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The Schrodinger equation for a system of identical particles has a hidden symmetry due to the
indistinguishability of the particles. This symmetry can be used to eliminate the
antisymmetrization operator from the equation and to obtain functional differential equations for
the components of the wave function. In these equations there remains only a reduced two-
particle Hamiltonian which is the minimal essential part of the many-particle Hamiltonian. The
review is devoted to an exposition of the consequences of the symmetry and to a method of
solution of functional differential equations for bound states of a system based on expansion of the
components with respect to a complete basis of eigenfunctions of the reduced Hamiltonian.

INTRODUCTION

The theory of nonrelativistic systems of interacting pa-
ticles began more or less simultaneously with the creation of
quantum mechanics and has achieved since then significant
successes. However, the appearance of constructions of a
complexity not hitherto encountered—realistic internu-
cleon potentials—showed that the traditional methods of
solving the Schrodinger equation were not well suited for
such problems. By “‘traditional”” we mean here all the meth-
ods of solving many-fermion problems in which antisym-
metry of the model wave functionsis guaranteed irrespective
of the dynamics, i.e., irrespective of the nature of the interac-
tion between the particles, before the actual Schrédinger
equation is solved. Included here are expansions of the exact
wave function with respect to a rigidly fixed basis, as well as
the a priori construction of a trial function with free param-
eters or even fragments of a function, which is matched as
well as is possible to the exact function by varying the param-
eters or fragments. A characteristic example of this kind is
the Hartree—Fock approximation, in which the antisym-
metry of the wave function, which depends on single-particle
variables, can be ensured before the radial functions are par-
ticularized. In the oscillator shell model'* it is in principle
possible both to extend the fixed basis and to vary with re-
spect to the parameters of the wave functions. In the method
of hyperspherical functions® and its generalizations,” anti-
symmetry of the functions is ensured by a fixed part (hyper-
spherical harmonics), which depends on the angular and
spin-isospin variables, while the fragments of functions,
which depend on the collective variables, are determined
from dynamical equations.

One can even carry out a certain classification of meth-
ods of this kind on the basis of the number of degrees of
freedom whose functions are not fixed in order to simplify
the antisymmetrization, but remain free and can be adapted
to the dynamics of the particular problem. Of course, one
must also include here free parameters whose variation can
achieve a similar result. This list must begin with the oscilla-
tor shell model (one parameter) and the method of hyper-
spherical functions (one degree of freedom). Then comes
the shell model in a deformed average field (two or three
parameters) and, still later, the method of generalized hy-
perspherical functions, in which the number of degrees of
freedom of this kind can be increased to six. For comparison
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it should be noted that in the Hartree—Fock method for an
atom the number of radial functions that are free from this
point of view is ~N > It is this that guarantees the high
quality of the corresponding wave function. In our case, of
course, the success of the method is not always directly pro-
portional to this number. For everything still depends on the
physics of the phenomenon. For example, in the resonating-
group method® only one degree of freedom usually “works,”
but this is quite sufficient to explain clustering effects.

Basically, such hybrid methods in nuclear theory are
very effective, but the convergence of the expansions, par-
ticularly for potentials with a Coulomb core (such as the
Reid potential’), leaves something to be desired.™® The rea-
sons for this can be analyzed before any calculations are
made. The point is that for realistic internucleon potentials
the exact wave function must correspond to a probability
density distribution in the system that, crudely speaking,
resembles the density distribution in a sponge, i.e., the wave
function must be “expelled” from regions of the configura-
tion space corresponding to small internucleon distances.
But the infrastructure of the model bases mentioned above
corresponds rather, if we may follow the parallel, to the den-
sity distribution in an onion. It is therefore not surprising
that the solution of the problem in such a case requires very
long (for a hard core, infinite) expansions.

More or less convincing methods of solution of these
difficulties, i.e., of adequate allowance for the two-particle
correlations, can be constructed only for nuclear matter and
heavy nuclei,'™"" i.e., for systems in which it is justified to use
certain simplifications of a different kind and the model ba-
sis is exceptionally simple. For finite nuclei the greatest suc-
cess in recent times has been achieved by the method of cal-
culation based on the use of variational techniques for trial
functions with correlation factors of Jastrow type.'*!* This
can hardly be regarded as a great success of theoretical phys-
ics. The method itself has long been known, and all that has
changed has been the purely technical possibilities of realiz-
ing stochastic computational algorithms for real systems.
The essence of the method is that a simple model wave func-
tion of the ground state of the system (of the shell model or
the method of hyperspherical functions), the antisymmetry
of which can be ensured relatively easily, is multiplied by a
completely symmetric factor, equal, as a rule, to a product of
identical functions for each pair of particles. These func-
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tions, the correlation factors, which depend in the first place
on the relative coordinate of the pair, are chosen in such a
way as to ensure the above-mentioned deformation of the
model wave function. Although such a trial function has a
rather simple appearance, in the actual use of it there arise
not only technical but also apparently fundamental difficul-
ties due to its very antisymmetry'® (a many-fermion wave
function changes sign repeatedly in the configuration space,
and this makes it impossible to use the Monte Carlo algo-
rithm directly). On the other hand, even if this method could
be successfully used for light nuclei, the picture would hard-
ly become clearer, since, first, the result depends to some
extent on how felicitously the trial function is chosen and,
second, the methods of direct integration process the input
information in such a way that it is extremely difficult to
note any clear connection between the quality of the ob-
tained wave function and the type of potential. But the aim of
the calculation is, besides everything else, to use nuclear data
to improve the internucleon potential itself. One of the ex-
amples of this kind is the long noted almost linear correla-
tion between the characteristics of three-, four-, and two-
nucleon systems'* (for example, between the triton binding
energy and the D-wave admixture in the deuteron, between
the triton and a-particle binding energies, ete.). These phe-
nomena are clearly revealed in numerous calculations, but
their origin does not become clearer and is not amenable to
unambiguous and transparent interpretation.

Thus, we appear to be in a difficult situation with no
way out. Antisymmetrization of the function after solution
of the Schrodinger equation becomes quite inappropriate,
since it is necessary to filter out a large number of spurious
solutions, i.e., solutions for which the wave function be-
comes identically zero when an attempt is made to antisym-
metrize them. Antisymmetrization before solution of the dy-
namical problem has already been discussed. Neither the
one nor the other is acceptable. Fortunately, there is another
possibility. It is well known that the antisymmetrization op-
erator commutes with the Hamiltonian of a system of identi-
cal particles, and therefore this operation can be carried cut
at any stage of solution of the Schrédinger equation, includ-
ing simultaneously with it. It was found, and this will be
shown below, that this has in practice long been done when
the Schrodinger equation is reduced to the Faddeev'” or
Faddeev—Yakubovskii'® equations. The point is (to be spe-
cific we shall speak of the differential form of these equa-
tions) that a component of the wave function that has a low-
er degree of antisymmetry is an unknown in these equations.
The sum of a necessary number of such components is anti-
symmetric and, apart from the normalization, is equal to the
wave function of the system. Unfortunately, the structure of
the operators in these equations is such that the main meth-
od of their solution is direct numerical integration. With
increasing number of particles this method becomes less and
less convenient, and it is desirable to construct hybrid meth-
ods based not only on solution of simpler equations than the
Schrodinger equation but also on expansion of the compo-
nents with respect to bases adapted to the real dynamics and
therefore better suited to taking into account pair correla-
tions.

Precisely such a possibility is presented by functional
differential equations that contain as an operator a two-par-
ticle reduced Hamiltonian, the construction, spectrum, and
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eigenfunctions of which can be readily determined. Expan-
sions of the many-particle wave functions with respect to
such a basis is the very foundation of the reduced-Hamilto-
nian method.

1.PERMUTATIONAL SYMMETRY OF THE SCHRODINGER
EQUATIONFOR ASYSTEM OF IDENTICAL FERMIONS

Faddeev’s differential equations for a system of three
bodies,'""*

(Ho’}' er*E) chr. == _Va E Cpm
[

where the notation of Ref. 18 hasbeen used, form a system of
three equations corresponding to the three possible parti-
tions a = (1)(23), (2)(31), and (3)(12). The formal deri-
vation of these equations consists of representing the wave
function ¥ as a sum of components that each has the form

M, = — Ry (E +i0) V¥,

and of applying to both sides of this equation the operator H,
— E. This leads to an equation convenient for subsequent
calculations:

(E - H)y®, =V, V.

Fora = (1)(23), V,, in this equation is simply the po-
tential energy V5, of the interaction between the second and
third particles.

In the case of three particles, the components of the
wave functions are uniquely determined after specificiation
of the asymptotic boundary conditions.

For four or more particles one can also determine parti-
tions of the same type (@, ), the corresponding compo-
nents, and a system of equations for them:

(B — Ho) Oy, = Vo, ¥ (1)

In contrast to the case considered above, in order to
obtain equations equivalent to compact integral equations
for scattering problems a further reduction of the compo-
nents, corresponding to different types of partitions, is nec-
essary.

Because we are mainly interested in bound-state prob-
lems, we shall restrict ourselves to equations of the type giv-
en above.

Each of the equations in (1) can be characterized by a
definite distinguished pair, and the sum of alt ¥(N —1)/2
equationsisidentical to the Schrddinger equation. If the par-
ticles are identical, all the equations are identical. If an equa-
tion of such type were equivalent to the Schrodinger equa-
tion, this would be the simplification mentioned in the
Introduction.

It is worth pointing out a further feature of these equa-
tions. The wave function of a many-fermion system must be
antisymmetric. If the partition @, , is particularized in
such a way that the pair (N — 1, N) is distinguished, then
the antisymmetry of the right-hand side is spoilt (by the
presence of ¥, | y )—it is antisymmetric only with respect
to permutations of the variables in thesets (1,2, .. . , N — 2)
and (N — 1, N) separately. Because of the symmetry of
E — H, it follows that the component must also have the
symmetry characteristic of the right-hand side, i.e., the de-
gree of its antisymmetry is lower than for the wave function.
This is the key to the further simplifications.
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Before we turn to their exposition, we introduce nota-
tion more convenient here. We shall denote the antisymme-
tric function of a system of & identical fermions by @(1,
2,..., N), and the component with the antisymmetry just
described by ®(1,2,...,N —2; N — 1, N), i.e., we shall use
the semicolon to separate groups of single-particle indices
with respect to the permutations of which the function is
antisymmetric. With this notation, the last equation takes
the form

(E—H)®®A, .... N—2 N —1, N)
=Vyax®d, ..., V. (2)

The origin of this and other equations for the compo-
nents may be different from the formal derivation given
above. To demonstrate this, we draw attention to a connec-
tion between the degrees of antisymmetry of a component
and the wave function. The operator that antisymmetrizes
the component in our case belongs to the left cosets with
respect to the subgroup S , XS, of the group S,,"”

Xl. o N=2; N1, N

N-2
N

:( 2 )_i {1+ 2_: (PI’N-ippN‘l'PpNPpN—t)

p==1

N-2
+ 2

P Pe=1(2y<Dy)

Poyy- 1P} (3)

Here, P; are transposition operators that interchange
all the single-particle variables of particles / and /.

Using it, we can not only write the wave function as a
sum of components,

@, ..., N

=Xi vy ®@, N —2% N1, N),

(4)

but also represent the many-particle Hamiltonian as

vig=Hy + Xy nessnea, 5V, w

where
N
VNﬁi,N“'T‘( 2 ) Un—1, n+

After substitution of these last expressions in the Schro-
dinger equation, it can be represented in the form

Xiovawa w0V @@, .., N—2;, N —1, )
—(E—-—Hy®d, ..., N—2; N —1, Ny} =0.
(5)

The operator  which appears in this expression is, like
X, a certain sum of operators of permutations of the single-
particle variables. It is determined from the condition

@ e
X(lf,'.)...;\'_ﬂ.: N-}.,:\'X{i,.)... nomv-1, v = Xy, voey vy, w0 (6)
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Here, the symbols (4) and (¢) appended to the opera-
tors mean that they act on the variables in the Hamiltonian
and in the wave functions (or components), respectively.
The absence of symbols means that an operator acts on the
variables of all the functions to its right. Even for three parti-
cles, Eq. (6) has several independent solutions.' The only
ones that are valuable are those that keep the same permuta-
tional symmetry of both terms in the curly brackets of the
expression (5). For any &, they include the solution

QZXT?)...,N-E;N—LN‘ (7)

It is readily seen that Eq. (2) can be obtained from (5)
by substituting in the latter this expression for ¢ and elimi-
nating the operator X. The validity of such an operation for
functional differential equations will be proved below. In the
considered case this operation can be immediately under-
stood and justified as follows. Equation (5) can be repre-
sented schematically in the form

Xy it i wom W =8N 1, M} =0.

(8)

Hence the attempt to antisymmetrize % gives zero, and
this can occur only in two cases—either when 77 possesses
some further symmetry, a possibility which contradicts the
definition of a component, or when it is identically zero. This
also makes it possible to simplify the Schrodinger equation
for a system of identical particles. The remaining [different
from (7)] solutions for Q (see Ref. 19) lead to solutions of
different types, among which one can readily recognize dif-
ferent variants of the three-particle scattering equations.

For N> 3 Eq. (2) can be reduced, by a further reduc-
tion of the symmetry of the compaonents, to the form of dif-
ferential equations of the theory of many-particle scattering.
For four particles such a reduction is carried out in Ref. 19,
Thus, the equations can be obtained not only as a result of
the well-known method (Schridinger equation; integral
equations of the theory of many-particle scattering; differen-
tial equations for the components), but also directly from
the Schridinger equation exclusively on the basis of an anal-
ysis of its symmetry and the possibility of a representation in
the form (5), i.e., omitting the intermediate link. Of course,
then there arise two old problems— the determination of the
asymptotic boundary conditions for the components and the
proof that the final equations are equivalent to the original
equation. As is well known, the equivalence is usually
proved precisely at the intermediate stage, so that for the
equations formulated below this is a nontrivial problem. In
what follows we shall not consider the first of these prob-
lems, since we restrict ourselves to the case of bound states,
for which it can be solved trivially.

2. FUNCTIONAL DIFFERENTIAL EQUATIONS

It is readily seen that the expression (5) can also be
simplified by a partition into two-particle fragments in ,, as
well, i.e., by using the representation

‘N’

Hy = ¥ hyj=Xq .. N-Zi N, N

i g—=1i<i)

N
Hy i n= ( 9 ) Py, -

H yep, 30
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This makes it possible to cast the Schrodinger equation
into the even simpler form

r-g; N—t, N {QHN_LN(D {1y o way N — 2: N —1, V)
— E® (1, SN2 N—1, M)} =0

All that was said above about equations of the type (5)
applies also to this equation, and this means that if we equate
to zero the expression in the curly brackets and thereby de-
termine the component, then the wave function constructed
from the sum of these components with permuted single-
particle variables [ theexpression (4) ] will satisfy the Schro-
dinger equation for the same eigenvalue E. In Ref. 19 a spe-
cial case (ground state of a system of three one-dmensional
particles with oscillator interaction) was considered, and so-
lutions were obtained for these equations for all Q that satis-
fy Eq. (6). It is interesting that for different Q different ex-
pressions for the components are obtained; this is natural,
since the representation (4) is a partition of the wave func-
tion into a finite number of terms. The mutually independent
partitions of such type are determined by the type of the
equations for the components, which in its turn depends on
Q. The simplest possible solution of Eq. (6) is determined in
the expression (7). In what follows, we shall use only this
solution. In such a case the functional differential equations
have the form

HN-l._\'Xl,,”,N—‘:;N-1,.\‘(I) Gy oo s ¥ =5 N =1, )
= Ed (1, G N =258 —1, N) &)

Compared with the many-particle Schrodinger equa-
tion, the many-particle Hamiltonian is here replaced by the
reduced two-particle Hamiltonian, and the unknown is no
longer the many-particle wave function but is a component
with a lower degree of antisymmetry.

Before we turn to the proof that these equations are
equivalent to the original Schrodinger equation and investi-
gate the properties of their solutions, we shall determine the
form of the reduced Hamiltonian for the simplest systems,
and also the types of variables on which the component de-
pends.

If the problem is such that there is no need to separate
the center-of-mass motion of the system, and single-particle
variables can be used, then every natural number / denotes
the necessary discrete (spin, isospin, etc.) variables of parti-
cle / and also its spatial variables.

If the many-particle Hamiltonian is

o I N N
"E%EAi+ELIi+ » Vin

d=1 d=1 i, J= (i)

Hy . n=—

then the reduced two-particle Hamiltonian is defined as

H.N—i,N
=(3 N{7=l-

+ITN—1.N}- (10)

.r2
B (Bt Ay + Uyt Un |

For an atom with a fixed core and in the approximation
of a simple electrostatic interaction, a scaling transforma-
tion of the single-particle variables makes it possible to re-
duce this Hamiltonian to the form (apart from a factor) "'
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of the Hamiltonian of a certain “two-electron atom™ with
“charge of the nucleus” equalto Z* = Z /(N — 1), where ¥V
is the number of electrons, and Z is the charge of the nucleus.

But if it is necessary to ensure translational invariance
of the wave function, we shall assume that ®(1,..., N)
represents the internal function, i.e., does not depend on the
center-of-mass coordinate. As internal variables we shall use
the system of normalized Jacobi coordinates determined
from the corresponding tree'”** with 2N — 1 vertices, of
which N vertices are of the first degree. They must be placed
on one line and labeled by the numbers 1, 2, ..., N, which
correspond to the single-particle coordinatesr, ry, ..., Ty.
The remaining N — | vertices (arranged below the first
group) have the order two or three, are identified by the
numbers 1, 2, . .., N — 1, and denote the Jacobi coordinates
found for vertex 7 in accordance with the formula '

Ei= /- Pq! [Pz E 1""“‘ z r]],

E e (a5}
where p, is the number of vertices of the first degree that can
be reached by moving from vertex i upward along the left-
hand line, {p, } is the set of their numbers, and g, is the same
for the right-hand line.

Such a system of Jacobi coordinates is very convenient
because if one determines

N

MNP

i=1
then the transition from the single-particle coordinates
r,....I'y to the system &, §,,....§y is determined by an or-
thogonal matrix. The transition is made in the same way
from one set of Jacobi coordinates to another obtained after
permutation of the single-particle coordinates.

After the construction of the Jacobi coordinates, it is
necessary to associate with each of them certain spin and
isospin coordinates (&; and 7, ), being guided by the follow-
ing rule'’: The number of single-particle spin—isospin vari-
ables to be associated with a vertex corresponding to a defi-
nite Jacobi coordinate is to be equal to the number of vertices
of first degree that are directly connected to the given vertex.

We shall impose on all the Jacobi trees that are to be
used below one further condition—the last two vertices, cor-
responding to the variablesry , and r,, must be connected
directly to a vertex of third degree, i.e., the last Jacobi coor-
dinate must have the form

§N—1 == !_12

In such a case the reduced two-particle Hamiltonian is

particularly simple:

s = (3 ) [ =5 .

+V ( 1/2— Evots GNﬁiTN-iaNTN).] , (11)

(Xyoy —Ty).

i.e., it is a single-particle operator of Hamiltonian type. Fol-
lowing the recommendations that have been given, we shall
group the variables in a component of such type as follows:

D (Eys « - w5 Ey—gs GrTy o s
(Er—t TN Tt Ty Ty)-

O n—2T N—2;

When the operators of permutations of the single-parti-
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cle variables are applied to the Jacobi coordinates, they gen-
erate orthogonal transformations of them, and therefore the
construction on the left-hand side of the expression (9) has a
fairly complicated form.

For clarity, we shall write out all these equations in the
case of a system of three one-dimensional particles with an
interaction that does not depend on the spin—isospin vari-
ables. In addition, we shall consider the case when the spin—
isospin part of the wave function is completely symmetric. In
such a case, the Schridinger equation has the form

(&2 vE+v(-Lea—1u) -
+7 (Bt~ &)} Y&, B —EYE. B

The wave function can be represented as a sum of three
components:

WE B =D B+ O —4 g+ Ve,

LS TN

7 T3

ro(-5u-RuBa-4a).

Here the Jacobi coordinates are

1 1
Et':'],_ﬁ(l”r}“xz*zxah E =-l,_§(5'72—$a)-

The only condition for the components is that
D (5 —Es) = — @ (&5 Ea).
In this case Faddeev’s equation has the form
. 2 32
V@)Y E &)= {E+ g+ 55} P &),
and the functional differential equation is

(—F =+V @)} Y@ B =E0E; &),

It can be seen that the action of the permutation opera-
tor leads to transformations of the arguments of the compo-
nents, and therefore the equations must be called functional
differential equations.”™** However, it should be noted that
their type is very special and has hitherto not been studied. It
1s precisely this circumstance that ensures that they have
unique solutions in at least the space of square-integrable
functions.

A characteristic feature of Egs. (9) is the presence in
them of only one simple operator of Hamiltonian type—the
reduced two-particle Hamiltonian. If the interaction
between the particles were a three-particle interaction, we
would have a reduced three-particle Hamiltonian, and so
forth. In any case it is the minimal essential part of the many-
particle Hamiltonian, from which the latter can be uniquely
recovered. One can also readily choose the operator X in an
appropriate manner and arrive at analogous but more com-
plicated equations.' In the case of a two-body interaction
the reduced Hamiltonian is, as we have already noted, excep-
tionally simple, and its eigenvalues and eigenfunctions can
be calculated with any accuracy. It is this circumstance that
suggests the method of solution of the equations based on
expansion of the components with respect to this basis, i.e.,
a complete system of antisymmetric eigenfunctions of the
problem
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(H vy, v — €] Legp (N — 1, N)=0. (12)

Here, 4 labels the set of exact quantum numbers—the
eigenvalues of the complete system of operators that com-
mute with the two-particle reduced Hamiltonian. In the case
of realistic internucleon interactions, for example, we have
the quantum numbers jwstn, (total angular momentum,
parity, spin angular momentum, isospin moment, and pro-
Jection of the two-particle isospin). The projections of all
quantum numbers having the character of moments and an-
gular momenta on which the eigenvalues £ of the problem do
not depend are denoted by g. {In the given example the only
such quantum number will be the projection m; of the total
angular momentum, since the form of the Hamiltonian does
depend on m,—in the case of a system of two protons it is
necessary to take into account their Coulomb interaction.)

In general, this complete system will consist of func-
tions of both the discrete and the continuous spectrum.
However, one can facilitate the further treatment and make
a restriction to square-integrable functions. For we merely
need to point out that the entire proposed formalism is de-
signed for the description of bound states of a system. There-
fore, the functions of the continuous spectrum of the prob-
lem (12) serve only for expansions of the square-integrable
components. In such a case it is entirely justified to introduce
a different boundary condition that makes it possible to con-
struct a complete orthonormalized basis in the interior re-
gion consisting of square-integrable functions. For this it is
sufficient to require vanishing of all the functions £ at some
interparticle distance R,. The value of this distance can be
chosen in such a way as to satisfy the following conditions.
First, R, must be appreciably greater than the characteristic
ranges of the two-particle potential, and also greater than
the dimension of the complete system. Second, it is expedient
to choose R, in such a way that the values of the negative g,
calculated with reasonable accuracy, are not sensitive to a
further increase of R,,. The practical fulfillment of these con-
ditions in any case does not present difficulties.

Before we turn to the expansion of the components, it is
necessary to put the notation for them in order. For simpli-
city, we have until now omitted identifiers of the investigated
state of the system, i.e., the exact quantum numbers, from all
wave functions and their components. We must now rectify
this shortcoming, bearing in mind that each component
must be characterized by the same quantum numbers as the
corresponding wave function. The set of quantum numbers
will be different for different particular systems, since it de-
pends on the particle species and on the nature of the interac-
tion. In the case of a nucleus, for example, the set will consist
solely of the angular momentum, parity, and isospin projec-
tion. The simpler the potential, the richer the set. If we de-
note all this by the single letter A and all the necessary pro-
Jjections of the quantum numbers having the character of
moments and angular momenta by the letter M, the com-
plete set of identifiers of the state of the system will be EAM.

In such a case, the expression for the component takes
the form

Dgan(l;

:g XEAM‘EML('L ey N_z)galu(!\’r_ia N)-
i

oo N—2 N1, N)
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The antisymmetric functions of the first N — 2 Jacobi
coordinates and discrete variables appearing in this expan-
sion are defined as

Yean, eap (1, ..., N—2)

= E \ d%n’-igghu (N* 1, N)

ON-1ONTN_1TN

XrDEAﬂI(iv R | N_Z;Ng‘i, N).

The summation and integration here are over all the
variables of the functions £. We expand them with respect to
any complete orthonormal basis of square-integrable func-
tions that depend on the same variables in accordance with
the formula

LEAM, EAL (11 sy N——2)
EAJ
= 2 et andimi (e oo N —2),
TAM

We have here introduced the notation T for all the re-
maining quantum numbers needed to ensure completeness
of the basis. The coefficients of this expansion must satisfy
the obvious condition

gay _oma [A R A
TAM, ehp = UTA, &R M u M 3

where the factor on the right is the product of Clebsch—Gor-
dan coefficients for quantities having the character of mo-
ments and angular momenta and Kronecker deltas for pari-
ties, isospin projections, ete.

With allowance for these expansions, the expression for
the component can be represented in the form

Dpam(l, ..., N-2; N—1, N)

-*-_2- cfEf.ﬂ(D(E& anam(Ly oo N =25 N—1, N),
A, gL
(13)
where
‘D(fi, emAm(l’ oo N—=2; N—1, N)
= " YFam (1 N —2) G (N —1 N)KAA
Tf,!l TAM 9wy =gl ] 7],? “' ﬂff .
(14)

If we substitute this expression in Eq. (9), multiply
both sides by

Dz aant (s - s N=2; N—1, N),

integrate over all the Jacobi coordinates, and sum over the
discrete variables, the equation takes the form of a general-
ized algebraic eigenvalue problem?®:

£Xe = cE. (15)

The rows and columns of the matrices that occur in this
expression are denoted by the set of quantum numbers
(CAegd).

Ifthe dimensions of the employed basisis n, then g, _, is
a diagonal matrix constructed from the eigenvalues of the
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operator Hy | y. Itis expedient to arrange them in a nonde-
creasing order. This makes it possible to select a convenient
order for the basis functions that are taken into account.

The matrix X, , is symmetric and real, and its ele-

ments are determined in accordance with the formula

g &
\ dQNq)(fK,sx)A M

(1y ooy N—2; N—1, N)
N-—

% X1, ... =2y =1, ¥DGampmeyang My <o 2 N—1, N).

(16)

It is obvious that it is diagonal with respect to A and
does not depend on M.

The column vector ¢, ., consists of unknown coeffi-
cients present in the expression (13).

The matrix X itself has numerous properties whose in-
vestigation is very important for what follows.

First, the operator X defined by the expression (3) isa
projection operator, i.e., it satisfies the condition

Xy v-2ineg N (17n

2 i
XI,...,,\'-zl N-1, N T

This can be seen by noting that every suitably normal-
ized antisymmetrizer

|
A, ....v=57 X 8p:P
PESy

(& is the parity of the permutation P) is a projection opera-
tor and contains antisymmetrizers of all possible subsys-
tems, i.e.,

Ar'l,--—.w,n_.fii,---, v =4

if k<N, 1<p, <N, p,#p;.
To prove (17), it is now sufficient to recall that

Ay = Xi,...,x-m\'—i,.\'—li....,.\uafl Nefy N - (18)

Because of the reality and symmetry, the matrix of such
an operator will be a projection in the employed basis.*® This
means that its eigenvalues will be only zeros or ones, and the
eigenvectors y“ corresponding to the unit eigenvalues will
form an orthonormal system. Therefore, X itself can be rep-
resented in the form

r
X= N y*.yo+=F-F. (19)
a=1

Here, ris the rank of the matrix, and is simply equal to
its trace. The matrix F, ., is formed by the vectors y™

F = ” ylyﬁ e ¥ “
The plus sign denotes the transpose. In addition,

F+.F = 1. (20)

For some of the calculations in what follows it will be
convenient to construct the matrix € in such a way that it is
positive definite. To achieve this aim, it is sufficient to note
the obvious property of the equations that if some constant d
is added to the two-particle reduced Hamiltonian, its eigen-
functions are unchanged, while all the eigenvalues are shift-
ed by the same amount. In particular, the value of d can be
chosen in such a way that all the € in (12) become positive.
As a result of such an operation, the spectrum of the entire
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system is shifted by the amount dN(N — 1)/2 and the ex-
pressions for the components are changed, though the total
function preserves its form.

In what follows we shall assume that such an operation
has already been carried out in Eq. (15).

For a diagonal and positive-definite matrix £ it is also
easy to determine the matrices £'> and £ ~ * and reduce the
equation to the form of a simple algebraic eigenvalue prob-
lem:

gl/? [gV2FF+el/? — E, ] e1%ex = (),

The n X n matrix ¢'/>FF "&'/? in this expression is real
and symmetric, and therefore all its eigenvalues are real.
They include at least # — r zero eigenvalues, while the re-
mainder will be equal to the eigenvalues of the 7 X r matrix
F*¢F.”® We denote the orthogonal matrix that diagonalizes
it by G, and the diagonal matrix of eigenvalues by E, i.e., we
define

G+F+eFG = E. 21

It is now easy to show that E is a positive-definite ma-
trix. We return to the original problem

[eFF+ — E, ] ¢* = 0.

In the brackets here we have an n X n matrix, but, as we
have just explained, only its eigenvectors that correspond to
nonzero values E, are of value. It is easy to show that they
are the columns of the n X » matrix €FG, i.e.,

¢ = (eFG)yas (22)

and the corresponding eigenvalues are
£y~ (G'F*eFG),,.

The system of left eigenvectors is formed by the r rows
of the matrix G ' F ' . After an appropriate normalization,
one can make these systems quasibiorthogonal.

The expression for the system of orthonormalized wave
functions is unexpectedly simple in such a formalism. Ele-
mentary application of Eq. (4) makes it possible to conclude
that they correspond, as they must, to the same matrix of
eigenvalues (21) and are columns of the matrix

FG. (23)

Each of these functions is antisymmetric, since it corre-
sponds to a unit eigenvalue of the antisymmetrizer of the
complete system. This property of theirs can be proved by
using the expression (18), the properties of the basis (14),
and the fact that

X.FG = FF+FG = FG.

In the antisymmetric basis the matrix of the Hamilto-
nian of the system is equivalent to the matrix of the operator

H oy

and therefore (21) indicates its diagonality.

This means that each of the basis functions—the
columns of the matrix (23)—is an eigenfunction for the
Hamiltonian of the system.

It only remains to show that the Schrdodinger equation
does not have other solutions apart from those determined
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by this expression.
If we omit the indices and arguments that are here un-

important, the equation for the components can be repre-
sented in the form

RY®, — E®, = 0. (24)

Here, Y is the operator in the curly brackets in (3).
As was shown above, it is obtained if the complete
Schrodinger equation is written as

Y (bY® — E®) =0 (25)

and vanishing of the expression in the brackets is required.
This operation leads to a unique expression for the compo-
nent @, [the solution of Eq. (23)] and the wave function,
which by definition is

¥ = Y,

It is obvious that Eq. (25) can in principle also have
other solutions (components of the wave function) for
which

KY®; — ED, = J; (26)

vi=0. (27)

Here, fis any function with the required symmetry cor-
responding to the symmetry of the left-hand side of (26) that
satisfies the condition (27). Because of the positivity of all
the possible E values and the condition just mentioned, Eq.
(26) can be represented in the form

By (@, +1)—E +4-f)=0.

Thus, itis equivalent to Eq. (24), the solutions of which
are unique:

CDD:(D,%-‘%;‘.

This means that for each possible fwe obtain a different
expression for the components, but they all correspond to
the same eigenvalues of the Schriodinger equation and the
same wave function, since

¥ = Y@, = YO,

Concluding the study of the properties of the solutions
of the functional differential equations, we must point out
some important features of them.

The key aspects in the solution of the equations are,
obviously, the construction of the projection matrix X and
the determination of its spectral expansion (19). Taken to-
gether, these operations are equivalent to the traditional
problem of calculating the coefficients of fractional parent-
age.”” The connection with the original dynamical problem
is ensured here by the fact that the basis in which X is defined
is an eigenbasis for the reduced Hamiltonian. This makes it
possible subsequently to avoid all operations with the Ham-
iltonian or its fragments. In what follows we shall present
effective methods for determining both exact and approxi-
mate spectral expansions of X. With regard to its actual cal-
culation, there are here important simplifications, due in the
first place to the fact that the basis yTAM(1,...,N — 2) has
not yet been particularized and can even be chosen in such a
way that the nondiagonal elements of the matrix of the Ham-
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iltonian become minimal. If, as is usual, the original basis is
not associated with the dynamics of the actual system, such a
result cannot be achieved at this stage. The only inconven-
ience that then arises is associated with the need to ensure
antisymmetry of the corresponding functions y, which de-
pend on the coordinates of the first N — 2 particles. It is most
convenient to solve this problem by using components with
minimal antisymmetry and the equations for finding them
determined in Refs. 19 and 27. The antisymmetry of these
components is specified by the Jacobi tree. This means that
the bases for their expansion require practically no further
antisymmetrization, since the variables are divided into sub-
systems, each of which contains not more than two sets of
single-particle spin—isospin variables. Of course, this is ac-
companied by a growth in the dimension of X, but the funda-
mental difficulties due to the need to antisymmetrize the
basis are solved. The equations for such components are ob-
tained by eliminating from the Schriédinger equation the fol-
lowing fragments of the antisymmetrizer in the same way
that the operator X was eliminated at the first step. One can
prove the existence of unique solutions of these equations
and their one-to-one correspondence with the solutions of
the Schriddinger equation.””

3.VARIOUS APPROXIMATIONS

The point of departure for the practical application of
our method is the calculation of the spectrum and eigenfunc-
tions of the reduced two-particle Hamiltonian. For the oper-
ator (11) this problem can be solved with any accuracy by
direct numerical integration (see Refs. 28-30). For systems
in an external field it is more complicated, and to achieve the
desired accuracy it is necessary to use either variational
functions or the well-known method based on expansions
with respect to a fixed single-particle basis. However, the
second method does not have such good convergence.

Below, we shall give arguments based on study of the
physics of particular systems that offer hope that a reasona-
ble result for the energy of a many-particle system can be
obtained by taking into account a small number of excited
states of the reduced Hamiltonian and that the convergence
when the set of such states is extended must be good.

The second problem is to construct the matrix X. At the
first glance it might appear that with increasing N the num-
ber of terms in the expression for the operator X becomes
catastrophically large and that calculation of the integrals in
accordance with (16) will be most laborious. Fortunately,
this is not so. Because the basis has a high degree of antisym-
metry, the integral of the operator X is equal to the integral
of the operator (see, for example, Ref. 21)

Ny-1 N-—-2 1
(2) [1—2(N—2)PN-2.N+( 5 )PNuB,anPN—2.Nl'

Thus, in any case one must calculate not more than two
integrals of different permutation operators. In addition, the
matrix X is a projection, i.e., it has characteristics known in
advance. In modulus none of its elements can be greater than
unity, its trace is equal to its rank, and the sum of the squares
of all the elements of any row (column) is equal to the diag-
onal element.

On the other hand, its dimension must be high, and in
the cases of greatest practical interest may even be infinite,
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and therefore there can be no talk of constructing the entire
X and then finding its spectral expansion. It will be shown
that for this purpose it is sufficient to calculate its fragments.

The problem of the spectral expansion of X (19) con-
sists of finding an orthonormalized system [the condition
(20)] of its eigenvectors corresponding to eigenvalue equal
to unity or, in other words, in calculating a rectangular ma-
trix F of dimension r X r that satisfies the condition

XF =F.
Because X itself is a projection,
X-X =X, X+ =X,

and this means that each of its columns is an eigenvector
corresponding to unit eigenvalue. Unfortunately, they are
linearly dependent and not normalized, though these are
problems of a different level of complexity, and their solu-
tion is fairly simple. The maximal number of linearly inde-
pendent vectors of the matrix X is r, and this makes it possi-
ble to restrict the calculation to not more than » linearly
independent rows of the matrix, i.e., a fragment of dimension
rx n, which can be denoted as (X,,X,,), where X, is a
square r X r matrix, and X, is all the remainder. It is readily
noted that because the matrix X is a projection its fragment
X,, is the Gram determinant of these r vectors. As is well
known, to construct an orthonormal basis it is sufficient to
diagonalize this Gram determinant, and simple calculations
lead to the result

( DZi*
F = ,
XfDZi ! )

where D is the matrix that diagonalizes the Gramian (X, ),
and Z,; is the diagonal matrix of its positive eigenvalues, i.e.,

D+X11D —_— Zil!
In such a case the matrix of the Hamiltonian
F+£F,

whose eigenvalues give the spectrum of the many-particle
Schrédinger equation, takes the form

E =Z7{"D" {X 8 Xy, 4 X 58, X5} DZT . (28)

In the previous expression € is the diagonal matrix of
eigenvalues of the reduced Hamiltonian, arranged in nonde-
creasing order in accordance with the order of the basis func-
tions (14). This matrix can be split into two diagonal subma-
trices, namely, €_, which contains the » minimal
eigenvalues, and €, which contains the remaining # — r.

After diagonalization of (28) by means of some orthog-
onal matrix G [of dimension rXr] we obtain a spectrum
containing the r lowest eigenvalues of the Schrodinger equa-
tion. The corresponding eigenfunctions are the columns of
the rectangular matrix

: DZi’G
\XEDZi %6 /)

These results are obtained in the approximation of a
finite rank of the matrix X. When this rank is increased, even
calculation of the fragment (X, X, ) may present great dif-
ficulties, and it is therefore necessary to consider approxima-
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tions. The first of them is to consider the case when one can
calculate only m(1<m<r) rows of this fragment, i.e., when
the dimension of X, is m X m. We complete the calculated
part to a projection matrix; then

X(Xu X12)
XL Xy

where X,, is an unknown (n — m) X (n — m) submatrix.
As before, we introduce an orthogonal m X m matrix D
which diagonalizes the Gramian of the first in rows, i.e., X s
As a result of this operation we obtain a new projection ma-
trix

) 30
o 1/ \Xy, %,/ V01

D*X,,D DX £, 2
_ (H. :1 - 12) :(Nu Niz) ' (29)
XLD X, zi, Z,,

Its spectral expansion can be represented in the form

(B ) (5 K5
Koy Koo/ K}, Kp) 700

The matrices here have the following dimensions:
mxmfor K, ;;mx(r—m)forK,; (n —m)xXmforK,,;
(n—m)x (r—m)forK,, If m=r,thenK,; =0and K,,
=0, and we obtain results as in the previous case.

It is readily noted that there is considerable freedom in
the choice of K, since

KK+ = (KR) (KR)* = MM+ (30)
if the transformation is orthogonal, i.e.,
RR+ — R+R = 1.

This does not contradict the conditions of the spectral
expansion, since by virtue of

K+K =1
we also have
M+M = (KR)* (KR) = 1. (31)

As is well known, the orthogonal rXr matrix R has
r(r — 1)/2 free parameters. This fact makes it possible to fix
arbitrarily the same number of elements in the matrix M.
The optimal requirement is to make the upper triangle of this
matrix identically zero. Then M, = 0, and the upper trian-
gles M, and M,, must be filled with zeros. In such a case
the conditions (30) and (31) lead to the results

Mu:zﬁﬂ« M2,=ZEZ;[ fﬂ_ (32)
M;—1A 29 — 0 (33)

This makes it possible to represent the matrix of the
Hamiltonian in the form

% (1\1;1D+E.D;\1[1+M;1s+1\121 MM\ -

M2, My, M M.,/

Here, as before, the matrix € has been partitioned into
submatrices: £, which contains the m smallest eigenvalues
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of the reduced Hamiltonian, and & , , which contains the
remaining n — m.

The transition that we have made to the matrix M has a
deep physical significance. The point is that our basis states
are in nondecreasing order of £,, the corresponding eigenval-
ues of the reduced Hamiltonian. The diagonality of M, and
the fact that M, = 0 mean that only the first m columns of
M (each of them describes a definite state of the system) are
characterized by nonzero probabilities of the /1 lowest states
of the reduced Hamiltonian, and this ensures the sinking of
the corresponding eigenvalues. The diagonal submatrices E
(34) are clearly separated in accordance with the regions of
distribution of their eigenvalues, while the nondiagonal sub-
matrices are suppressed by virtue of the condition (33). Itis
therefore unnecessary to diagonalize the complete E; only its
m X m submatrices need to be diagonalized. If m = r, this
leads to the exact result (28); in other cases, as is shown by
model calculations to be mentioned below, there is reasona-
ble convergence. In other words, such an approximation
corresponds to the assumption that the rank of the projec-
tion matrix X is 1, i.e., is equal to the number of rows that
one can calculate. Thus, the considered variant is a special
case of the first one. They both lead to upper bounds for the
energies. As m —r the results converge to the exact values
from above, since this operation corresponds to extension of
the basis. In such a case the most accurate result corresponds
to the approximation of finite rank r, and this, in its turn,
gives only an upper bound on the true exact value if the
problem in fact has infinite rank.

It could be that one of the most important aspects of the
method is that it enables one to obtain, even more readily
than upper bounds, lower bounds for the energies that con-
verge to the exact values, and also the corresponding wave
functions. The idea here is very simple. For a start we illus-
trate it by the explicit example of the expression (28). As we
said above, the eigenvalues of the reduced Hamiltonian in
the matrix £ are arranged in nondecreasing order. This
means that any element in the matrix € |, is not less than the
(r + 1)th eigenvalue, i.¢e., €, | ;. Now the approximation

£y = €r+1'1

leads to lower bounds. Moreover, the second term in the
curly brackets is in this case equal to

o >
Err1 XXy, = &4 (X — X5).

This is true for fragments of any projection matrix. Ulti-
mately we find that in the expression for the matrix of the
Hamiltonian leading to the lower bounds only X, occurs,
i.e., the lower bounds can be determined for problems of
infinite order, when X, cannot be calculated even in princi-
ple, since it contains an infinite number of elements. Of
course, in this case one cannot completely determine X,
either, since the matrix of X will certainly be infinite. How-
ever, it is readily noted that even in this case, when only part
of the matrix X,,, whose dimension is m Xm (1<m<r), is
determined, the approximation

£p = Ep4q° 1
leads to exact lower bounds, since because of the condition
(33) the nondiagonal submatrices of the matrix E deter-
mined by the expression (34) are zero, and its essential part
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with the minimal eigenvalues can be expressed in the form

Ey =Z12De D7V 1e,,, (1 —Z,). (35)

To obtain the expansion with respect to the employed
basis states of the corresponding wave functions, it is neces-
sary to look at this problem from a somewhat different point
of view.

It is readily noted that all the previous treatment was
based on the fact that the projection matrix X or at least
some of its rows have already been constructed. The various
approximations concerned only its spectral expansion if the
available information was not sufficient to obtain an exact
result. In this last case we have already assumed that we
know only a square submatrix whose dimension is apprecia-
bly less than even the rank of X, which, incidentally, is also
unknown. Now it is necessary to have recourse to approxi-
mations of the projection matrix itself (its recovery from a
known fragment), since otherwise our formalism cannot be
applied. Thus, the 7 X m fragment X, has been calculated.
It belongs to a projection matrix, and therefore must have
very specific properties. First, if any one of its diagonal ele-
ments is zero, then the entire row must also be identically
zero, even though it is infinite, and so must the entire column
at the intersection with which it stands. The same picture
must be observed when the diagonal element is equal to uni-
ty. The first case (zero on the diagonal ) means that this basis
state must be excluded from consideration, since it cannot
appear in the expansion of any antisymmetric function,
while the second case means that this basis function itself is
already antisymmetric and can be considered separately. If
an orthogonal transformation is applied to the projection
matrix, these properties are preserved, so that without loss of
generality we can assume that all the eigenvalues of the sub-
matrix X, are greater than zero but less than unity, The
problem is to determine in the simplest possible way the sub-
matrices X,, and X,,, which complete X, to a projection
matrix, and to find its spectral expansion, i.e., the simplest
missing fragments X and F connected by the relations

& FXuX F\ con oam
X ;(mf’w_ = ) — (N‘) (FIF!) = FF+;
X1 Xgs
FF=1.

These conditions already include the requirement of
simplest continuation, since the rank of X is taken equal to
the rank of X,,, which in accordance with the adopted re-
strictions is equal to its order, i.e., m. It is convenient to
apply a transformation of the type (29), which diagonalizes
X, , to X. After this we immediately find from the projection
condition that

ZmZ;z =Zy— Zir

The simplest solution of this equation is

Zm = Z;z = [ﬁiu (1 ﬁiu)]i’fz-

Even more readily we find that

For the matrix of the Hamiltonian the already known
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result (35) is obtained. If it is reduced to diagonal form by
means of a diagonal matrix G, then its eigenvectors are the
columns of the matrix

~ 1,’2G
fﬁ( )
(’l—Z“)UzG

The essence of the employed approximation is that only
the first m basis functions are exactly known, while the re-
mainder are not determined. Our result makes it possible to
conclude that there exists a possibility of choosing them in
such a way that the wave function becomes antisymmetric.
The only thing known about these additional functions is
that the eigenvalue of the reduced Hamiltonian for each of
them is not lower than¢,, _, [thefirst m minimaleg; (£,< ¢

. €€, ) correspond to the basis functions taken into ac-
count]. It is this fact that was used to find the lower bounds
on the eigenvalues of the many-particle Schrodinger equa-
tion.

Itis well known that the Hall-Post method of obtaining
lower bounds®'*? is ultimately based on giving up the anti-
symmetry of the wave function. The imposition of subsidiary
conditions on the densily matrix’® makes it possible to im-
prove these results, but a possibility of constructing lower
bounds that converge to the exact values appears only as a
result of application of the above method, in which antisym-
metry of the wave function is ensured but some of the basis
functions remain undetermined. It is important that the
expression (36) makes it possible to calculate the total
weight of these functions, which gives a qualitative mea-
sure—the degree of its uncertainty. For the state / (column {
of ) it is

(36)

m ~ —~
gi= ij [Gril> (1 —Zyy)ppe

The weight of the known basis states is 1 — g, since
each wave function is normalized to unity.

4.SOME RESULTS
In any approximation the method described here for
solving the many-particle Schriédinger equation leads to a
very simple expression for the energy of the system:
EA:ZEiwi,A- (37)

1
Here, £, are eigenvalues of the reduced Hamiltonian,
and w, , for bound states satisty the condition

w;, 4220, E wi, 4 =1
(3

and therefore can be interpreted as the probabilities of occu-
pation of the different / in the state of the system A.
The standard expression of such type has the form

Er= E t;, 503, 43 As
1, 7
where ¢, ; are quantities of the type of Talmi integrals, while
g;..» are coeflicients that are not amenable to a simple inter-
pretation.

The simplicity of (37) is to some degree deceptive; for
whereas the calculation of £, presents only certain technical
difficulties, the determination of w, , , which, to be exact, are
the diagonal matrix elements of the reduced two-particle
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density matrix of the system in the representation of the ei-
genfunctions of the reduced two-particle Hamiltonian, pre-
sents no small problem. At different times numerous at-
tempts have been made to solve it,>'** but only the results
presented above make it possible to give a more or less accep-
table answer to this problem.

To demonstrate the value of this expression and the
method as a whole, we consider two definite examples. The
first is the model of a nucleus as a system of realistically
interacting nucleons. The properties of the reduced Hamil-
tonian in such a case were studied in Refs. 29 and 30. This
operator describes only the relative motion of the nucleons,
and therefore the determination of its eigenfunctions is no
more complicated than the corresponding problem for the
deuteron; in addition, it has a very important property—the
reduced effective mass in this formal structure, which does
not describe any real subsystem, is directly proportional to
N. For N = 2, when it is identical to the ordinary Hamilto-
nian of the two-nucleon system, there is, as is well known,
only one bound eigenvalue of such an operator in the state
*S,—*D,, namely, the deuteron. For N = 3, all realistic inter-
nucleon potentials ensure the appearance of a bound eigen-
value in the state 'S,. With further increase of &, bound
eigenvalues also begin to appear in other states, in which the
phase shifts of nucleon—nucleon scattering change sign or
are positive, though some of the channels in which the phase
shifts are negative remain “‘closed” for any ¥. On the other
hand, it is clear from the expression (37) that negative E ,
are possible only for the A for which w, , are large for nega-
tive £; (bound states of the reduced Hamiltonian) and small
for positive g, since the index of summation in general
ranges over an infinite set of values. This set consists of all
possible two-nucleon states (*S,—'D, 'Sy, *P.—F,, 'D,, *Py,
'D,, etc. ), and also all possible eigenvalues of the reduced
Hamiltonian in these states.

It can be shown that one can introduce the concept of
the minimal rank of the two-particle reduced density ma-
trix,* which determines the set of values of i that correspond
to the maximal w, , for each definite state A of the system.
This set is determined by the need to ensure exact quantum
numbers for the nuclear states. With increasing N it is
strongly enlarged even for ground states, whereas the ap-
pearance of new negative £ is very limited. Ultimately this
leads to the observed decrease in the stability of heavy nuclei
with respect to decay into lighter fragments and termination
of the stability valley. From this point of view the most fa-
vorable situation in all the lightest nuclei is for the ground
states of the simplest systems: ¢, ‘He, and “He. As we have
already mentioned, for N>3 there are negative eigenvalues
in the 'S, and *S,—"D, channels for realistic potentials. Si-
multaneously, for N<4 and the minimal possible J the mini-
mal rank would permit a restriction to be made to only
relative s states; however, such a function cannot be antisym-
metrized because of the admixture of the D wave in the re-
duced Hamiltonian. This forces us to use a set of channels
that is closed from the point of view of exact quantum
numbers, namely, a set containing *D,, which, in its turn,
must, because of the admixture of the F state in the *P,—F,
channel, be extended further, and so forth. The set required
to ensure antisymmetry of the wave function is infinite, but,
as exact calculations showed,*® an admixture of higher states
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is suppressed. In our language this can be readily under-
stood, since each successive generation of channels enters
with weight proportional to the admixture of the higher
waves in states of the type °S,~"D,, *P,-°F,, etc. For this
reason,the contribution of each following set is, roughly
speaking, an order of magnitude smaller than the contribu-
tion of the previous one, and overall this leads to the reasona-
ble convergence that was noted in Ref. 36.

As is clear from the formulation of the problem, it is
sufficient to take into account the second approximation in
order to elucidate the reason for the direct correlations men-
tioned earlier between the different characteristics of the
few-nucleon systems. As was to be expected, an actual ad-
mixture of the D wave in the deuteron does not appear di-
rectly in our expression. Instead there is, generally speaking,
a nonlinear dependence on a different parameter—the D-
wave admixture in the *S,-"D, channel of the correspond-
ing reduced Hamiltonian. It is found®’ that both depen-
dences are almost linear, and this, because of the exceptional
importance of this channel in the description of few-nucleon
systems, leads to the linear correlation that was mentioned.
It should be noted here that study of the nature of these
dependences is very important in nuclear theory, since only
if we go beyond their framework can we hope for a more or
less successful description of finite nuclei by means of a sin-
gle nucleon-nucleon potential. For such potentials, like the
Reid potential,” or the potentials with a supersoft core of the
Orsay group,”™ one can reproduce already in the second
approximation the fine details of the wave function obtained
by solving Faddeev’s differential equations for the triton.***
This analysis was based on the use of natural bases for the
expansion of nuclear wave functions®' and the recursive
scheme of calculation of the coefficients of fractional parent-
age,* and therefore its detailed exposition would occupy too
much space, for which reason it is omitted.

As regards heavier nuclei, beginning with N =35 the
Pauli principle requires an ever increasing probability of
two-nucleon states of negative parity (whereas w_
Z 0.25for N = 5,inthe limit N - «« wealready havew _ i
20.625).* At the same time, for all the potentials that we
have investigated new bound states arise only when N> 8.
This makes it possible to explain why no single nucleus with
N<9 has more than one bound excited state. Moreover, the
majority of them have no bound states at all, or just one such
ground state. Of course, we are speaking here only of states
that are bound from the point of view of the usually adopted
nonrelativistic Hamiltonian of the nucleus, which takes into
account only the nucleon-nucleon strong and Coulomb in-
teractions. The significant jump in the number of bound
states and in the distance to the nearest thresholds at ¥ = 10
indicate the relative stability of these and some heavier nu-
clei and are explained by the appearance of a negative eigen-
value in the *P,—°F, channel. For different potentials this
occurs at different 8 <« N < 10, since the phases in the higher
states are determined with large errors, and this means that
there can be appreciable differences even for potentials that
are fairly good from the y* point of view. For this reason the
development of effective methods for calculating the proba-
bilities w, , is of very great interest. The point is that with
increasing energy the phase shift becomes ever less sensitive
to the detailed behavior of the potential in the region of its
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minimum, whereas in the reduced Hamiltonian (11) thelev-
els that play a decisive part in the description of the nuclei
sink deeper and deeper into the well with increasing N and
depend more and more strongly on the details of its struc-
ture. For this reason, the use of nuclear data in such an ap-
proach may become an effective tool for more accurate de-
termination of the internucleon potential itself.

With regard to other channels, bound states appear in
them in the sequence given above when there is a further
increase in the number of nucleons to N = 20. Moreover, in
this range of NV not more than one negative £ appears in any
two-particle state. Of course, with increasing j the spread of
the results for different potentials is still greater, but the gen-
eral tendency is maintained—the provision of the necessary
number of negative ¢ by realistic potentials lags well behind
the demand for a steadily enlarged set of states essential to
ensure the antisymmetry of the wave function, and therefore
the total probability of states with £, >0 in the expression
(37) becomes greater than the total probability of the bound
states in the channels. For the time being the presence of
stable nuclei is ensured by the fact that with increasing ¥ the
lowest values of £ sink ever deeper into the corresponding
wells, while the positive values are grouped near zero in the
continuum. However, as is well known, it is not possible to
fall below the bottom, and therefore heavy nuclei are either
weakly stable or do not exist at all.

Ultimately, the expression (37) correctly reproduces
the dependence of the binding energy on the number of nu-
cleons at large &, since the reduced Hamiltonian (11) is
essentially a single-particle operator, and the main contribu-
tion is made by its N lowest states, i.e., w ~N . On the
other hand, &, ~ N ? and therefore E, ~N.

Another example of those mentioned above concerns
the ground state (°S) of the three-electron lithium atom and
the ions of its isoelectron sequence. It is very important from
the methodological point of view, since if approximate
eigenvalues of the reduced two-electron Hamiltonian (10)
are constructed from a certain definite number of basis sin-
gle-particle states, one can not only completely construct the
projection matrix X in this approximation and calculate the
“exact” spectrum but also verify in the same case the method
of approximate solution and the system of lower bounds, In
the considered case, when the two-particle functions are
constructed from single-particle functions, it is necessary to
solve only one dynamical problem, which consists of diagon-
alizing the matrix of the reduced Hamiltonian. The quality
of the result depends here in the first place on the basis of the
single-particle functions. Following the recommendations
of Ref. 41, they were chosen as an extension, complementing
the system of functions that are eigenfunctions for a certain
integral operator whose kernel was constructed from two-
parameter variational functions. If only single-particle s
states are taken into account, such a basis of four functions
ensures for the total energies of H™ and He (the reduced
two-electron Hamiltonian corresponds to Z * = 3/2, i.e., is
intermediate) the following results (all these are absolute
values in atomic energy units): 0.5141 and 2.8787 (in the
Hartree-Fock approximation the results are 0.4879 and
2.8617, respectively, while the radial limits, i.e., the best re-
sults when only the s states are taken into account, are
0.5145 and 2.8790, respectively). The basis set for expand-
ing the components of the wave function of the three-elec-
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tron atom in this case contains 64 functions. This is equal to
the dimension of the matrix X, whose rank is 20. It is impor-
tant that for the calculation of the matrix X itself, and also
the matrix of the Hamiltonian E (28), it is not necessary to
calculate even overlap integrals of the basis functions. We
illustrate the characteristic final results for the example of
the lithium atom. In the Hartree—Fock approximation the
total energy is found to be 7.433, while the exact result is
7.478. Our results in the s-wave approximation are equal to
the “exact” value 7.454, and the lowest approximation to it
is 7.466. Because the rank of X is finite, it is not identical to
the “exact” one. The uncertainty in the corresponding wave
function is 1.4%.

It is well known that widely used methods of calcula-
tion of nuclei such as the translationally invariant shell mod-
el or the method of hyperspherical functions are of little use
when an attempt is made to apply them directly to the calcu-
lation of atoms.**** But an atom is a system of electrons
between which the interaction is characterized by a repulsive
“core” of the same type as in the Reid potential. This cir-
cumstance creates both problems, and the concrete results
obtained indicate the importance of taking into account the
specific nature of the problem already in the initial stages of
its solution.

CONCLUSIONS

A large number of very interesting phenomena in
many-fermion systems, beginning with the strange features
of few-nucleon systems and ending with high-temperature
superconductivity, are due to two-particle dynamical corre-
lations generated by fine details of the interaction. Besides
these there also exist kinematic (if one may use the expres-
sion) correlations due to the need to ensure antisymmetry of
the wave functions and the exact quantum numbers of the
states of the system. In contrast to the dynamical correla-
tions, these cannot be ignored at all, since without exact
gquantum numbers it is impossible to identify states, and fail-
ure to make the wave function antisymmetric leads to the
appearance of spurious, unphysical solutions of the Schro-
dinger equation. The most laborious operation is the one
associated with this last difficulty, and therefore, as a rule,
the technique of coefficients of fractional parentage™*® has
always been developed independently of the dynamics of the
system, the first consideration having been the simplifica-
tion of the calculation, the completion of which is always a
difficult problem. Most of the higher symmetries convenient
for classifying the coefficients of fractional parentage are
found, when tested, to be not viable under the conditions of
the actual dynamics. Moreover, even if one of them is domi-
nant, it is, as a rule, found that some important features of
the system are determined precisely by a small admixture of
other states. These contradictions appear particularly strik-
ingly in nuclear theory, in which the dynamical correlations
due to the presence of a core play a particularly important
part. In other words, the difficulties avoided in the antisym-
metrization stage return with new strength in the solution of
the dynamical problem.

Ultimately, the method described here reduces in es-
sence to the construction of a computational scheme in
which the antisymmetrization (the calculation and spectral
expansion of the matrix X) is made for a basis adapted to the
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specific dynamics, since one uses an expansion with respect
to eigenfunctions of the reduced two-particle Hamiltonian.
It was precisely this stage that was the most laborious in such
a formulation of the problem, but the methods described
above in Sec. 3 permit a significant simplification of it.

It is seen that the investment of work pays off, since
instead of the antisymmetrization of each basis function in
the traditional approach it is necessary to antisymmetrize
once the entire wave function, in which the dynamical corre-
lations are fully taken into account. This last assertion is
based on the fact that if we use the eigenfunctions of the
reduced two-particle Hamiltonian, it is no longer necessary
to make such operations with the Hamiltonian of the system
or its fragments.

An important feature of the method is the nature of the
convergence of the eigenvalues, If, as is assumed, each basis
function is antisymmetric and an expansion with respect to a
complete set of them is used, then when the set is extended, if
this is a particular concern, the eigenvalues of the Schro-
dinger equation converge to the exact values from above. We
use a basis of functions that have a degree of antisymmetry of
the component, i.e., less than for the wave function. If the
rank of the wave function is infinite, then to ensure its anti-
symmetry it is necessary to use an infinite number of such
basis functions. Since this cannot be done in practice, one
must use a finite set, and the function belongs to a subspace
that is somewhat larger than the subspace of antisymmetric
functions. This makes it possible, through special efforts, to
ensure uniform convergence from below to the exact values,
Whereas in the usually adopted case the nature of the con-
vergence cai, as a rule, be gauged only from the proximity of
the result to the exact result, for us there is a clear numerical
measure for this purpose. Its origin is due to the fact that,
whatever the rank of the wave function, it is in any case
normalized. If a finite number of basis states is used, it is easy
to determine the total weight that the remaining undeter-
mined basis states make to the normalization. This is what is
called the degree of uncertainty. Because the basis states are
arranged in a definite sequence, knowledge of this quantity
permits a conclusion to be drawn about the possible uncer-
tainty of the other characteristics of the system in the studied
statc.

Ultimately, the reduced-Hamiltonian method leads to
the simplest possible expressions for the eigenvalues of the
Schrodinger equation (37). This is also of no little impor-
tance, since the transparency and clear physical meaning of
this expression make it possible to recognize the connection,
usually lost as a result of the calculation, between the nature
of the two-particle potential and the properties of the many-
particle system and to draw qualitative and sometimes even
quantitative conclusions about its properties at any stage of
the calculation. Here a direct analogy with the problem of a
system of noninteracting fermions is suggested. It is well
known that the eigenfunctions of the corresponding many-
particle Schrodinger equation are determinants if they are
constructed from single-particle functions that are eigen-
functions for the corresponding single-particle (reduced sin-
gle-particle in the adopted terminology) Hamiltonian. In
any other case it would be necessary to take a linear combi-
nation of determinants, and the solution of the problem, and
also the expressions for the eigenvalues, would be signifi-
cantly more complicated.
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Concluding our account, we must also draw attention
to one further circumstance. The attentive reader may have
noted long ago that in the method of solution the concept of a
component has completely disappeared, and the final results
can, if one is sufficiently adept, be reproduced by starting
directly from the Schrodinger equation. That is so, but this
clarity appears only after all the expressions have been writ-
ten out, and the equations for the components are important
in that they indicate the most direct and natural way to ob-
tain them. Undoubtedly, the importance of the equations is
not restricted by this; for our derivation concerns only the
reduced-Hamiltonian method, i.e., a very specific method of
solving them in the special case of bound states, in which the
expressions for the components (22) are even more compli-
cated than the expressions for the wave functions (23) and
the operation of their intermediate determination becomes
meaningless. For any other method of solution the use of the
symmetry of the Schrddinger equation for a system of identi-
cal particles leads to important simplifications of the prob-
lem, since the reduction of this equation to an equation for
components, first carried out in the classical work of Fad-
deev, means, as we have shown above, nothing but the elimi-
nation of fragments of the antisymmetrizer from the many-
particle Schrodinger equation.
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