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The current status of the problem of the propagation of nonlinear optical waves through dielectric
and metallic layered structures is reviewed. We discuss the basic concepts and theoretical
approaches used to analyze nonlinear surface waves (NSWs) and nonlinear guided-wave modes
(NGWMs), the amplitudes of which are solutions of a particular class of nonlinear Schrodinger
equation with coefficients depending on the transverse coordinate. The stability of NSWs and
NGWM:s is studied by numerical methods. We suggest some possible applications of NSWsand

NGWMs to nonlinear integrated-optics devices.

INTRODUCTION

The discovery of optical bistability in the semiconduc-
tors GaAs (Ref. 1) and InSb (Ref. 2) and their broad appli-
cation in optical integrated processors for optical coupling
and in optical computers has stimulated a considerable
amount of theoretical and experimental activity during the
last few years.>* For the simple case of a plane wave, nonlin-
car optical devices such as bistable switches " and logic ele-
ments™® have been built and put into operation. In general,
planar optical waveguides ensure the optimal geometry for
an effective nonlinear interaction and, in particular, for non-
linear optical processors.

The key concept on which all nonlinear guided-wave
devices are based is that the local intensity of the guided
waves is controlled by the propagation vector, i.e., the opti-
cal-field profile and the propagation constant can depend on
the energy flux of the incident beam when one or several
media in contact are characterized by an index of refraction
which depends on the intensity of the incident beam. This
optical phenomenon can be used as the basis for two types of
integrated optical device.

The first type is devices in which the nonlinear variation
in the index of refraction is insignificant in comparison with
the difference of the indices of refraction of the media in
contact. In this case the dependence of the wave propagation
vector on the energy flux can be estimated using the coupled-
mode theory,” while the distribution of the electromagnetic
field of the coupled waves (the profile of the optical field) is
approximated by linear guided-wave modes. Examples of
devices which operate in this regime are nonlinear prism or
grating coupling elements'™'" and nonlinear coherent cou-
plers.”‘”

The second type corresponds to nonlinear optical de-
vices in which the optically induced change of the index of
refraction is comparable with or greater than the difference
of the indices of refraction of the media in contact. In this
case the wave propagation vector and the optical-field distri-
bution depend on the energy flux of the incident beam. This
dependence can be estimated using the more accurate ap-
proach of solving the nonlinear wave equation with the con-
dition that the tangential electric and magnetic fields are
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continuous along all surfaces. Devices operating in this re-
gime include nonlinear guided-wave optical limiters and
also devices with low critical energy-flux threshold and opti-
cal switches.'* Analytic solutions for optical fields propagat-
ing in media obeying the Kerr law were first found in Refs.
15—17. These studies laid the foundation for rapid progress
in the study of nonlinear guided-wave modes (NGWMs)
and nonlinear surface waves (NSWs).

The unique features of NGWMs and NSWs propagat-
ing in planar layered structures, namely, self-focusing and
self-defocusing, have been investigated in detail in many
studies.”® * A formalism was developed in Ref. 40 for arbi-
trary lossless optical nonlinearities (nonlinearities which are
not of the Kerr type), and has been used in Refs. 41 and 42 to
estimate numerically the dependence of the wave vector on
the energy flux in various planar layered structures. The
question of the stability of the propagation of various TE -
nonlinear stationary wave solutions has been studied nu-
merically in a number of articles.* " In Ref. 51 the beam-
propagation method was used to investigate the excitation of
nonlinear TE,-surface waves by means of a Gaussian light
beam. It was shown that, in the case of a thin dielectric film
sandwiched between two self-focusing media, it is possible to
excite independently three different field distributions corre-
sponding to the same level of energy flux of the wave using
the corresponding Gaussian beams. The problem of multiso-
liton emission from a nonlinear waveguide was studied in
Ref. 52. In that study it was shown numerically that, when
the indices of refraction of the film and the substrate are
linear and the index of refraction of the overlayer has nonlin-
ear properties (the Kerr optical effect), the external excita-
tion of NSWs can manifest a systematic threshold behavior,
owing to the/emission of multisolitons from the waveguide.
This behavior is similar to that predicted for a nonlinear
interface.”* In Ref. 55 the beam-propagation method was
used to study effects of nonlinear absorption of propagating
TE, NSWs in an optical waveguide with a nonlinear over-
layer obeying the Kerr law. Up to now there have been only a
few experimental communications on NSWs.*** The au-
thors of those studies used a nonlinear self-focusing medium
(the liquid crystal MBBA or CS,) with a precipitated di-
electric film. These experiments could be interpreted in
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terms of NSWs, the optical field distribution of which de-
pends on the energy flux.

The aim of the present study is to illustrate as simply as
possible, for several examples, the fundamental physical
principles of NSW and NGWM phenomena in planar
layered structures. The choice of material was dictated by
the criterion of maximal simplicity, and all questions on a
given topic not dealt with here are discussed in the recent
review of Ref. 58. We carry out a detailed analysis of nonlin-
ear TE-polarized waves propagating in planar layered struc-
tures, for which it is possible to obtain exact stationary solu-
tions of the nonlinear wave equation.

This review is organized as follows. Section 1 is devoted
to the study of surface electromagnetic waves guided by non-
linear interfaces. The basic concepts and the method of ana-
lyzing NSWs and NGWMs are discussed. In Sec. 2 we make
a detailed study of nonlinear TE-polarized waves guided by
thin dielectric films. In Sec. 3 we show that nonlinear TE-
polarized waves can also be guided by very thin metal films
(nonlinear surface plasmons). A brief summary of the re-
sults is given in the Conclusions.

1.NONLINEAR SURFACE ELECTROMAGNETIC WAVES
GUIDED BY A SINGLE INTERFACE

The dielectric tensor and the intensity-dependent index of
refraction

The progress attained in recent years in the theory of
nonlinear optics is related to the study of the interaction of
an intense light field with a medium, which leads to the mix-
ing of three optical fields. The nonlinear third-order term in
the polarization vector in a nonlinear optical medium has
the form

P w) = eyiim E; (0) Ef (0) E; (0), (n

where i = x, y, z; ¥'*' is the third-order susceptibility, and E
is the electric field vector. We note that one of the optical
fields involved in the mixing must be a complex conjugate, so
that the frequencies of the incoming and outgoing signals are
the same, which is a fundamental requirement for all optical
processors operating at a single frequency @.

If the optical field associated with the plane or guided
waves is sufficiently large, it can change the index of refrac-
tion of the medium. For a plane wave propagating in an
isotropic material, the Fourier component of a polarized
field with frequency w has the form

Pi(w) — g xi +3xa’'] Ej (o) |®] E; (w), (2)
where ¥ = n} — | and n,, is the linear part of the index of
refraction. Expressing |E, (@) |” in terms of the local intensi-
ty I = leggng|E; () |, the intensity-dependent index of re-
fraction can be written as

¢
n=mny+n, . ny=——, (3)
CElly

where the condition #,, > 0 corresponds to a self-focusing,
and the condition 1, < 0 to a self-defocusing, nonlinearity of
the Kerr type.

In the case of guided waves propagating along the x axis
with the normal to the surface in the z direction, the electric
field has the form
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E;j= 5B, () exp [i (B — )] +cec. (4)

where 3 is the effective index of refraction for guided waves
and k, = w/c is the propagation constant in a vacuum. The
nonlinear polarization vector in an isotropic medium is de-
fined as™

- 2]
PYE (@) = cedminy, | 5 B (2) 20 B3 () B ()
k;

L gog
+5 B0 DE@E@G]. (5
i
For TE-polarized waves propagating along the x axis the
electric and magnetic field vectors have theform E = (0,£,
0) and H= (H,,0,H,), so that the nonzero component of
the polarization vector is

P (2) = eeining, | By (3)|2 B, (2). (6)

In this case the Maxwell equations involve only a single com-
ponent of the nonlinear dielectric tensor €,,:

gyy = ng + o | Ey | % a = cegngny, (7)
and the Maxwell equations themselves have the form

dEy
dz

= —iwpH,, ﬁ.’x‘OEU-—(o}IDHZ: (8)
di : :
d—zx—- iPhoH = iweyey, B, (9)

Equations (8) and (9) lead to the following nonlinear
wave equation for the amplitude function £, (z):

a2k,
dz?

— 2 (B2— n®) B, +ak?| E, 2 E, = 0. (10)

In the case of real electric fields Eq. (10) has an analytic
solution," "7 which will be discussed in detail below.

Transverse-electric polarized NSWs

TE-polarized surface electromagnetic waves cannot ex-
ist at the interface between two dielectric media whose in-
dices of refraction are independent of the intensity. How-
ever, if the index of refraction of one of the dielectric media
depends on the energy of the incident beam, the existence of
nonlinear surface waves becomes possible.'™'®**% In this
case, a self-focusing optical nonlinearity, which might not be
small, generates optical waves of a new type which have no
analog in the linear optics of surface modes (the critical en-
ergy level is reached before NSWs appear, so that the self-
focusing channel is opened).

Let us consider the nonlinear surface between an opti-
cally linear semi-infinite dielectric medium (referred to as
the substrate) characterized by the dielectric constant £, in
region I (z <0), and a semi-infinite nonlinear medium obey-
ing the Kerr law (referred to as the overlayer) and charac-
terized by the function £ = ¢, + a,|E|” in region II (z> 0).
TE-polarized waves propagate along the x axis with normal
to the surface in the z direction. The nonvanishing compo-
nent of the electric field has the form

E,(x. z. t):%—E,J, (v, 2) exp [i(Phkyr— wi)] 4 cc. (11)

and the nonlinear Maxwell equations for the guided-wave
fields independent of x (the stationary distribution of the
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field) can be written as

20

— —RGEy=0, << (12)
nEI[
dJ'—ﬁﬁE“' JEENE=0, 20, (13)

wheregl =" —¢,,q. =B —¢&,,and a, = cegn’n,,.

For waves guided by a single interface characterized by
the condition E, (z) -0 for |z|— «, i.e., for exponentially
decreasing fields, the solution of Eqs. (12) and (13) is well
known (Refs. 15-17,61)":

El (z) = E, exp (ky g42), 2 << 0; (14)
E,EI(Z)-—(ai)ugqc{ch[ifuqc(z—zc)]}". 2>0, (15)
c
whereg, = (82 —¢£,)""% q. = (B> —¢,)""%, and @, >0 (a
self-focusing nonlinearity).

For TE-polarized waves the field £, and its derivative
dE, /dz are continuous functions along the interface z =0
between the nonlinear and linear media. This leads directly
to the eigenvalue equation

te=¢, + 5 %E, (16)
where E; is the value of the field at the surface. It follows
from (16) that the amplitude of the field is fixed on the
boundary, because ¢, and £, are constants, and in the limit
a.—0 we must have E;, — + o, i.e., TE-polarized surface
electromagnetic waves do not exist on the interface in the
linear limit.

The energy flux of guided surface waves is defined in
terms of the Poynting vector

iﬂ E3 (z) dz.

-0

P=

[‘.Dl _—

(17)

{ . B
5 Re (E x H¥), ds=—

This expression can be estimated analytically for a medium
obeying the Kerr law (see Refs. 15 and 18, for example):

P@y=pp[L—d 42 (g, 440], (18)

where P, = (£,/1,)"*(2a.k,) ~". Expression (18) can be
viewed as a nonlinear dispersion relation @ = w(k,P), i.e.,
the frequency w and wave vector & are related to each other
at a given level of the energy flux.

The attenuvation factor of NSWs and NGWMs can be
estimated using the imaginary component of the dielectric
constant, if it is assumed that the optical-field distribution
corresponding to the lossless case is valid in the case of a
small energy loss per unit wavelength,®6%4*

A formalism for dealing with an arbitrary lossless local
nonlinearity has been developed in Ref. 40. For this tech-
nique it is not necessary to know the analytic solutions of the
nonlinear wave equation in order to estimate the dependence
of the wave vector on the energy flux.

It is well known that the form of the dielectric function
is determined by the physical processes which give rise to the
nonlinearity. The Kerr nonlinearity, which is a quadratic
function of the local optical field, eN«|E|?, arises from non-
lincarity of the electronics thermal effects, and so on. In
semiconductors, where nonlinearity due to absorption leads
to the formation of excitons, plasmons, and so omn, the elec-
tric-field dependence of the dielectric function is not qua-
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dratic. In this case the optical nonlinearity has the form ™"
=a,|E|", where 1 <r <2 (Refs. 64-67). Moreover, in real
materials it is impossible to vary optically the index of refrac-
tion up to infinity, owing to the saturation effect. The limits
of the change of the index of refraction upon saturation An
vary from 10~ ' to 10 ~*. The saturation effect is important
for a nonlinear interface, since the interesting, energy-flux-
dependent properties of NSWs arise when the optically in-
duced change of the index of refraction An, is comparable
with or larger than the difference of the indices of refraction
of the substrate n, and the overlayer n, existing at small
intensities of the energy flux.

We shall model the dielectric function of a nonlinear

self-focusing (a, > 0} overlayer as follows*!#%6%¢¢.
oy
b= 8y =By = By Bt [1 — exp ( ——ecsa—:'):l; (19)
Exx = Eyy = 8= €.+ LEZ’_;_ ' (20)
(1 + ceEy )
£3at
Ex.LZEyyﬁgzz:Ec*f‘ac-rE;jia r= 1. (21}

We note that for the two dielectric tensors in (19) and (20)
the maximum change of the dielectric function is €, , since
for |E|> - o we have £—£, + £,. For small fields £—¢,
+ a E},ie., we have the case of an ordinary medium obey-
ing the Kerr law. The dielectric tensors (19)—(21) can be
written in the general form

Erx = Eyy = €7 = E¢ o 5‘:”‘ (Efr) (22)

The nonlinear wave equation for the real quantity (in
the absence of losses) E, (z) has the form

dEU *F]{E [E *8(' ?,') ﬁ]E _"U (23)

For coupled surface waves, which are characterized by F "
(z) —»0for |z| - o, the first integral of (23) can be written as

2
]

(%) (D (Eyv B) ]‘2|: Ei_s

et (B }d(E,,)} - (24)
0

The continuity of E, and dE, /dz along a nonlinear bound-
ary z = 0 between a linear substrate and a nonlinear over-
layer leads to the dispersion relation

g5 + qc = 0. (25)
Here
ge=1(— 1M (B — ecqp % (26)
Ej
e = e g3 | e (BD) d (B, @7

0

where E, is the field at the surface; £, is the averaged
dielectric function of the nonlinear medium; M, = 1 if the
self-focusing peak occurs in the nonlinear overlayer and M,
= 0 if the field does not have a maximum in the nonlinear
medium. In our case of a self-focusing nonlinear overlayer
(a. >0), the maximum of the self-focusing field occurs in
the medium (M, = 1), and from the dispersion relation

By = B 1 \ .\L Ei) (28)

s
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we can find the field at the surface, E,. For an overlayer
obeying the Kerr law, Eq. (28) leads to Eq. (16). We obtain
an important result from (28): TE-polarized nonlinear sur-
face waves can be supported by a nonlinear interface only
when &, > ¢€,.

The guided-wave energy flux parallel to the surface is
P=P, + P., where P, is given by*®

E Eo

Y EpdE, .
ﬂ=z&[ ."+an5

172
3 o,

Ej dE,
o2 |e (29)
c

]

Here M, = 1, ®)? = dE,/dz, and E,, is the maximum of the
field obtained from the condition ®, (E,) = 0. Finally, for
the total flux P= P, + P_. we find

P—3 PP, (30)
u u
pe=brp |§ et 0 e | on
Here
00 =B — e, — ek ot [ 1—exp (- —1]] 6
PO =P—t—tu 2 (1 ) (3D
PP T .

correspond to the dielectric tensors (19)-(21), u = a E is
obtained from (28), and # is found from the condition
@(u) =0.

For a medium obeying the Kerr law we have
@(x) =pB*— ¢, — Ix and the integrals (31) can be estimat-
ed analytically:

P, =2Pp [(ﬁ2_30)1/2+(ﬁ2k8c_% u)uz]’

(35)
whereu =, E} =2(g, —&,.) [see (16)].

In the case of an overlayer with nonlinearity reaching
saturation and characterized by the dielectric functions (19)
and (20), the maximum optically induced change of the di-
electric constant Ag, occurs, i.e, £€—&, + £, for large
fields |E| — . Therefore, as the flux increases the effective
index of refraction £ asymptotically approaches its maxi-
mum value (¢, + £, )'"*. A necessary condition for the ex-
istence of a solution of Eq. (28) for unknown E,, is that the
inequality £, <&, + €, be satisfied. From the condition ¢,
(E‘_L.) =0 we obtain B?<e,.+£.,, 50 that in the case of
NSWs the range of allowed values of £ is £!*<B< (e,
+ £, e,

For an overlayer depending on the energy flux and
characterized by the dielectric function (21) we have

R )

while the energy fluxes P, and P, are given by (30) and (31),
with P, replaced by the quantity Py, = (5,/
o) 2 kel

In Fig. 1 we show the resulis of numerical calculations
for TE-polarized surface waves for the following types of
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FIG. 1. Dependence of the effective index of refraction /7 on the energy
flux for TE waves guided by the interface between a self-focusing over-
layer (n, = 1.55, n,, = 10 * m?/W) and a linear substrate (n, = 1.56).
The dashed lines correspond to the dielectric function (19) and the dotted
lines to the dielectric function (20) (Ref. 69).

overlayer:

a) obeying the Kerr law (r = 2);

b) not obeying the Kerr law (##£2);

¢) reaching saturation.

The dependence of the energy flux P on the effective
index of refraction f was calculated for a nonlinear over-
layer with n, = 1.55and ,, = 10 = *m?*/W (the liquid crys-
tal MBBA ), in contact with a linear substrate for which »,
= 1.56, at the light wavelength 4 =0.515 gm (an argon
laser). The values of the nonlinear coefficients e, were cho-
sen $o as to obtain similar minimum values of the energy
flux:  a., =47Xx107° m/W, a,s=175%x10"
(m/W)", @55 =2.3%10 " (m/W)** (see Ref. 69).

We see from Fig. 1 that the minimum power needed to
excite TE-NSWs increases with decreasing &, .

Stability of propagation of NSWs

The reflection of a plane wave from an interface be-
tween linear and nonlinear media was first studied explicitly
in Refs. 17 and 70. After this pioneering work, theoreti-
cal®***7! and experimental™ studies of the interaction of
Gaussian light beams with a nonlinear interface were carried
out. The excitation of NSWs by means of Gaussian light
beams was studied numerically in Ref. 43. The question of
the stability of their propagation was crucial in the problem
of NSW excitation by external sources. It was shown in Ref.
43 that both stable and unstable NSWs can be excited by
means of Gaussian light beams from a linear medium inei-
dent on a nonlinear interface at grazing angles.

Let us consider a nonlinear interface between a linear
substrate characterized by dielectric constant £, in region I
(z <0) and a nonlinear overlayer obeying the Kerr law and
characterized by dielectric function & = £, + a.|E|* in re-
gion IT (z>0). Let a polarized wave with nonzero electric
field component E,, uniform along the y axis, propagate
along the x axis with frequency @. Then the weakly varying
amplitude A4(x,z) = a!’E, (x,z) satisfies the parabolic
equation

%A

—%ifk, L= 28 2 RAHO (@ RAP A (38)
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Here for z < 0 we have 8(z) = 0and y*(z) = B*— n’,while
for z> 0 we have 8(z) = 1 and y?(z) = B*— n2. We note
that the usual stationary solution of Eq. (38), ie,
A(0,z) = A, (2), can be obtained analytically [see (14) and
(15)].

Equation (38) has two integrals of motion

oo

LB =ty { |4]2dz = (PP ); (39)

~ oo

H@ =k § [ [ k2@ 42— 5 k0 () 141¢] &z
h (40)

and for arbitrary solutions of Eq. (38) we then have
dIl /dx = dH /dx = 0. Equation (38) is an equation of the
mixed type, a linear/nonlinear Schrodinger equation with
coefficients depending on the transverse coordinate z. The
absence of translational symmetry along the z axis means
that we cannot use the elegant inverse-scattering method "***
to solve the problem analytically. To simplify the calcula-
tions we used the Crank-Nicolson difference scheme (see,
for example, Refs. 75 and 76) with the following mesh sizes:
ko Ax = ky Az = 0.4. The corresponding system of nonlinear
equations was solved by the Newton—Picard method.™ In
this case two iterations proved to be sufficient for conver-
gence. This scheme permitted the conservation of the inte-
grals of motion (39) and (40) over the entire mesh. The
conservation of the total energy flux was 99% in all cases. In
the case of a nonlinear overlayer obeying the Kerr law and
= 1.5607 the NSW is unstable in the vicinity of the branch
with negative slope (&7 /df3 <0) (see Fig. 1). After further
evolution it “‘extrudes’ into the linear substrate (Fig. 2).
The evolution of the NSWs for 8 = 1.574 on the branch of
positive slope (df /df3 > 0) isshown in Fig. 3. For the chosen
value of the propagation constant the nonlinear wave 4,(z)
is stable, at least at distances of order 300 wavelengths (Fig.
3).

In conclusion, we note that the authors of Ref, 77 have
shown that self-focusing plane waves in an infinite medium
are stable for d7 /df3 > 0. Numerical results for TE-polarized

0.06
2
i, gt 141" La.os
740 a
720
100
&0
60
40
20
o |
4.5 2 2,0
Z, M
FIG. 2. Evolution of the field distribution as a function of the propagation
distance x. Parameters of the calculation: n, = 1.55, n,, = 10 " m*¥%W,
n, = 1.56, and the imitial distribution of 4, (z) corresponds to f = 1.5607.
20 Sov. J. Part. Nucl. 20 (1), Jan—Feb. 1989
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X, pm ./_ " lo.os
160 a

I / |
-0 2
z, um

FIG. 3. The same as in Fig. 2 for f = 1.574.

waves guided by a nonlinear interface were obtained for the
same stability criterion, i.e., for dI /df3 > 0.

Transverse-magnetic polarized NSWs

Electromagnetic waves guided by the interface between
two semi-infinite media or by a single or by several films
surrounded by two semi-infinite media (see, for example,
Refs. 78 and 79) are called surface polaritons. In all cases the
falloff of the electromagnetic fields with increasing distance
from the interface in a semi-infinite medium is exponential,
so that the fields are localized near the surface. In the case of
transverse-magnetic (TM) polarization the magnetic field
vector is perpendicular to the plane of incidence, i.e., the
plane defined by the direction of propagation and the normal
to the surface.

Let us consider the simplest case of electromagnetic
waves guided by the surface between two semi-infinite linear
media. The dielectric constants ¢, and &£, characterize the
overlayer and the substrate, respectively. In the linear case
the interface can support only TM-polarized surface polari-
tons, and this only for e, > 0, £, <0, and £, < |&,|. The effec-
tive index of refraction f = k /k is given by 7

5 B |Es|Eg

B = e~ Tal—ea - (41D
Later we shall study effects caused by optical nonlinearities,
which may be fairly large, for surface and guided electro-
magnetic waves. The presence of these nonlinearities leads
to new types of waves which have no analog in the linear
optics of surface and coupled waves. We note that the propa-
gation of nonlinear TM-polarized surface waves in a plasma
was first studied in Ref. 80. For TM polarization and media
obeying the Kerr law there are two approximations com-
monly used in the literature:

a) the uniaxial £ (|E,|*) approximation, where the
component of the dielectric tensor parallel to the surface,
£,» depends on the field component £, parallel to the sur-
face':

b) the uniaxial ¢,,(|E,|*) approximation, where the
component of the dielectric tensor perpendicular to the sur-
face, ¢,,, depends on the normal component of the field E,
(Ref. 81).

The dispersion equation for TM-polarized nonlinear
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surface polaritons (NSPs) guided by the interface between a
linear dielectric medium and a nonlinear dielectric medium
obeying the Kerr law was first studied in detail in the uniax-
ial £, (|E,|*) approximation

Bax = 8 +e |E % =00, (42)
in Ref. 19. Using this approximation, for the case £, > 0 and
£, > 0 the authors of Ref. 60 obtained results for TM-polar-
ized NSPs guided by the interface between quartz and the
vacuum. The authors of Refs. 21 and 27 obtained exact dis-
persion relations for nonlinear TM-polarized waves propa-
gating along the interface between two semi-infinite nonlin-
ear uniaxial media characterized by diagonal dielectric
tensors of the form (42). The effect of transition-layer oscil-
lations on the spectrum of TM-polarized NSPs in the uniax-
ial £, (|E,|?) approximation was first discussed in Ref. 82
and in the uniaxial £_, (|E, |*) approximation

€xx = &y

8. = € + 0y | E; | ® (43)

in Ref. 83.

For TM waves propagating in a medium obeying the
Kerr law, in the uniaxial £,, (|E,|*) approximation the dif-
ferential equation for the £, (z) component of the field has
the form

a2E,
dz?

B2
—Kig3E, — B B —, (44)

where ¥ =s, f, ¢ denotes the substrate, film, and overlayer,
respectively. This equation has an analytic solution. For ex-
ample, if ¢, <0 and a, <0, we have

B, (0= (-2 ) leh thogs (2 — 211, 2205 (45)

[og|

Ee ()= (=) (el (kg 2o+ 21}, 23>0 (46)
Ifa, >0and @, > 0, cosh is replaced by sinh. We note that in
this case the sign of the last term in (44) is negative, while in
the case of TE polarization it is positive. Because of this, the
field distributions in the case of TE and TM polarizations for
the £, (|E,|*) approximation are different.

An alternative method of solution is to eliminate the
components E, (z) and £, (z) from the Maxwell equations
and obtain the equation for the field H, (z). In the uniaxial

e.. (|E.|") approximation we obtain
Hhy _jag a4 0SS g g, 47
dz2 oIty + C.;E%Egz Y ( )

This equation cannot be solved exactly, owing to the term &7,
in the denominator. We note that for many materials the
value of Ae = |, E 2| is Iess than 0.01, while in exceptional
cases, for example, In8b, it is of order 0.1. Use of the approxi-
mation £, ~¢.. in the denominator of the third term of Eq.
(47) leads to a small error when this term is small. In this
limit the solutions for H, (z) have the same form as for the
exactly solvable TE case with o, replaced by a, = BYec,
&5€3) " 'a,. Therefore, in the uniaxial £,, (|E.|*) approxi-
mation the equivalence of the solutions leads to similar be-
havior of the flux for TE- and TM-polarized surface waves.

TM-polarized electromagnetic waves guided by an in-
terface have been studied in detail in Ref. 63. Both approxi-
mations £, (|E,|*) and ¢.. (|E.|*) were analyzed, and the
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propagation vector and attenuation factor were calculated
as functions of the energy flux of the guided waves and the
state of the materials. The NSW attenuation factor was cal-
culated approximately using the imaginary components of
the dielectric constants ¢,; and £,.;. Assuming that losses are
small, it was shown in Ref. 63 that

1
ﬁI=W(EsIPs +EcIPc)s (48)

where 5, and f3  are, respectively, the imaginary and real
parts of the effective index of refraction. A theory of nonlin-
ear surface TM waves was developed in Ref. 84, but the anal-
ysis carried out there was limited to the case of an isotropic,
nonlinear medium, whose dielectric constant contained two
electric field components with equal weight. A numerical
method of solving Maxwell’s equations for TM waves propa-
gating on a nonlinear interface was developed in Ref. 85.
This method is applicable to arbitrary nonlinear dielectric
tensors, which is achieved by transforming the infinite trans-
verse plane into a finite interval and using asymptotic
boundary conditions.

Below we obtain the exact dispersion relation for TM-
polarized surface waves on the interface of a linear dielectric
or metal and a nonlinear dielectric obeying the Kerr law.™
This dispersion relation is an equation with many terms, in-
cluding the values of the electric field components on the
interface, the parameters of the medium, and the effective
index of refraction 8 for surface waves. We note that surface
electromagnetic waves guided by the boundary between a
nonlinear dielectric and a metal are of particular interest,
since they correspond to NSWs with no energy threshold.

It is well known that TM-polarized waves have two
electric field components, one of which (E, ) is parallel to
the wave vector, while the other (£, ) is perpendicular to the
surface. In order to determine the effects arising from an
intensity-dependent index of refraction, we must first study
anonlinear polarization field. The electric field vector is giv-
en by

E(r, ) =5 [E. () 2+ E,(3) 2] exp [i (Bhoz —at)] +c.c.
(49)
where the phases of the components £, (z) and E_ (z) differ
byw/2.ie.,|E.|°=Eand|E | = — EZ. For thenonzero
components of the nonlinear polarization vector we have®

PRE(z) = &g (az! Ex (5) | ? + o | E; (2) | %) By (2); (50)
PN (2) = g (ogz| Ex (3) | ? + o | B, (2) | ?) E; (2). (31)

Then for the components of the dielectric tensor characteriz-
ing a medium obeying the Kerr law we obtain

Eew = €y + oy | Eu | ® 4 e | £ [ % (52)
€ = &+ Oy | By |+ | By |2, (53)

where the quantities &;; (Kerr optical nonlinearities) de-
pend on the nonlinear mechanism studied below. For non-
linearities in the electronics, which can be obtained by series
expansion of the polarization in terms of the field variables,
we obtain a,, = a,, =3¢, = 3@, = ce,ngn.l, while for
nonlinearities related to electrostriction we find
Gy = Qe = Ao = Ao, = CEMEN, ], Where n = n,+ #a;,
where n, is the linear part of the index of refraction and n,, is
the intensity-dependent coefficient of the index of refraction.

Mihalache ef al. 91



The electric components E, (z) and E, (z) for TM-po-
larized surface waves satisfy the equations

dix = —Ii % (Ezz_ﬁz) Ez; (54)
Ezees :

L X (55)

Hy: _%EzzEz' (56)

The key point in the analysis is the condition that for surface
TM waves i.e., for the condition £—0 and dE /dz—0 when
zZ— + oo, Egs. (54) and (55) have the first integral

+(Z=)+ Uk, B)=0, (57)
where
U (B, E)= K Ert 4 k(82 —e,) B2
o B B — o K (B E2), (58)

as was first shown in Ref. 86.

The solution of Maxwell’s equations (54) and (55)ina
semi-infinite linear substrate characterized by dielectric
constant £, (for a dielectric ¢, > 0); for a metal £, <0) and

filling the lower half-plane z < 0, can be written as
B (z) = Eoy exp (‘I"OQSZ): << 0! (59

whereg, = (f*—¢£,)""%, E,, = E,.(0),and 8° > ¢ foradi-
electric. For alinear medium Eq. {54) can be transformed to

_ if dE,
Hg= ko (€2z—p%)  dz 7 (60)
which gives
b= ifezz dE (61)

Foer:—BY 2

where the quantity D, is the z-component of the electric in-
duction vector D. Equation (61) also holds in a linear medi-
um with £_, replaced by £,. From the viewpoint of standard
electrodynamics, the quantities D, and E, must be contin-
uous functions along the interface z = 0. We define E,,,
= E, (0) and g,,, the z component of the dielectric tensor on
the interface z = 0, depending on the value of the field at the
interface:

e 2 2
Epp = &5 — aza'Eux + CtzzEuz-

(62)

From the continuity of D, on the interface z =0 we

obtain the following relation between the boundary values of
the field:

igs 2 2
Eﬂxz' P (Ez'_asznx'i"azzEuz) EUZ'

= (63)

In the weak-field limit Eq. (63) reproduces the usual rela-
tion between the boundary values of the field. Using the first
integral (57), we obtain the following eigenvalue equation
for 5 (Ref. 39):

i 2
? azzED z(Ei: + 3:11) i L)f‘:ron 28.295?11]

4 2 4 2 3 4
+ ﬁz lExE:Eil +a’zzEu 2€5€nt + OL‘,QEO 2528-311 _fssgnl] ==

{34 [2E:Snl i stisil - Bzﬁi s

1 2 2,4
— 5 o, L ekl =0,

: (64)
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‘We note that the special case of an isotropic nonlinear over-
layer, ie., £, =¢,=¢, and o, =, =, =0a, =d,
has been studied in detail in Ref. 84, and the solution for this
case has the simple form

B 483, (285 —Enl —8c)
Sg (331113—8;)75?”_ (En14-ec)

(65)

where £,, = £, + a.(E}, — E},) is the dielectric constant
of the nonlinear overlayer obeying the Kerr law at the inter-
facez =0.

Introducing the parameters characterizing the materi-
al, from Egs. (63) and (64) we can determine the boundary
values of the electric field components inside the nonlinear
medium as functions of the effective index of refraction.
Then, using them and integrating Eqs. (54) and (55}, we
obtain the field distribution. In a linear medium this distri-
bution has a simple exponential form [see Eq. (59)]. Using
the field distribution and integrating the time-averaged
Poynting vector over the variable z, we obtain the surface-
wave energy flux. Finally, we have P= P, + P_, where

I L - 66

s 4g0fgees ( )
k I 2

Po=rtr \ &2 (2) B} (2) d. (67)

0
The types of field and the range of allowed values of the
effective index of refraction were found by analyzing the
NSW “phase trajectories.” **** Let us consider some special
cases for an isotropic nonlinear substrate with the set of pa-
rameterse, = £, = €. anda,, =a.. = @, =a., =a..
Case (a): £, >0, @, >0, and £, <0. In Fig. 4a we show
the dependence of the dimensionless energy flux P /P, on the
effective index of refraction £ for £ .= 2.25 and several val-
ues of £,. As the effective index of refraction § increases, the
surface-wave energy flux increases up to some critical value,
and then falls to zero. This is related to the fact that in a
medium characterized by negative dielectric constant the
energy flux and wave vector have opposite directions and for
acertainrange of # the energy flux decreases with increasing

/P,
K ~4.15
0.08
0.0%
-3.75
0.02
/\:57.35
0 1 A I
| 22 2.6 30 4
0.6
0.4
0.2 \
aJ ! 1 |
.8 2.2 2.6 4.0 .7 21 2.5 2.9 B

FIG. 4. Dependence of the dimensionless energy flux P /P, on the effective
index of refraction 3. The value £ = 2,25 was chosen [or the medium with
positive dielectric constant (&, or £,). The numbers on the curves are the
values of the dielectric constants of the bounding media.™
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FIG. 5. Thesameas in Fig. 4 fore, = 2.25.¢, = 2.5,and a_> 0 (Ref. 84).

3. We note that the magnetic field for these values reaches a
maximum at the interface of the two media, and the effective
index of refraction 8 for NSWs is larger than the value 3,
= le.|e,|(|e,| —€.) ~ '], corresponding to TM-polar-
ized linear surface polaritons.

Case (b):£. <0, a, >0, and £, > 0. In Fig. 4b we show
the dependence of the dimensionless energy flux P /P, on the
effective index of refraction § for £, = 2.25 and several val-
ues of £,. In this case surface waves exist in a limited range of
values larger than 8, = [|&.|¢, (|e.| —&,) ~']"% We note
that, as in case (a), the transmitted power has a maximum.

Case (c): €, <0, @, <0, and g, > 0. We see from Fig. 4¢
that for # = 3, the energy flux is equal to zero and increases
to infinity as soon as S reaches the value n = £!*. We recall
that for &, > |e.| TM-polarized linear surface polaritons do
not exist. However, TM-polarized NSPs can exist for £,
> |e. |, when the energy flux exceeds some threshold value
(see the curves fore, = — 2.1 ande, = — 1.451n Fig. 4c¢).

Case (d): £, >0, @, <0, and g, <0. Here (see Fig. 4d),
when the nonlinearity is negative, as in the preceding case, as
the energy flux increases the effective index of refraction £
decreases, beginning at the value f = § ,,corresponding to
TM-polarized linear surface polaritons.

Case (e): £ >0, & >0, and £ >0. In this case the
phase diagram and field profile show that the magnetic field
reaches its maximum not at the interface z = 0, but in the
self-focusing nonlinear overlayer (a,>0). A given nonlin-
ear wave can be guided by the interface between a self-focus-
ing overlayer and a linear dielectric substrate when the ener-
gy-flux threshold is exceeded, which is similar to the case of
TE-polarized surface polaritons on a nonlinear inter-
face.!™ %29 In Fig. 5 we show the 8 dependence of the di-
mensionless energy flux P /P, forthevaluese, = 2.25andeg,

P10~ *W/m
]

2 5

o g 54

FIG. 6. Dependence of the energy flux on the effective index of refraction
B for the following parameters of the caleulation: w = 3.66x10"
rad-sec™ !, € —=¢e,=¢ =2405, g£=-—25 and @a,=a,
=6.4%10 " m/W.

xx
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FIG. 7. Dependence of £, on the transverse coordinate z for various val-
ues of 3.

= 2.5. The corresponding TM-polarized waves have no
analog in the linear optics of surface waves.*

In Fig. 6 we show the 8 dependence of the energy flux
for a nonlinear, self-focusing dielectric—metal interface for
both the case of nonlinearity in the electronics, ¢, = 3.,
and the case of nonlinearity owing to electrostriction, a .
= a,.. In Fig. 7 we show the transverse distribution of the
electric field component £, for nonlinearity in the electron-
ics and several values of the propagation constant 5. We note
that the maximum transmitted power occurs for self-focus-
ing nonlinearities in the electronics and nonlinearities due to
electrostriction, and that the effective index of refraction § is
larger than the value 3, corresponding to TM-polarized lin-
ear surface waves.

2. TRANSVERSE-ELECTRIC POLARIZED NONLINEAR
OPTICAL WAVES GUIDED BY THIN DIELECTRIC FILMS

. Nonlinear guided-wave modes propagating in three-layered

structures

A guided-wave mode is an electromagnetic field guided
by a medium with large index of refraction. A dielectric plate
is the simplest example of an optical waveguide used as a
light pipe in integrated-optics schemes (see, for example,
Refs. 87-89). A film waveguide is a thin dielectric film of
thickness  and index of refraction n, surrounded by a medi-
um with lower index of refraction: a substrate and overlayer
with indices of refraction n, and n_, respectively. For thin-
film waveguides and TE waves (polarized along the y axis)
the nonzero components of the electric field have the form

E; (z2) = E; exp (ky g, z), z < 0; (68)
Ell(z) = E;cos (kg gz — D), 0 <z << s (69)
E(z) = E exp | — kyge (2 — D), 2 > d, (70)

where g, = (B —n2)'?,
ge = (B —n)'".

From the condition of continuity of E, and dE, /dz at
the interfaces z = 0 and z = d, we obtain the dispersion rela-
tion

g = (3 —BH'"?,  and

a7 (qs+ge)

g (hotyd) = 03 —as0e) * (F1)

Equation (71) can be rewritten as (the condition for con-

structive interference)
]n'ofhﬂ, = ([Jsf -+ (Dcf 4+ mn, m= 0, 1, 2 isa B (72)
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where tan ®,, =g¢,./g, and tan ®_, =gq./g,. Solutions of
(72) exist for discrete sets of values of m and are numbered
with the notation TE,, (m =0, 1, 2,... ). In addition, we
have the following relations for the field amplitudes:

B (nf — ng) = B} (n} — B?) = B (nf— ). (73)
We still must relate the amplitudes E, of the electromagnetic
field to the power carried by the mode. The guided-wave
energy flux is obtained by integration of the x component of
the Poynting vector:

P ()" e

Lo (74}

where dg =d + (kog.) ™'+ (kyg,) "' is the effective
thickness of the thin-film waveguide. Therefore, from Eq.
(74) we can find the amplitude E, as a function of the energy
flux P and the effective index of refraction 3.

There also exist transverse-magnetic (TM) polarized
modes, the magnetic field of which is polarized along the y
axis, i.e,, H, #0 and E, #0, E, #0 (Ref. 87).Therefore,
TM-polarized waves have two electric field components, one
of which (E, ) is parallel to the wave vector, while the other
(E,) is perpendicular to the surface. We note that the disper-
sion relation for the TM modes of a linear asymmetric wave-
guide is given by Eq. (71), with g, replaced by ¢, /¢, where
¥ =5, f, c. A variant of the guided-wave method for weakly
varying phase and an amplitude approximation have been
developed for guided-wave modes and are known as the cou-
pled-mode theory.”® This method is useful for analyzing the
appearance of new waves, and also in the case of an intensity-
dependent index of refraction. If the optical nonlinearity
does not lead to any significant changes in the distribution of
the guided-wave field, the coupled-mode theory can be used
to calculate the intensity-dependent wave vector or phase
shift.” When the optically induced change of the index of
refraction is comparable with or larger than the differences
of the indices of refraction n, — n, and n, — n, existing for
low values of the energy flux between the dielectric film and
the media with which it is in contact, the field profiles and
the distribution constants become dependent on the energy
flux. In this case, the coupled-mode theory, which is essen-
tially first-order perturbation theory, becomes inadequate
even for a qualitative description. For a medium obeying the
Kerr law and TE-surface guided waves, the exact theory
based on analysis of the nonlinear wave equation permits
analytic solutions to be obtained.

Let us consider an asymmetric dielectric layered struc-
ture composed of an optically linear medium (the substrate)
with index of refraction #, in the lower half-plane z <0 (re-
gion I), a dielectric film of thickness  with index of refrac-
tion n, in region II (0 <z < d), and a nonlinear self-focusing
overlayer obeying the Kerr law and having dielectric func-
tione = ¢, + a,|E|* with &, > 01in region III (z> d). Max-
well’s equations for the guided-wave fields, which are inde-
pendent of the x components, have the form

%—fd’i (Br—e) E;=0, 2<0; (75)

d:f;l — kL (pr—e) E;'=0, O0<:z<<d; (76)

O R (—e) B b ad (B =0, s>d. ()
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The exact solutions of Egs. (75)—(77) for &, > 0 (self-focus-
ing optical nonlinearities and f < n ;) can be written in the
form

Elg= 11,2 Aexp (kyges), z<<0; (78)
ac
172 ~ 3
@)= (o)™ A eos (kogy2) + L2 sin (lygyd) |
0<z<d, (79)
B @)= (2)" g feh thuge G— 2%, 23>d, (80)

where

A=12(1— )72 g, [ cos (hygyd) -+ sin(k[,qjd)l"; (81)

a5
v=th (kyge (z,— d)]. (82)

For the corresponding tangential electric and magnetic
fields at the interface, we obtain the dispersion relation

g1 (gs— vae)

(954 vqsqc) ~ (83)

tg (kogyd) =
This result is very similar to that obtained for the linear case,
when g, is replaced by — vg,. If @, —0,then z, - — o0 and
v = — 1, and we obtain the dispersion relation for the TE-
polarized modes of a linear asymmetric thin-film waveguide
[see (71)].
For B> n , the exact solutions of Maxwell’s equations
(75)-(77) have the form

Ej () =07 "Bexp (hyysn), 2<<0;
122 s +’Ef ~
E'(m=a; "B [—N— exp (kos7)
295
(;f'_‘ ds) ~
+——=—exp(—ky;2) |,
2g5

0<z<<d

(84)

(85)

and E '(z) is given by Eq. (80). Here §, = (8% — n})""?
and

B=12(—v))2q, [oh (kygyd)+ -2 sh (kﬁ;d)]'1 . (86)
k3

When the quantities E and dE, /dz are continuous along the
interfaces z = O and z = d, the dispersion relation is given by

~ 7 (V@c—4s)
th (kygd) = 221 (87)
(93— visic)

where for v we have the expression (82).

The energy flux of the guided-wave modes per unit
length along the y axis is calculated by integrating the Poynt-
ing vector over the variable z:

oo

P p

=g 5 E%(z5)ds=P,+P;+P, (88)
For # <n,we have (see Refs. 91 and 92)
P,=—= Pf f ; (89)
Py— 5 P {id (1 + % )+ 5 sin (koasd)
X [(1 = ) cos (g + 222 sim () |} : (90)
P, =2PBg. (14 ). (91)
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FIG. 8. Energy flux P of TE, waves as a function of 5. Parameters: n,
=155 n, =10 "m*/W,n, =152, n, = 1.61, and A =0.515 um.

For 3> n ,we obtain

1 B2
P.?:?PIJ& qs ; (92)
_‘f_i)

a7

1

Py =

ppBe {knd (
2
- sh (o) [ (1 + 25 ) oh (ko) + 22 sh (kogy ]}
qf VE qf
{93)
and P, is given by the expression (91).

Let us take the nonlinear overlayer to be the liquid crys-
tal MBBA (n_ = 1.33, n,, = 10 ° m*/W), deposited on a
glass waveguide (n, = 1.61, n, = 1.52). The presence of a
nonlinear overlayer affects the transmission conditions of an
asymmetric film waveguide. It is well known that a linear
asymmetric optical waveguide (n.7#n,) cannot support
guided-wave modes below the critical thickness ¢, (Refs.
87 and 88).

In the case of an asymmetric nonlinear optical wave-
guide thereis an energy threshold for the propagation of TE,,
waves in a film of thickness d <d,, (Fig. 8 ford /4 =0.1).
This effect can be used for designing an apparatus which
lowers the threshold energy, i.e., it begins to transmit an
energy flux above a certain minimum value. Such a device
can be constructed using a self-focusing overlayer reaching
saturation when the value of n, at which saturation occurs
is not too large. In Fig. 9 we show the dependence of the
guided-wave energy flux on the effective index of refraction
for the following values of the parameters: d =2 um, n,
=n, = 1.55, 1, = 10~ m*/W, and n, = 1.57. The unique
features of the solutions for TE, waves are that they can
propagate when £ > nand that there exists a local maxi-
mum of the energy of the guided-wave modes. For TE,
waves (Fig. 9) the value of 5 never exceeds 1 ;,and the guid-
ed-wave energy flux has an absolute maximum. Moreover,
the TE, waves cease to branch at some value 8 < n  (Fig. 9).

AW/m
100 -
r d/h=3.88%

80
60

40t TEp
20

L { 1 1 1

7 I 1
1556 1.564 1572 1.580 1.588 3

" FIG. 9. Energy flux Pas a function of 5. Parameters: n, =n,= 1.55, n,,
=10 "m*/W, n, = 1.57,d =2 um, and A = 0.515 um (Ref. 93).
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FIG. 10. Distribution of the fields for TE,, and TE, NGWMs as a function
of B (Ref. 14).

The evolution of the field distribution for TE, and TE,
waves with increasing #is shown in Fig. 10, which illustrates
one of the characteristic features of NGWMs, namely, the
energy dependence of the field distributions. As 3 increases,
the maximum of the TE,-wave field narrows and moves into
the nonlinear self-focusing overlayer, while the maximum of
the TE, waves, which is close to the nonlinear overlayer, is
shifted into this medium.

The variation of the guided-wave flux with varying
propagation constant  ford /4 = 6 (Fig. 11) demonstrates
that all of the higher-order TE,, (m>1) branches terminate
at certain values ff < n,. For the self-focusing overlayer the
energy flux has an absolute maximum, which can propagate
in any TE,, (m>1) mode. For all film thicknesses at high
energies the lowest branch (the TE, wave) degenerates into
a self-focusing surface wave guided by the nonlinear inter-
face between the film and the overlayer. These NGWMs can
obviously be used in the design of optical power limiters for
various applications. The limiting action of a self-focusing
overlayer has been demonstrated experimentally for the case
of TE, waves in Ref. 56.

Let us consider a symmetric thin-film waveguide con-
sisting of a thin dielectric film of thickness d in contact on
both sides with a self-focusing medium obeying the Kerr law

AW/ m
280

T

2401
200 a/k=6
160
120+

80
TEs

TE
4a—n P -
A 1
g % ] L | I 1 1 1

L1556 1.560 1.564% 1.568 1.572 1.576 1.580 1.58% 1.588 1.592 3

FIG. 11. The same as in Fig. 9 for the same parameters, except d /1 = 6.
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(n, =n, and a, = @, > 0). The dielectric film occupies re-
gion II ( = d/2 <z<d /2), and the two nonlinear dielectrics
occupyregionsI (z< — d /2) andIll (z>d /2).Inthiscase
Maxwell's equations take the form

2l
Lo k(e B £ R (=0, 2 — /2 (94)
d2E]T
 R@—e)EN =0, —d2<s<dZ (95)
dgElIl
g — k(=) By L ke (B =0, z2>d/2, (96)

and the exact solutions of these equations (94)—(96) in the
case of a self-focusing optical nonlinearity («, > 0) are given
by

B} )= (2)" g foh kg (s—2))Y, 2 — /2 (97)

L
o (7)ﬁ{ Ayeos [kogs(z—zp)], P<<ny
' (2) =

—d/2<z=<dl2;
> n;

A, ch [k‘og‘} (z—zp)],
(98)

5 2 172
E!I,H(z):(a—c) g feh eyge (2 — 2z, 2>d2. (99)

The boundary conditions lead to an equation for the un-

known quantity z,:
{1 — b th? ['lfoaf ) ]} ch? [ko‘h‘ % ]
e o L 51) |} en® [ g ( (5~ 5)]=0

(100)

where b, = g,/q,. Equation (100) has the unique sclution z,
= Oforall 8> n,.The solution (98) for z ;= 0 corresponds
to a symmetric wave (S) propagating in a symmetric three-
layered planar structure. In this case the field distribution is
symmetric about the center of the thin-film waveguide and
z. = —z,. The eigenvalue equations for the symmetric

branch have the form
th [ “olle (%%Z )]=b tg (kﬂQ’f%) » P<<ng

th[k ’Ic -—--!_ z )]_ﬂ —h th( Dgf-g) s, B>ng,

(101)
(102)

where b, =gq,/q.. For a,—0 we have z, - + o and Eq.
(101) leads to the familiar dispersion relation for the sym-
metric (even) modes of a symmetric dielectric waveguide:

tg(]foq‘,-—g—) =L, (103)

For the symmetric solution (S) the electric field amplitudes
inside the thin-film dielectric are given by

Ai=mat [cos (g ) | [1—tiug (kags ) ]

By (104)
e o (5 )T [ (15.4)].
B> n;. (105)

Let us find the dispersion relations for the antisymmetric
wave (AS) of a symmetric thin-film waveguide. The solu-
tion of Maxwell’s equations (95) inside the film has the form

- B1 gin lk{]q;f (S—Zf)]. ﬁ< ?I_f:
Ej (5= i (106)
oshifyge(z—2z)], B=>ny
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In this case the equation for the unknown z, is written as

{1—tietgt [k (3 —21) ]} sin® [y (43

— (= thot [y () ) [ ()] =
(107)

for B < n, and
{1— bt ethz [ Ky (5

o
_{-1—h';‘ cth? [ROE_, (%%—sz} sh2 Lku;.f ( : —Zf)J:n

(108)

for f>n,. It is easily verified that Egs. (107) and (108)
have the solution z, = 0, which corresponds to an antisym-
metric wave (AS) in a symmetric layered structure. In addi-
tion, there is a solution z,5£0, i.e., an asymmetric wave (A)
propagating in a nonlinear symmeiric layered structure.
Here the asymmetric wave exists only above a certain ener-
gy-flux threshold.”” From the boundary conditions we ob-
tain the following dispersion relations for the antisymmetric
wave (AS):

T+z) = —byctg (kg g) . B<np, (109)
(110)

th [iﬂgqc

~ d
th [ ol ( 4z, ):l: —b, eth (koqu) . Py
Fora,.—0wechavez, — + o, and from Eq. (109) we obtain
the dispersion relation for the antisymmetric (odd) modes
of a linear symmetric waveguide:

ctg (%ogs 2) (111)

—gc/q;

The amplitudes B, and B, of the electric field inside a linear
medium in the case of the antisymmetric solution are given
by

B’f:a—ch?[sin(kgqf%)]_zfl—”:c‘gz (kﬂ'ff%)] :

- (112)
B 2 gt (i ) T (1=t (ki 2]
B>y (113)

The time-averaged energy flux (in W/m) along the p axis of
the symmetric wave (S) has the form

(147

P=4PBg (1 —r) {1 +

x [ cos (fcoq_f—g—)]’2[kod+s—m($ﬂ}} (114)
for B < n and
P=4Pq. (1—r) {1 + & (1+r)
-~ 0 d}
x [ e (kogy 5 ) |7 [ hod+ q—‘“]} (115)
for B> n,, where
ry=—b,th (kor(;f%) 3 ra=Db,1g (/foqf—g;) ; (116)

Equations (114) and (115) give a dependence of the form
o = w(f,P), i.e., they determine the dispersion relation for
anonlinear symmetric wave (S). We note that for P = 0 Eq.
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(114) gives 1 —r, =0, i.e, the dispersion relation for the
TE-polarized symmetric (even) modes of a symmetric lin-
ear waveguide. It is also easy to verify that for d— » Eq.
(115) reproduces the expression for the energy flux of sur-
face waves on a nonlinear interface (see Sec. 1). Similarly,
using Eqs. (112) and (113), we obtain an expression for the
energy flux in a nonlinear antisymmetric wave (AS):

P 4Py, (1 —t) {1 + L (1 +1,)

[om ()] [ra—22000 )y
for f<n and

P=4Pfg. (119 {1 + L= (1 + 1)

« [on (birg)] [ 252 kal),
for B> n;, where |
ti=—byeth (kg5 )i t= —byotg (kg 5). (119

In this case also for P = Q expression (117) leads to the rela-
tion 1 —f, =0, i.e., to the dispersion relation for the anti-
symmetric (odd) modes of a symmetric linear waveguide.
For d— « expression (118) reproduces the expression for
the NSW energy flux.

In the systems with full symmetry, i.e.,, when n, = n,
and n,, = #n,, > 0 (self-focusing nonlinearities ), it can be ex-
pected that self-focusing fields may occur in one or both of
the media in contact for large energy fluxes. In Fig. 12 we
show the dependence of the dimensionless energy flux P /P,
on the propagation constant 8 for asymmetric layered struc-
ture.” The field distribution of branch § is symmetric with
respect to the center of the film (the symmetric TE,
branch). As the energy flux increases in the center of the
film, the field minimum grows, and the two symmetric maxi-
ma of the field move into the overlayer and the substrate.
Branch A exists only above the threshold value of the energy
flux, and the fields related to it are self-focusing either in the
overlayer or in the substrate (the asymmetric TE,, branch).
For the curve AS the field distribution preserves the symme-
try with respect to the center of the thin film (the symmetric

PPy
12

F/R W N L

1 1 1 1
L6 1.8 20 2.2 24 263

FIG. 12. Normalized dimensionless energy flux P /P, as a function of B
for a symmetric layered structure. Parameters: #n, = 2.0, n, =n, = 1.5,
and d /A = 0.6. The curves are labeled as follows: S—symmetric TE,,
branch; A—asymmetric TE, branch; AS—symmetric TE, branch; B—
asymmetric TE, branch.”
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TE, branch). This branch changes from an ordinary, low-
power TE, mode with field extrema inside the film toa TE,
branch of high power with symmetric field maxima localized
in the two nonlinear media in contact with the film. Curve B
has an energy-flux threshold and is similar to curve A, since
the field distribution is asymmetric with respect to the center
of the film (the asymmetric TE, branch).

Let us find the exact dispersion relations for TE-polar-
ized guided-wave modes in a planar structure consisting of
an optically linear dielectric film embedded in optically he-
terogenous nonlinear semi-infinite media. The three layers
of the waveguide structure are as follows: a nonlinear sub-
strate with Kerr dielectric function £ = £, + a,|E |” in re-
gionI (z <0), a thin dielectric film of thickness & and dielec-
tric constant £, in region II (0<z<d), and a nonlinear
overlayer with Kerr dielectric functione =¢, + a,.|E|* in
region II1 (z>d). Maxwell’s equations for TE-polarized
waves propagating along the x axis have the form

9l
ddEJ — K (B2—g,) EL 4 Kla, (E03 =0, z<<0;  (120)
oEy — Rk Rr—e) BN =0, 0<Cz<d; (121)
dz? oM fl =y T AT
d'-"EHI
S — k) (Br—eo) By Ko (B, =0, z2>d (122)

The field solutions for the nonlinear substrate have the form

EL{z) = (i)w gs {eh | koge {2, —2) )31, 2<C0, (123)

s

in the case a, > 0 (self-focusing nonlinearity) and

0=

179
o) s {shlhegs Ge—a)l) 2<0,(124)

for a, <0 (self-defocusing nonlinearity), where ¢, = (8°
— £,)'/%. The fields inside the optically linear dielectric film
can be written as

I "
B3 () = By (0) {cos (kg;2) + -2 [th (kogez) | sin (kygi2) }

qi
(125)
where O<z<d, g, = (¢, — ") P and k,= + 1 fora >0
and k, = — 1 for @, < 0. The nonlinear solution in the case

of a nonlinear substrate is given by

()"

? g feh g, Go— AW, 23> d, (126)
fora, >0and

2
[oel

B ()= (2r)" g e ot (5o — a1, 24, (127)
for &, <0, where g, = (B°—¢,)""".

The dispersion relation for the corresponding tangen-
tial electric and magnetic fields continuous at the film-sub-
strate interface (z = d) has the form

kR h
a5 (V. %5+ ¥, %q)

tg (Foqid) = , (128)

(g7 — "'};a“:a@#‘i’c)
where v, =tanh[k,q.(d —z,)] and v, =tanh(k,q,z,).
This result is very similar to that of the linear case, except
that g, and g, are replaced by 1ff"q\ and vff"ql., respectively.
For @, -0 and a,—0 we have z,—» 4+ o, z.,—» — o,
v, — 4+ 1,and v, — + 1, and from (128) we obtain the dis-
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(132)

persion relation for the TE-polarized modes of a linear
asymmetric waveguide [see (71)].

For > n rthe analytic solution of Maxwell’s equations
is

By (2)=E} (0) {oh (kdj2) -+ [1h (kg2 )1 sh (kygs2) }
a5

(129)

where O<z<d, §,= (B> —¢,)"? and k, = + 1 corre-
spond to a self-focusing medium (e, >0), and k, = — 1
corresponds to a self-defocusing medium (a, <0). The con-
tinuity of the magnetic fields leads to the dispersion relation
forf>n,:

th (o) = — qj(+'q—) (130)
(QFT"S '\’c %gsqe)

The energy flux of the guided-wave modes, scaled to unit
length, propagating along the y axis is given by the expres-
sionP=P, + P, 4+ P, where

kR
p,— kfféiw (1 —vo2); (131)
h
P, = he— (1—v,%;
ﬁq? 5, q 21‘&,1-
Py =g (1=, ){ (1+ e )
. p? 2k
sin (fyqd) gv’la
— “1 — )cos (el
gt
12 2% &ip (kor]fd)“ (133)

for B <n, and

2k
Ba} g,
Pf:.:ué—’.-cmlg—nz‘;-(i—v ) {kﬂd (’1 +)

9

o 2k

sh (kyqsd) givita

+— [(1 + ) ch (kyg;4)
aF Qf

k‘o& -
+2- 50 sy (koq,«d)]}

qf

(134)

for > Hy (Ref. 93).

Since the integration constants z, and z,. in expressions
(123), (124), (126), and (127) are related to the boundary
conditions and depend on the energy flux transmitted by the
NGWM, the propagation constant 5 obtained by solving the
dispersion relations (128) and (130) also depends on the
energy flux.

Let us show that the determination of the dispersion
relations requires knowledge of the shape of the field.*****
Integrating Maxwell’s equations (120)—(122) using the fact
that for z— + « wehave E, (z) -~0and dE, /dz— 0, we ob-
tain

aE] \*
(L) —R@r—en) @+ 2 Emi=0; (135
dEH 2
() - B—e) (B P=c; (136)
dE1I 2 3
() — R @ —eo) (B4 e my — 0. (137)

Here ¢, is an integration constant. We assume that on the
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waveguide boundaries z=0 and z=4d the electric field
takes the values E, and E,, respectively. It is useful to
define the quantities y, = (B> —e&, —la, E5)"? and y,
= (B*—&. —la.E7)'"?, after which the field gradients at
z=0and z = d can be written as

I dEIII

L kg By lim—g (138)

lim
z—+0

az == ik(l‘}’cE"d!‘

Using (138), we can express the integration constant as

ey =y (g7 -+ vs) Eq =k (97 + %) £ (139)

After some algebra, it can be shown that the electric fields
E] and E ' on the boundaries of the waveguide structure are
related to each other through the following equation for a
conic section (a hyperbola or an ellipse):
u‘iac 2 Ms 2‘4 asag 2 Te 2 .
5 (B= ) ey (S |,

(ac'ﬂg"‘asn;) Osg Oﬂc‘nﬁ*fls'ﬂ’é) e

(140)
wheren, =&, — £, and 57, = &, — €. Depending on the spe-
cific parameters of the materials used in the construction of
the three-layered planar structure, for a given value of E2
there may exist two, one, or no values of £ . We note that for
a completely symmetric waveguide, i.e., if £, = ¢, and a,

= a,, the conic section is transformed into straight lines

which are perpendicular to each other and have the equation
o o

(Es—E3) [ 6 —e) —5~ By +ED ] =0, (141)

which implies the existence of symmetric (E, = E,) and

antisymmetric (E; = — E,) waves in a symmetric planar

structure. The third possibility is an asymmetric wave, for
which E; = EJ and

By =28t pr (142)
This type of wave does not exist in the linear limit.>*** For
NGWMs in an asymmetric layered structure we have the
following eigenvalue equations (B <n ,):

i 97 == Ys¥c
* @ rare

cos (kygid) = (143)
The plus sign in front of the right-hand side is used for even
solutions, when E, and E, have the same sign (E,>0, E,
>0or E; <0, E, <0), and the minus sign is used for odd
solutions, when E, and E, have opposite signs (E,>0, E,
<0orE, <0, E, >0). Here g, = (g, — B*) ',

For NSWs (5> n,) the eigenvalue equations are ob-
tained from (143) and have the following form:

For even solutions

eh (kyfyd) = —— — Te¥e (144)
[(v:— g3 (y2— a2
For odd solutions
~ ; =+ VsYVe
ch (kg d) = — AL (145)

v — a7 (vg — gPI/®

We shall use the method of Ref. 29 to calculate the guid-
ed-wave energy flux without using any information about
the optical fields outside the nonlinear medium. We again
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start from the integrals of Maxwell’s equations [Eqgs. (135)-
(137)].

Differentiating Eqs. (135) and (136) with respect to z,
we obtain

d ¢ dEL KBas 1T,
‘a’z‘( B & ):— 75— (Ey)%; (146)
d y dEI Ko, .
‘dz‘(p—m L) = — B (g, (147)
‘v
Using Eqs. (146) and (147) and the fact that
y 1 dEl
i — = kg; (148)
Yy
. 1 dE},,H
z_}fﬁ Tz e (149)

after some algebra we obtain the expressions for the energy
fluxes P, and P, in the nonlinear bounding media:

P=2 (-2 )" ok B g, = 1) (150)
Ha
12
Po=2 (22 )™" (2acko) B (g == 7o) (151)
0
In a linear waveguide film we have
a4 d dE,!
B o =g [~ 5 (B )] as

Integrating over the variable z, we obtain the following con-
tribution to the total energy flux:

d
py="0 (B} @) ds
0

> e e d‘Z;I’I )+ (& digfl )] (153)

Using (138), the energy flux in the linear film can be written
as

p=f ———-%%q? L3 (af +vs) Bod F KoV B = RovsEol.
(154)
Then the total energy flux in thé planar structure is P = P,
+ P, + P, where P, P,, and P, are given by Eqgs. (150},
(151), and (154), respectively. Since E? is expressed in
terms of £, and E} is a function of the effective index of
refraction f3 via the eigenvalue equation, the energy flux P

can vary with varying 3 for a particular frequency w.
Asaspecial example, let us consider the case n,, > 0 and
n,. >0, i.e., the two media surrounding the film have a self-
focusing nonlinearity. This case is a rich source of new phe-
nomena.” We see from Fig. 13 thatforn, = n, and 1., #£#.,,
i.e., different optical nonlinearities, the nonlinear-wave solu-
tions split up into twao decoupled branches A and B. If u,
#n,, the curves shift and bend relative to the energy-flux
axis. Branch B exists only above a certain energy-flux level.
Branch A, which develops from the linear limit, leads to
localization of the field in the medium with largest nonlin-
earity (the overlayer), i.e., for large energy fluxes it degener-
ates into the corresponding surface wave propagating on the
interface, Branch B appears when the field extremum is in
the medium with the smallest nonlinearity (the substrate)
and terminates with the field maximum in the two media
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FIG. 13. Behavior of the effective index of refraction as a function of the
energy flux of TE, waves. Parameters: ¢ =2 uym, n, =n, = 1.55, n,
=157, n, =2x10 "m’/W, n, =10 "m’/W (Ref. 93).

surrounding the film. A nonlinear guided-wave mode in
branch A is excited until the maximum of the field is
reached. Further increase of the energy flux of the guided
wave is possible only upon switching to branch B, in which
the field distribution and, consequently, the attenuation dif-
fer from the analogous quantities in branch A. Therefore,
the switching from branch to branch will be accompanied by
achange of the transmitted intensity. Subsequent decrease of
the energy flux of the guided wave in branch B leads to re-
verse switching to branch A at a significantly lower value of
the energy flux than that when the switching to branch B
occurred. This behavior can lead to a hysteresis look or to
bistability.™

It has been shown in a number of studies'®****%*% that
the solutions of Maxwell’s equations for a waveguide film
obeying the Kerr law can be expressed in terms of Jacobi
elliptic functions.

Let us consider an asymmetric planar layered structure
composed of an optically linear medium (the substrate)
with dielectric constant £, in region I (z<0), a dielectric
film of thickness d obeying the Kerr law and having dielec-
tric function £ = £, + aj-|E \2 inregion I (0<z<d),and a
linear medium (the overlayer) with dielectric constant &, in
region IIT (z>d). Maxwell’s equations for TE-polarized
waves propagating along the x axis have the form

27l
L2 (B —e,) By =0,

dz®

205 (155)

o 11
d*E,

A — R (B2 — o) By + Koy (By')=0, 0<<z<Td: (156)

d2gft

——— k(B —e) B, =0,

z>d. (157)
Let us trace the solutions, localized near the surface of
the thin film, for which the field tends to zero for |z| - .

Then from Eqgs. (155) and (157) we find

Ej (z) = E, exp (kogsz), z<<V;
EJ1N (z) = Eq exp [—hoge (z — d)l, 2> d,

(158)
(159)

whereg, = (8° —¢,)'"andg. = (B~ —&,.)'/". Letuscon-
sider the case of a self-defocusing nonlinearity of the Kerr
type (@; = — |a,| <0). Inthiscase < n,, wheren, = £;'*,
and the exact solution of Eq. (156) can be expressed in terms
of Jacobi elliptic functions® in the form

B (@)= (=) " et s (gt + 0/m) (160)

| o |

Mihalache et a/. 99



forO<z<d, wheret= (1 4+m)~"* g, g, = (n} — B2
and @ is the integration constant. Here sn is the sin-type
Jacobi elliptic function, and m is the parameter of this func-
tion (0 <m < 1). From the boundary conditions we obtain

the eigenvalue equations

cn (ktd - 0/m) dn (ktdL8/m) g, .
sn (kgtd+8/m) =T i (161)
cn (B/m)dn (B/m) g, (162)
sn (B/m) TR
where cn?(8/m)=1—sn?(8/m),dn?(0/m)=1—m

sn’(8 /m), and cn is the cos-type Jacobi elliptic function.

We shall show that for s = 0 Egs. (161) and (162) can
be used to find the dispersion relation for the TE-polarized
mode of a linear asymmetric waveguide. Using Egs. (155)—
(157), we find the total energy flux P= P, + P, + P_ trans-
mitted by the NGWM (Refs. 24, 96, and 97):

P, :pﬂgmtﬁ”‘zéﬂ; (163)
Py = 2P Bt lhytd — E (kotd + 68/m) - E (0/m)l;  (164)
P =PnﬂthM, (165)

de

where P, = (2|a,|k,) ™' (£4/p0) ' and E(8 /m) is the ellip-
tic integral of the second kind.”

In the approach proposed in Refs. 96 and 97, the propa-
gation constant £ is treated as a function of the Jacobi ellip-
tic-function parameter. Solving Egs. (161) and (162), we
obtain the values of & for each m (0 <m < 1). Then, using
(163)-(165) we determine the quantities P, P, and P,
thereby obtaining the dependence P = P(f3). A different ap-
proach developed in Ref. 95 makes use of the boundary field
amplitudes E, and £, and can be used to calculate the de-
pendence of the propagation constant on the energy flux.

In the case of a self-focusing dielectric film (e, > 0), the
exact solution of the nonlinear wave equation (156) has the
form

EN (5= (Ezfu)“2 mi2 e (fgtz + 0/m), (166)

wheret = (1 —2m)~ g, forB<n,andt = (2m—1) = '7
g forB>nyandg,= (8% — nj;)'~
The dispersion relations for these NGWMs are given by

sn (kotd—0/m) dn (ktd+0/m) g,
* cn(kutd+e/pgz) g (167)
sn (0/m) dn (O/m) s
cn (B/m) = Ty (168)

Using (158), (159), and (166), we obtain the expressions
for the energy flux in the linear substrate P,, in the nonlinear
waveguide film P, and in the overlayer P,:

P,— Ppmi w ; (169)
8§
P; = 2PoBt [E (kotd + 0/m) — E (8/m) — (1 — m) kytd);
(170)
_ g cn® (kyd--B/m)
P, =ppmp S EEEI), (171)

In order to determine the energy flux P for each value of the
propagation constant [3, it is necessary to calculate numeri-
cally the dependence of 8 on the parameter /m using the dis-
persion relations (167) and (168). In Ref. 95 it was shown
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FIG. 14. Beta dependence of the dimensionless energy flux for nonlinear
TE,, TE,, and TE, waves guided by a self-focusing dielectric film. Pa-
rameters: £, = 2.45, ¢, =2.3, and £, = 1 (Ref. 95).

for a particular choice of the parameters (n, <n,<n,) that
all TE,, (m>0) branches induced by a self-focusing nonlin-
earity begin to propagate at some energy-flux threshold
(Fig. 14). This threshold behavior was first demonstrated in
Refs. 96 and 97 for the TE,, (/1) branches. The authors
of that study used different sets of parameters, allowing
them to obtain a linear limit for the TE branch. The exis-
tence of two different values of the propagation constant for
a single value of the energy flux, and also the existence of a
threshold value of the energy flux for a nonlinear layered
structure are certainly of interest, for example, for designing
optical switches.

Nonlinear guided-wave modes in a medium with saturation
characteristics

Let us consider a dielectric planar structure consisting
of a linear substrate with dielectric constant £, in region I
(z <0), a linear dielectric film of thickness 4 and dielectric
constant £, in region II (0 <z <d), and a nonlinear self-fo-
cusing overlayer in region III (z>d) characterized by the
dielectric tensor (19).

For TE-polarized waves the electric field vector has the
form E = (0, E,, 0) and Maxwell’s equations are given by
the relations

gl
L — k(B —e) B, =0, 2<<0; (172)
dzEII
LR B =0, 0<z<d; (173)
ﬂszlll
—— ke — & E B =0, 2>d (174)
Integrating Eqs. (172)—(174) once, we obtain
D, = (S2) = BE-e) B 2<0; (175)
(Df=(d,iy)2:}?3([33—8;)13’5-1—:;, O<<z<<d; (176)
Ey
BBy V% e o -
O= () =k [E—eo B - | B
Q
2>d. (177)

Here ¢, is the integration constant.

For TE-polarized waves the quantities E, and dE, /dz
are continuous along the interfaces z =0 and z = 4. Using
this fact, we obtain a relation between the integration con-
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stant ¢, and the values of the field E, and E, at the corre-

sponding boundaries z =0 and z = d:
g
| e @) aE. (178)

L (6 — ) By=(6;—8,) E3 —

ot

Since dE }'/dz = ®;/*, and the result of the integration over
region II can be written as
£y
[y

By _ 4
1/2 ?
D

(179)

Eo
we arrive at the following dispersion relation for TE,,
waves*:

te (rggid) = g5 (a5 90) (45 — 454071, (180)
where q. :(,82—55)”2, qu(gfiﬁz}wz, Ec
=(—=DM(B?— £ )"" and

o

Ey

I S . 2 AP >
Eenn —_WECTTC‘? \ e - (Ey) d (Ey).

(181)

with M, = 1 if the self-focusing peak (field maximum) oc-
curs in the nonlinear overlayer, and M, = 0 otherwise (no
maximum). If M, = 1, the amplitude of the field Fy can be
computed from the condition &, (E y,ﬁ) =0.

In the case B> n the dispersion relation is given by

th (kogyd) = — L) (182)
(qz}“i Gs9¢)
which has a solution only for M, =1 and . = — (8°

— £.32.)""? <0. In the absence of a self-focusing peak in the

overlayer (M, =0) we have §. =g¢. = [@(u)]"?, where
@(u)is given by (32) or (33). Using Eqs. (178) and (179),
we obtain the following expressions for the energy fluxes:

1pgu (@t
2 ol a5 (gitap clE)
k1 wchj) L9, 4s e tdp g
Py = 2, Pypu [ i FEATY ?W] ;0 (184)
Bk § o (185)

[ (@)
0

where u = &, E ;. In the case of an overlayer satisfying the
Kerr law, the integral (185) can be computed analytically,

giving
3 1 \u2 2
P =2P B[ (B—et g u) " — (B —e].
For a self-focusing overlayer («, > 0) the field maximum is
reached at a fairly large value of the energy flux,ie, M, =1
and g, = — gq,, where g, = [@{(u)]"'” and @(u) are given

by Egs. (32) and (33).
We can summarize the result as follows:

(186)

(73 +ap) e qs (qo+ q

P, Poﬁu, l:\ —E};———é?—ﬁ-amj (187)
1 ¢ dx
- p“B[ (o r) \ [p ()12 ] (188
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with P, given by Eq. (183).
For a self-focusing overlayer, the integrals in (188) can
be evaluated analytically, giving

1/2

1
P=2Pf [ (B—etgu) @ —e]. (189
For > n,we finally obtain
p=tppt B, (190)
% (g2—a})
2_ 8
P = Poﬁu[ —4 s qi}]. (191)
a3 g? a; (g3—9%)

with P, given by Eq. (188).

Let us consider the liquid crystal MBBA (n, = 1.55,
. = 107° m*/W) deposited on a glass waveguide
(n, = 1.57, d = 2 um) with substrate chosen such that n,
=n, = 1.55. In Fig. 15 we show the results of numerical
calculations of the energy fluxes of TE-polarized waves
guided by a planar layered structure with nonlinear over-
layer, characterized by the dielectric function (19), for sev-
eral values of the dimensionless parameter £,,, . Comparing
the behavior of the solutions for TE, and TE, waves with the
case in which the Kerr law is satisfied (£, = o), we see
that the characteristics of these waves are preserved if the
valueof n, = (&, + &, )'"* — n. isnot small. The absolute
maximum of the energy flux of the TE, wave depends
strongly on the value of n_,, and for small values it grows
sharply (for example, for £, = 0.0155 or n,,, = 0.005). In
the case of the TE, branch, as the energy flux increases the
propagation constant f reaches its asymptotic value
(£, + £..)"? (the curve corresponding to £, = 0.1256 in
Fig. 15). Therefore, the characteristic features of the TE,,
branches are preserved when n_, is much smaller than the
difference of the indices of refraction n, — n, or n, — n, for
small values of the energy flux. An important conclusion
which follows from these calculations is that if the saturation
effects are sufficiently large, they might change, and in some
cases even eliminate, a number of the interesting energy flux-
dependent features of NGWMs.

In Ref. 100 it was shown that saturation effects consid-
erably influence the two uncoupled TE branches in the case

B

Eoppp =00
1,584 |- sat

0.1256
L5860

T

1.576

1.572
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FIG. 15. Behavior of the propagation constant /3 as a function of the
energy flux P foraself-focusing overlayer. The parameters are the same as
in Fig. 9. Each curve corresponds to the given value of the saturation &,
(Ref. 100).
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of self-focusing bounding media (#,, n,, ) capable of satu-
ration. When saturation effects occur in the substrate and in
the overlayer, the properties of the NGWM switching
change markedly, which might have applications in inte-
grated optical devices.

Let us consider a three-layered asymmetric structure
consisting of a linear substrate with dielectric constant £, a
thin dielectric film of thickness 4 with dielectric constant &,
and a nonlinear self-defocusing (a, <0) overlayer charac-
terized by one of two types of nonlinearity capable of satura-
fion:

ae | EF
Buw = €y = B =8, — Byt 1 —exp { —12L2) ] (192)
a. | B3
B = By = Erp = Bg — _'Ifxllv (193)
(1= 5)

We note that both types of dielectric tensor are tensors of the
Kerrtype, i.e., e~ — |a,|E; for small field strengths, and
they have the same saturation level (£, — &4, ). In this case
the field has a virtual maximum in the nonlinear overlayer
(M, = 0), and the dispersion relation is of the form

g7 (051 4c)

(23— gs9¢) (154)

tg (kogyd) =
where g, = [@(u)]""% u=|a |E}, and

fp(u):ﬁz—stfsm‘w&‘— [l —exp ( —TETH ;o (195)

u sa

&2
G ) =P e+ ey ———In (i+s_:\1f) > (196)

U
which correspond to the dielectric tensors (21) and (22).
Thetotalenergy fluxisP =P, + P, + P.,where P, P,
and P, are given by expressions (183)—(185). We have car-
ried out numerical calculations of the effective index of re-
fraction B as a function of the total energy flux for several
values of the dimensionless parameter £,,,. In Fig. 16 we
show the results for TE waves guided by a GaAl As, _,
structure for the dielectric functions (21) and (22). In the
case of a self-defocusing overlayer obeying the Kerr law and
n, > n,, there is a maximum energy flux which can be trans-
mitted. For example, for a realistic overlayer with the condi-
tion that n_, = n, — (g, — £4,)"" is sufficiently large (in
Fig. 16, the curves with £, = 0.0676, i.e, n,,, = 0.01) the
transmitted energy flux has a limiting value. This phenome-

3..3’35?
3.3858
35856
3.385%

J.3852

3.3850
a 20 B,W/m

FIG. 16. Behavior of the effective index of refraction as a function of the
energy flux P in the case of a self-defocusing overlayer. Parameters: #,
=3.39, 1. =3.385 n,, = —2X10 " m’/W, n, =3.38, d = 1.07 um,
and A = 0.82 um. The solid lines correspond to the dielectric function
(19) and the dashed lines to {20).
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FIG. 17. Dimensionless energy flux P /P, as a function of B for a symmet-
ric planar waveguide. The curves are labeled 8 for the symmetric wave and
A for the asymmetric wave. Above the bifurcation point =8 ..~ 1.89
both branches are unstable (broken line). The doubly degenerate A-wave
is stabilized in the region where the slope of the curve is positive.

non can be used in the design of devices which limit the
maximum value of the transmitted energy flux. In such de-
vices the energy-flux cutoff might be achieved, for example,
by using a thin film of GaAl As, , with variable index of
refraction n,(x) (see Ref. 58).

Stability of propagation of NGWMs

The question of the stability of the various TE,, solu-
tions for NGWMs has been studied, for the most part nu-
merically, in Refs. 44-50. The analytical analysis is compli-
cated by the fact that the eigenvalues of the linearized system
lie on the imaginary axis, making it impossible to use the
usual techniques for analyzing dissipative systems (as long
as losses are not deliberately introduced into the system).

Let us consider the case of TE-polarized guided-wave
modes in a symmetric nonlinear planar waveguide (Fig.
17a) consisting of a linear waveguide film with index of re-
fraction ny, bounded on both sides by identical overlayer and
substrate obeying the Kerr law, i.e., n, = 1, and n,, = n,,.
In Fig. 17b we show the dependence of the dimensionless
energy flux on B for a symmetric layered structure with the
following parameters: n, = n, = 1.5,n, =2,andd /A = 0.4
(see Refs. 23 and 44). In Fig. 18 we show the evolution of the
field distribution as a function of the propagation distance.
As the initial data we used the instantaneous distribution of
the electric field before and after the bifurcation point of the
symmetric TE, branch (S).

For =189 <f . the symmetric wave is stable to
propagation for distances of order 180 wavelengths (Fig.
18a), whereasfor 8 = 1.90> 3 ., the S wave loses its stability
after traveling only a distance of 18 wavelengths (Fig. 18b).
In this case the wave goes either into the overlayer or into the
substrate. Therefore, the symmetric TE, branch (S) loses its
stability in the region of positive slope of the branch of the
dispersion curve (Fig. 18b) at the bifurcation point (the
critical value is 8 = 8 .=~ 1.89), where a doubly degenerate
asymmetric wave A appears.

Let us consider an asymmetric three-layered planar
structure consisting of a linear substrate with dielectric con-
stant ¢, = nn® in region I (z<0), a thin dielectric film of
thickness d with dielectric constant &= n,” in region II
(0 <z <d), and a nonlinear self-focusing overlayer charac-
terized by a diagonal dielectric tensor of the type (19) or
(20) in region III (z> d). A TE-polarized wave of frequen-
cy @ propagates along the x axis, and the electric field is
uniform in the p direction (z is the transverse coordinate).
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FIG. 18. Evolution of the field distribution as a function of
the propagation distance for the symmetric wave (S) below,
B =1.89 (a) and above, B = 1.90 (b), the bifurcation point
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The nonzero component of the electric field, E L (r, 1), is giv-
en by (11). Then in the usual approximation of a slowly
varying envelope, we obtain the following equation for the
amplitude 4 (x, z) = a,’E, (x, z):

. 84 424 - o
— 2By oo =L — 42 (1) KA 48 (2) K (| A |3 A.

(197)
Here 6(z) =0 for — w<z<d and 6(z) =1 for z>d:
r(2) =B*—nlforz<0;9(2) =B° — nifor0<z<d;
(z) =B°— n’forz>d: and

1041 =ewe[1—exp(—12A5)]; (198)
HIAP) =g (199)

which correspond to the dielectric functions (19) and (20).
We note that for a medium obeying the Kerr law,
Sf(|4|*) = |4 |*. Thesolution of Eq. (197) independent of the
x components, 4(0,z) = 4,(z), corresponds to stationary
NGWMs, whose effective index of refraction B is deter-
mined by a dispersion relation of the form 8 = B(P). Equa-
tion (197) has two integrals of the motion: f{8) is given by
(39), and

HO =k [ {| L[k 1412 — B0 g( 4 1) e

(200)

Here
|Al2

gla= 1 j(1Apdq4p,

0

(201)

where F(|4 |*) is given Egs. (198) and ( 199). For a medium
obeying the Kerrlaw we obtaing(|4 |*) = 1/2|4 |*. Then for
a medium with saturation properties we find
1 A2
gAY =gew [1—exp( —L2) T 42 (20)

Eaat

£0AP)=gem[In (14-L42)] 4,

€sat

(203)

corresponding to the dielectric functions (19) and (20). We
note that for arbitrary solutions of Eq. (197) we have
di /dx =dH /dx = 0.

The Crank-Nicolson scheme was used for a nu-
merical investigation of the stability of thin-film NGWMs.
The solution of the system of nonlinear equations for succes-
sive steps in x was found by the Newton method in conjunc-
tion with a matrix representation in z. The chosen difference

75.76
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B =0, (Ref 44).

scheme (the mesh size was k;Ax = k,Az = 0.4) ensured
that the integrals 7(8) and H(f) were conserved on the
mesh. The conservation of the total energy flux P() was
always at least 99%. Unstable waves were defined as waves
whose field distribution along the z coordinate varied in pro-
portion to the propagation along the x coordinate.

For a nonlinear overlayer obeying the Kerr law, sta-
tionary waves are unstable where the nonlinear dispersion
curve 8 = 3(P) has negative slope and they enter the non-
linear medium. In this case, a single soliton is emitted, i.e., a
self-focusing channel arises in which the NGWM decays
(Fig. 19)_47.40.52

In the case of a nonlinear overlayer with saturation
properties described by the dielectric tensor (19) and £,
= 0.1256, in the region where the nonlinear dispersion
curve has negative slope (see Fig. 15) the TE, wave is unsta-
ble. In Fig. 20 we show the result of a numerical calculation
of the propagation of a TE, wave over a distance corre-
sponding to the first 400 wavelengths for 8 = 1.5685. The
wave remains fairly stable and its field is bounded by the
waveguide film, whose maximum oscillates aperiodically be-
tween the film boundaries. In Fig. 21 we show the evolution
of the field distribution of a TE; NGWM during the propa-
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FIG. 19. Evolution of the field distribution of TE NGWMs as a function
of the propagation distance for an overlayer obeying the Kerr law. The
initial field distribution 4, (z) corresponds to £ = 1.5685.
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FIG. 20. Evolution of the field distribution of TE, NGWMs as a function
of the propagation distance for an averlayer with the dielectric function
(19) and £,,, = 0.1256.

gation for the case of an overlayer with saturation properties
characterized by the dielectric tensor (19) and ¢, = 0.1256
for B = 1.58 in the region where the slope of the dispersion
curve 3 = S(P) is positive. In this case the nonlinear sta-
tionary wave 4, (z) is stable. The results of numerical analy-
sis of stationary-wave propagation confirm the fact that TE,
NGWMs are stable in asymmetric layered structures in
which self-focusing occurs only in one of the bounding me-
dia in the region where the nonlinear dispersion curve has
positive slope.™

When dissipation is present the Kramers—Kronig rela-
tion states that nonlinear refraction must at least be accom-
panied by linear absorption. Therefore, Eq. (197) should
include an absorption term

oipk, A= P () KA 40K (| A1 A
+iplgT (2) A, (204)

where I'(z) is the absorption profile. The effects of linear
absorption of TE, NGWMs in asymmetric waveguides with
overlayer obeying the Kerr law have been studied in Ref. 55
using the beam-propagation method. '*"'**
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FIG. 21. The same as in Fig. 20, but for § = 1.58.
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3. TRANSVERSE-ELECTRIC POLARIZED NONLINEAR
SURFACE PLASMONS (NSPs)

Bounding media obeying the Kerr law

There has recently been a surge of interest in the theo-
retical and experimental study of NSPs.”7'* Tt is well
known that the boundary between two linear dielectric me-
dia cannot support TE-polarized surface polaritons. How-
ever, if the index of refraction of one of the two media de-
pends on the flux intensity, TE-polarized surface polaritons
can exist for energy fluxes above the threshold.

A number of studies'®'®® have predicted that, in addi-
tion to the well studied NGWMs which can be supported by
linear dielectric films surrounded by at least one medium
(the overlayer or the substrate) with intensity-dependent
index of refraction, there exists a new type of wave for metal-
lic films bounded on one side by a nonlinear medium. Non-
linear TE-polarized waves guided by very thin metal films
surrounded on both sides with a nonlinear medium exist
only at energies above the threshold characteristic of the
given material.'® In Ref. 107 it was shown that TE NSP also
exist in planar configurations with a nonlinear substrate or a
nonlinear overlayer. A threshold value of the energy flux
and a limited range of possible values of the propagation
constant exist in the case of such asymmetric structures for
nonlinear dispersion curves.

Let us study the characteristics of nonlinear TE-polar-
ized waves guided by an asymmetric three-layered configu-
ration. The configuration contains the following: a linear
substrate with dielectric constant &, in region I (z<0), a
very thin metal film with dielectric constant £, = — ¢,/ <0
in region II (0 <z <d), and a nonlinear self-focusing Kerr-
type overlayer in region ITI (z > ). The field distribution in
the substrate, the film, and the overlayer is given by the fol-
lowing expressions:

E} (z) = Eq exp (kogsz), z2<<0; (205)
LN o~
Ell(2)=E, [ﬁ‘ﬁ‘i‘ exp (kyq;2)
25
+—(q’f2;f’f)~exp(—ko§fzq , 0<<z<< d; (206)
af
E ()= (2) " g eh U =201}, 2>, (207)

where qg. = (182_ E\)]fz’ qﬁ,"= (:PB2+ |£J'|)U1’and q.= {ﬁ ?
— £,)"/% Here the surface field £, has the form

a'cEi =2 {1 — th? lkﬂgc (zc - d)]}

% [ oh (kygid) + -sh (ot |
af

"2 (208)

Owing to the condition that £, and dE, /dz be contin-
uous at the interfaces z = 0 and z = d, the effective index of
refraction S obeys the dispersion relation

th (kggd) = 2200 th lhote (e —0s) |
{Q% —qsqc th [kyge (zc—d}]}

which has a solution only when #, > r, and z, > d, i.e., the
field maximum must always be located in the overlayer. The
energy flux per unit length along the y axis carried by the
wave is given by the equations

(209)

1 E2)
P, =g P 2L (210)
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FI1G. 22. Dependence of the propagation constant 8 on the guided-wave
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Py=—- PP o B (I (1 — £.)

9
! = 5 s B o]
Fgy 0 hogd) [ (1 2-) o (rgyd) 42 & sh (kogyd) |} 5
a7 a5
(211)
P, = 2Pfg, {1 + th [keg (3. — d)1}, (212)

where P, = (2a.ky) ™ "(£y/py) "%, Numerical calculations
have been carried out for the following values of the param-
eters: n, =155 n,, =10"" m*/W, g = —10, and
A =0.515 gm (an argon laser). In Fig. 22 we show the de-
pendence of the propagation constant /5 on the surface-wave
energy flux P for various values of the substrate index of
refraction. As in the symmetric case,'* a definite energy
threshold appears, beginning at which TE-polarized NSPs
arise. The broken line corresponds to a symmetric planar
structure with the following parameters: n, = n, = 1.55and
Ry, = f,, = 10 ¥ m?/W. It follows from Fig. 22 that for an
asymmetric configuration with n, > n, and n,, = 0, a single
value of the parameter P corresponds to two different values
of the propagation constant. In addition, there exists an up-
per limit on 8 determined by the value of n . The field distri-
bution for /3 close to the lower limit shows that the electric
field penetrates deeply into the substrate, and when S
reaches its upper limit the field energy is concentrated in the
nonlinear overlayer. This is preferable, since it decreases the
losses related to absorption in real metal films. Therefore, a
possible switching between the upper and lower branches of
the dispersion curve is related to transitions from the state
with high energy-flux transmission capability to the state
with low capability.

Bounding media which do not obey the Kerr law

Let us consider an asymmetric configuration consisting
of a linear dielectric substrate with dielectric constant £,, a
thin metal film of thickness 4 with dielectric constant &,
= — || <0, and a nonlinear self-focusing overlayer char-
acterized by one of the dielectric tensors of the type (19)-
(21). We shall use the formalism of Ref. 40 to study the
dependence of the effective index of refraction on the energy
flux in the case of a dielectric tensor displaying saturation
properties and having a power-law energy dependence.

The dispersion relation for TE-polarized NSPs has the
form

th (,gdy — L %e—2)

Q?_Q'BQG (2]3)
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FIG. 23. The same as in Fig. 22. Parameters: n, = 1.55, n,, = 107" m’/
W,n, =16,6=—10,d=10*pm, A =0.515um, o, = 1.75x 10 °
(m/W)'" (r=1.5), and @, = 6.4x 10" "> (m/W)* (r=2). The solid
and dotted lines correspond to the dielectric functions (19) and (20). The

broken lines correspond to an energy-dependent overlayer for different
parameters .

where éf:(ﬁ2+igf‘)liz’ q_\.*—"(ﬁj—fv)”:, q.
= [pw) 1Y% u = a,E?3, E, is the electric field at the inter-
face z = d, and @(u) is given by (32)—(34). The dispersion
relation (213) has a solution 2> n  only for # > # .. In this
case the field maximum (self-focusing peak ) must be located
inside the self-focusing overlayer. The total energy flux per
unit length is P= P, + P; + P_, where P, P, and P; are
given by Egs. (188), (190), and (191), respectively. In Fig.
23 we show the results of numerical calculations of the de-
pendence of B on the energy flux P in the case of a self-
focusing overlayer characterized by the dielectric tensors
(19)=(21). As in the case of a symmetric configuration, '™

" TE-polarized NSPs appear at a certain value of the energy

flux. The upper limit on /3 is determined from the condition
u=a,E; =0,ie,P, =P, =0and P, #0. When Sreaches
its upper limit, the optical field begins to be concentrated in
the nonlinear self-focusing overlayer. It follows from Fig. 23
that the minimum energy flux required to excite TE-polar-
ized NSPs increases with decreasing £,,, . As the energy flux
increases the effective index of refraction /8 asymptotically
reaches its limiting value (&, + £, )% Saturation effects
can change the specific energy flux-dependent properties of
TE-polarized NSPs in configurations composed of media
obeying the Kerr law. Apparently, the experimental obser-
vation of NSPs is difficult at present, owing to the particular
conditions under which they arise (the extreme thinness of
the metal film, the strong variation of the index of refraction,
and so on).

CONCLUSIONS

In summarizing our discussion, we note that the use of
materials with nonlinear index of refraction significantly en-
riches the phenomenon of NSW and NGWM propagation in
planar structures. If one or more media in contact with a
dielectric or metal film is characterized by an intensity-de-
pendent index of refraction, then the number of NGWM
solutions, the propagation constant, the field distribution,
the attenuation coefficient, and the threshold conditions all
begin to depend on the energy flux. In this article we have
paid special attention to planar structures and their possible
applications in integrated optics.
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The models we have discussed can be used as the theo-
retical foundation for the design of various types of optical
switches in waveguides, and the study of the behavior of the
energy flux-dependent wave vector is interesting from the
viewpoint of the design of optical power limiters. For exam-
ple, devices which lower the energy-flux threshold and can
transmit optical pulses only above a certain value of the ener-
gy flux will probably be based on the use of a self-focusing
nonlinearity. Planar optical waveguides with nonlinear self-
focusing overlayer and linear waveguide film, whose thick-
ness is smaller than that typical for the phenomenon of TE-
wave cutoff at a certain value of the energy flux, might be
used to raise the level of the transmitted energy flux. Nonlin-
ear guided-wave power limiters can also be designed using
one or several self-defocusing media in contact with a linear
waveguide film. Optical switching might be achieved by us-
ing an overlayer and substrate which simultaneously have
self-focusing nonlinearities. In addition, a combination
whose threshold and limiting actions can be controlled
might be used to select the most favorable regimes for the
transmission of energy flux by NGWMs and NSWs.

At present, the experimental realization of NSW and
NGWM phenomena is difficult, owing to the limited choice
of available materials. The fact that the difference of the
indices of refraction n, — n, and n, — n,, existing between
the film and the bounding medium at small values of the
energy flux, must be smaller than the change of the index of
refraction related to saturation, An,, , limits the combina-
tion of materials which can be used in the construction of
nonlinear planar optical waveguides. It is necessary to create
new materials with optical nonlinearity n,, larger than
10~ m?/W and attenuation factor smaller than 1 cm ~ ' in
the waveguide.
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