy the parameters of the amplitude (55)
are not so well known as at energy 1 GeV (Ref. 48). For all
the remaining cases the values of y? are given in Table ITI for
variations of the parameter . from — 10 to 20%. In the
final column we give the values of o correspondin g to the
minimum of ¥*. For “*Ca, a§" ~0; for **Ca, @™ ~29%: and
in the remaining cases a@" <0. Thus, on the average our
analysis suggests a decrease of the nucleon radius in the nu-
cleus rather than an increase. We note that such a possibility
was discussed in Refs. 50 and 51.

We now turn to the explicit allowance for the density
dependence of . Using the fact that the sensitivity of the
cross sections to variations of ¢ is much stronger than to
variations of 3, we shall take into account the density depen-
dence only in ¢ in the form o/o = a, p(r)/p,. For B we
substitute the effective value 8., = B(py/2), taken at half
density.

The results of the calculations with variable a(r) are
given in Table IV. Comparison with Table III shows that the
influence of swelling on the cross section for elastic scatter-
ing of protons is indeed weakened by the density dependence
of the parameter a. It can also be seen from the comparison
that in the majority of cases the effective density is close to
Per = po/2. Except for **Ca and *°Ca, the values of ™ cor-
responding to the minimal value of y* are negative. Averag-
ing over all the considered nuclei gives ag'™"

= ( — 3.6+ 9.8)% (the rms error is given).

Of course, it must be borne in mind that the Glauber
approximation and the nuclear densities used in the calcula-
tions have their own uncertainties, and it is rather difficult to
estimate them. In view of this, the value given for a7 should
not be taken too literally. Rather, it should be interpreted

TABLE IV. Values of y* (proton scattering) as functions of the swelling
parameter a.

simply as evidence against nucleon swelling in the nucleus.
Strictly speaking, we have here a restriction on the changein
thenucleus of the total cross section for NN interaction com-
pared with the free cross section. But if we adopt the swelling
hypothesis, then we can speak of a restriction
ay = 08ry/ry 56% on the possible increase of the effective
nucleon radius in the nucleus.

5. TOTAL HADRON-NUCLEUS CROSS SECTIONS AT HIGH
ENERGIES

In Ref. 52 an analysis was made of numerous data on
the absorption cross sections and total cross sections of high-
energy hadrons (p, p, m, K; E=~10-300 GeV) on the nuclei
C, Al, Cu, and Pb with a view to finding effects due to a
possible swelling of the nucleon. These cross sections were
described by Glauber theory with corrections for inelastic
screening, which are important at high energies.

The total cross section for scattering of an incident ha-
dron by a nuclear nucleon, o, , which occurs in the analysis
was chosen to give the best description of the experiments. If
there were swelling of the nucleon in nuclear matter, this
would make the cross section o, larger than the free cross
section. As a result of the analysis in Ref. 52 it was concluded
that there is an increase of o, on the average by 5-15%.

6.NOLEN-SCHIFFER ANOMALY IN THE MASS DIFFERENCE
OF MIRROR NUCLEI

In Ref. 53 an attempt was made to explain the so-called
Nolen-Schiffer anomaly®* by the hypothesis of nucleon
swelling in the nucleus. The anomaly is associated with cal-
culation of the mass difference AM of mirror nuclei, i.e.,
pairs of odd nuclei with the same A that differ by replace-
ment of a neutron by a proton or of a proton by a neutron.

o, N
Nucleus i
-15 | —10 1 -3 0 ] 3 | 10 ‘ 15 20
4%Ca 14.3 | 11.1 8.8 7.3 6.7 7.3 9.0 11.2 5
12Ca 4.4 4.6 5.7 T8 WS [ 14.8 ] 19.9] 252 —13.6
44Ca 8.8 8.1 8.0 1131542132902 302 —10.2
18Ca 22,5 [17.7 | 13.6 | 10.2 7.6 6.0 5.4 fi.t 14.0
L 10.3 9.7 11.5 | 15.7 | 22.6 | 32.6 | 46.0 (3.1 —11.2
2P 34.5 | 31.0 | 300 |31.5|35.4|41.8 1506 ¢la —5.5
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The mass difference AM can be expressed as a sum of
two terms,

AM = AE,m + Ay, (58)

where AE,,, is the difference of the electromagnetic energies
of the nuclei, and Am,,, = m,, — m, is the mass difference of
the neutron and proton within the nucleus. Usually, the
problem reduces to calculation of AE,,, , while the difference
Am,, is set equal to the mass difference of the free nucleons.
The calculated contributions of the direct and exchange
Coulomb potentials of the nucleus to AE,,, lead, asarule, to
values of AM that are low compared with the experiments. It
is this fact that is called the Nolen—Schiffer anomaly.

The results of numerous attempts to describe AE,, , in-
cluding allowance for relativistic corrections and the effects
of charge-exchange forces, are collected together in the re-
view of Ref. 55. In Ref. 55 the direct Coulomb potential was
calculated using the experimental charge densities, which
are known from high-precision data on electron elastic scat-
tering, so that the term that makes the main contribution to
AE,,, is calculated very reliably. The uncertainties are con-
centrated in the exchange Coulomb term, where there is a
difficulty in taking into account consistently the nucleon
correlations.

The measure of the anomaly is the difference

A =AMy — (AE -+ Amyp) i (59)

According to the calculations of Ref. 55, A = 0.21 MeV at
A =13, and A =0.62 MeV at 4 =41; the value of A in-
creases rapidly with increasing A.

In Ref. 56 the first attempt was made to explain the
anomaly at the quark level through a difference between
Am,, in the nucleus and the value for free nucleons. The
estimate of this difference was based on the assumption that
64 bags are present in the nucleus.

Using this idea, the authors of Ref. 53 related the
change of Am,, in the nucleus to nucleon swelling. Esti-
mates of Am,, within the nucleus were made in various
quark models of the nucleon. In particular, in the MIT mod-
el the following expression is obtained™:

o 0.34 e
Am,, (R) ::O.r’ijArrl,i,,f(ff)—l-T 4—ng(lf). (60)
where R is the radius of the bag, Am,, = — 4.2 MeV is the

difference of the current masses of the # and d quarks, eis the
electron charge, and f(R) and g(R) are known functions.
The second term in (60) is due to the change of the electro-
magnetic interaction of the quarks of the nucleon when the u
quark is replaced by the d quark. Under the assumption of an
increase of the nucleon radius in the nucleus, the expression
(60) leads to a contribution to the Nolen—Schiffer anomaly
with the necessary sign. However, the contribution is too
small. Thus, for SR /R = 10% we have 8(Am,,) =50 keV,
i.e., an order of magnitude less than what is required.

In models of the nucleon with constituent quarks in an
oscillator potential a change of the radius results in a much
more sensitive reponse. Thus, for the same SR /R = 10% we
have 8(Am,,) = 0.67 MeV in the model of Ref. 57 and
§(Am,,) = 0.3 MeV in the model of Ref. 58.

If the expressions of Ref. 53 for Am,, are used for the
values of 8R /R that follow from the EMC effect, then for
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Am,, (MeV) the following 4 dependence is obtained™:

Amyp = (1.43 — 0.16 A-1/%), (61)

However, such an A dependence does not in any way agree
with the one that follows from the experimental data on the
Nolen—Schiffer effect:

Am,p = (1.3 -+ 0.0145 A). (62)

It should be noted that in the calculation of AE,.,, signif-
jcant progress has been achieved in recent years through
more correct allowance for the correlation corrections. For
example, in Ref. 60 some correlation effects not hitherto
considered were taken into account. Allowance for them sig-
nificantly reduced the Nolen—Schiffer anomaly. Finally, in
Ref. 61 a new method was used to calculate the correlation
contribution, and it appears to have a high accuracy. As a
result, the anomaly was practically eliminated without any
assumptions about a change in the nucleus of the difference
Ay, .

In the light of this the additional contribution calculat-
ed in Ref. 53 to A associated with the swelling effect can be
regarded as an argument against significant swelling of the
nucleon in the nucleus.

7.CONCLUSIONS

In this review we have considered various phenomena
of traditional nuclear physics in which there could be a man-
ifestation of the swelling of a nucleon in the nucleus pro-
posed as one of the possible explanations of the EMC effect.
We have shown that the claim made in a number of studies of
the detection of significant ( ~20%) swelling of the nu-
cleons should be attributed rather to an inadequate descrip-
tion of the structural characteristics of nuclei, in the first
place the distributions of the nuclear density. We have
shown that a more accurate nuclear calculation makes it
possible as a rule to describe the experimental data without
introducing any swelling.

A situation that is not entirely clear has developed in
the description of the longitudinal response in inclusive
(e,e') scattering at intermediate energies, where the problem
of taking into account the correlation corrections is as yet
unresolved. The available estimates offer hope that a correct
calculation of these contributions will lead to agreement
with experiment without the need to invoke the swelling hy-
pothesis in this process too. We note also that the attempt to
reconcile the theory with experiment in the deseription of
the longitudinal response by means of a medium-modified
nucleon form factor leads to difficulties in the description of
the transverse response function. At the same time, one can-
not explain the 20% deviation from unity of the ratio of the
longitudinal responses, integrated over the energy, for the
isotopes *Ca and *° Ca.

As we have shown, a very sensitive and effective tool for
studying the swelling effect is the elastic scattering of fast
electrons and protons by nuclei. Our analysis has made it
possible to establish a rather stringent upper bound on the
swelling. It follows from electron scattering that this bound
is = 109%, and from proton scattering =~6%. An even more
stringent restriction, 87y /ry 3%, was obtained from an
analysis of y scaling in the (e,e') reaction at high energies for
50Fe (Refs. 21). These bounds on the possible swelling agree
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with the estimates in Refs. 62 and 63. The restrictions ob-
tained are important not only for nuclear physics but also for
elementary-particle physics. They cast doubt on models of
the nucleon that lead to a large swelling. Such models do not
pass the test of nuclear physics.

Our study shows that traditional nuclear physics can,
under conditions when there is a high-precision experiment
and a sufficiently good theoretical “‘support,” give impor-
tant information for particle physics. This is particularly im-
portant in the present situation, in which the confinement
problem in QCD has not been solved and various model
ideas about nucleon structure have been developed.

Of course, the restrictions obtained cannot be mechani-
cally transferred to all other forms of nuclear exotics. For
example, the results of attempts to extract from the cross
sections for elastic scattering of electrons by nuclei the ad-
mixture of the 6g configuration depends strongly on the
form factor of this configuration. If it is the same as (he
nucleon form factor, the determination of the admixture in
the given process is difficult. Another example is the impos-
sibility of determining from electron elastic scattering the
degree of softening of the pion mode in nuclei. This softening
is usually interpreted as an increase of the effective number
of pions in the nucleus. Since the numbers of 7 and 7
mesons are increased by about the same amount, the charge
distribution in the nucleus is hardly changed. It is therefore
difficult to observe the softening of the pion degrees of free-
dom in electron elastic scatterin g These examples show that
in each particular case a special analysis is required to verify
any particular exotic hypothesis.

We hope that this review demonstrates the importance
of testing exotic hypotheses in different phenomena of tradi-
tional nuclear physics.

We are very grateful to G. D. Alkhazov, V. V. Aniso-
vich, S. T. Belyaev, G. G. Bunatyan, D. P, Grechukhin, V.
Efimov, A. B. Migdal, L, V. Prokhorov, M. 1. Strikman, M.
A. Troitskii, L. L. Frankfurt, and V. A. Khodel® for helpful
discussions, and also M. V. Zverev, A, A. Khomich, and N.
G. Shevchenko, who were coauthors of one of the studies
used in this review.

'P. Hohenberg and W. Kohn, Phys. Rev, 136, B864 (1964).

“W. Kohn and L. J, Sham, Phys. Rev. 140, A1133 ( 1965).

1. 1. Aubert, G. Bassompierre, K. H. Becks et al., Phys. Lett. 123B, 275
(1983).

*R. L. Jaffe, Phys. Rev. Lett. 50, 228 (1983); F. E. Close, R. G. Roberts,
and G. G. Ross, Phys. Lett. 129B, 346 (1983 ); R. L. Jaffe, F. E. Close, R.
G. Roberts, and G. G. Ross, Phys. Lett. 134B, 449 (1984).

°M. Jandel and G. Peters, Phys. Rev. D 30, 1117 (1984): L. S. Celenza,
A. Rosenthal, and C. M. Shakin, Phys. Rev, Lett. 53, 892 (1984); O.
Nachtmann and H. J. Pirner, Z. Phys.C21,277 (1984); G. Chanfray, O.
Nachtmann, and H. J. Pirner, Phys. Lett, 147B, 249 (1984): T. Gold-
man and G. J. Stephenson, Phys. Lett. 1468, 143 (1984); M. Ericson
and M. Rosa-Clot, Z. Phys. A324, 373 (1986).
°L.S. Celenza, A. Harindranath, and C. M. Shakin, Phys. Rev. C 32, 650
(1985); L. S. Celenza, A. Harindranath, C. M. Shakin, and A. Ro-
senthal, Phys. Rev. C 32, 650 (1985); L. S. Celenza, A. Harindranath,
and C. M. Shakin, Phys. Rev. C 33, 1012 (1986).

’L. 8. Celenza, A. Rosenthal, and C. M. Shakin, Phys. Rev. C 31, 232
(1985); L. S. Celenza, A. Harindranath, A. Rosenthal, and C. M. Sha-
kin, Phys. Rev, C 31, 946 (1985); L. S. Celenza, A, Harindranath, C. M.
Shakin, and A. Rosenthal, Phys. Rev. C 31, 1944 (1985).

*L. S. Celenza, A. Harindranath, and C. M. Shakin, Phys. Rev. C 32,
2173 (1985).

“Z. E. Meziani, P, Barreau, M. Bernheim er al., Phys. Rev. Lett. 52, 2130
(1984).

139 Sov. J. Part. Nucl. 20 (2), March-Apr. 1989

1%G. Orlandini and M. Traini, Phys. Rev. C 31, 280 (1985).

"'J. Noble, Phys. Rev. Lett. 46, 412 (1981).

"2P. J. Mulders, Phys. Rev. Lett. 54, 2560 (1985).

“W. W. Alberico, P. Czerski, M. Ericson, and A. Molinari, Nucl. Phys.
Ad62, 269 (1987).

"“A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic
Nuclei (Interscience, New York, 1967) [Russ. original, 2nd ed., Nauka,
Moscow, 1982].

V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

'D. Vautherin and D. M. Brink, Phys. Rev. C5, 626 (1972).

''S. Drozdz, G. Co’, I. Wambach, and J. Speth, Phys. Lett. 185B, 287
(1987); S. Fantoni and V. R, Pandharipande, Nucl. Phys. A473, 234
(1987); R. Schiavilla, D, §. Lewart, V. R. Pandharipande ef a., Nycl.
Phys. A473, 267 (1987); R. Schiavilla, A. Fabrocini, and V. R. Pand-
haripande, Nucl, Phys. A473, 290 (1987); M. Modarres, 7. Phys. G 13,
755 (1987); H. Kurasawa and T. Suzuki, Phys. Lett. 1738, 377 (1986).

5y, D, Efros, Yad. Fiz. 18, 1184 (1973): 43, 1439 (1986) [Sov. J. Nucl.
Phys. 18, 607 (1974); 43, 927 (1986)].

"°G. B. West, Phys. Rep. 18C, 264 (1975).

9. Sick, D. Day,and J. 8. McCarthy, Phys. Rev. Lett. 45,871 (1980); C.
Ciofi degli Atti, INFN-ISS 82/6 (1982).

'L Sick, Weak and Electromagnetic Interactions in Nuclei, Proc, of the
Intern. Symposium (Heidelberg, 1986), p. 415,

*J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1972).

2‘(;. Horowitz and B. Serot, Nucl. Phys. A368, 503 (1981).

¥E.E. Sapershtein and V. A. Khodel’, Yad. Fiz. 38, 848 (1983) [Sov.7J.
Nucl. Phys. 38, 507 (1983)].

**J. Decharge and D. Gogny, Phys. Rev. C 21, 1568 (1980).

7. M. Cavedon, B. Frois, D. Goutte ef al., Phys. Rev. Lett. 49, 978
(1982),

p. Grambayr, §. Klein, H. Clement er al., Phys. Lett. 1648, 15 (1985).

*P. K. A. DeWitt-Huberts, Nucl. Phys. A446, 301 (1985).

M. Brack, C. Guet, and H.-B. Hakansson, Phys. Rep. 123, 275 (1985),

). L. Friar and J. W. Negele, Nucl. Phys. A212, 93 (1973).

M. V. Zverey and E. E. Sapershtein, Yad. Fiz. 39, 1390 (1984) [Sov. J.
Nucl. Phys. 39, 878 (1984)].

V. A. Khodel, E. E, Saperstein, and M. V. Zverev, Nucl, Phys. A465,
397 (1987). .

PM. V. Zverev, V, 1, Kuprikov, E. E. Sapershtein et al., Yad. Fiz. 46, 466
(1987) [Sov. J. Nucl. Phys. 46, 249 ( 1987)].

*D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev. 95, 500
(1954).

*F. Tondeur, Phys. Lett. 123B, 139 (1983); F. Tondeur, M. Brack, M.
Farine, and J. M. Pearson, Nucl. Phys. A420, 297 (1984).

*M. V. Zverev, E. E. Sapershtein, A. A. Khomich, and N. G. Shev-
chenko, Yad. Fiz. 45, 1212 (1987) [Sov.J. Nuel. Phys. 45, 752 (1987)).

“'G. D. Alkhazov, S. L. Belostotsky, and A. A. Vorobyov, Phys. Rep. 42,
89 (1978},

*R. Glauber, Lect. Theor. Phys. 1, 215 (1959); A. G. Sitenko, Fortschr.
Phys. 22, 453 (1974).

8. J. Wallace, Phys. Rev. C 12, 179 (1975).

V. E. Starodubsky, Nucl. Phys. A219, 525 (1974).

“1G. D. Alkhazov, Nucl, Phys. A280, 330 (1977).

*G. D. Alkhazov, B. L. Birbrair, S. 1. Glezer et al., Yad. Fiz. 27, 333
(1978) [Sov. J. Nuecl. Phys. 27, 181 (1978)]: B. L. Birbrair, G, D.
Alkhazov, L. P. Lapina, and V. A, Sadovnikova, Yad. Fiz. 28, 625
(1978) [Sov. J. Nucl. Phys. 28, 321 (1978)].

*'E. E. Sapershtein and V. E. Staredubskii, Yad. Fiz. 30, 70 (1979) [Sov.
J. Nucl. Phys, 30, 36 (1979)].

V. E. Starodubskii, Yad. Fiz, 29, 884 (1979) [Sov.J. Nucl. Phys. 29,454

1979)1].

‘5](3. E. Sapershtein and V. E. Starodubskii, Yad. Fiz. 46, 69 (1987) [Sov.
J. Nucl. Phys. 46, 44 (1987)].

*G. D. Alkhazov, T. Bauer, R. Beurtey et af, Nucl. Phys. A274, 243
(1976).

YG. D. Alkhazov, S. L. Belostotskii, A. A. Vorob'ey er al., Preprint 531
[in Russian], Leningrad Institute of Nuclear Physics, Leningrad
(1979).

g o8 Ray, Phys. Rev. C 19, 1855 (1979),

R W Devlin, W. Johnson, J, Noremetal., Phys. Rev. D8, 136 (1973): A,
A. Vorobyov, A. S. Denisov, Yu, K. Zalite et al.,, Phys. Lett. 41B, 639
(1972); A. A. Carter and D. V. Bugg, Phys. Lett. 20, 203 (1966); L.
Ray, Preprint LA-UR-78-1809 (1978).

G, G. Bunatyan, Preprint R-2-85-838 [in Russian], JINR, Dubna
(1985); Yad. Fiz. 43, 294 (1986) [Sov. J. Nucl. Phys. 43, 188 (1986) 1.

*'L. V. Prokhorov, in: Quarks-84. Proceedings of a Seminar [in Russian]
(Thilisi, 1984), p. 231,

“*N. N. Nikolaev, Preprint INS-538, Tokyo (1985).

“E. Eich and L. M. Sehgal, Phys. Lett. 1598, 177 (1985).

*J. A. Nolen and J. P, Schiffer, Ann, Rev. Nucl. Sej. 19, 471 (1969).

**S. Shlomo, Rep. Prog. Phys. 41, 95 (1978).

E. E. Sapershtein and V. E. Starodubskii 139



567 M. Greben and A. W. Thomas, Phys. Rev. C 30, 1021 (1984).

5'N. Iagur, Phys. Rev. D 21, 779 (1980).

S8, Ttoh, T. Minamikawa, K. Miura, and T. Watanabe, Prog. Theor.
Phys. 61, 548 (1979).

s91.. N. Epele, C. A. Garcia Canal, H. Fanchiotti, and R. Mendez Galain,
Phys. Lett. 188B, 498 (1987).

60R "N. Kasymbalinov and E. E. Sapershtein, Yad. Fiz. 40, 97 (1984)

140

Sov. J. Part. Nucl. 20 (2), March-Apr. 1989

[Sov. J. Nucl. Phys. 40, 62 (1984) ].
1y, R. Shaginyan, Yad. Fiz. 40, 1144 (1984) [Sov. J. Nucl. Phys. 40, 728
(1984)].
621 I. Frankfurt and M. L. Strikman, Preprint LINPI-1329 (1987).
63M. Oka and R. D. Amado, Phys. Rev. C 35, 1586 (1987).

Translated by Julian B. Barbour

E. E. Sapershteln and V. E. Starodubskil 140



