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A perturbative approach to the analysis of hard exclusive processes in quantum chromodynamics
is explained for the example of an investigation of the asymptotic behavior of the pion form factor.
The main elements of the approach are presented, namely, the method of proof of a factorization
theorem for the contributions of small and large distances for the amplitudes of hard processes in
QCD, analysis of the evolution of the pion wave function in the single- and two-loop approxima-

tions, and methods of allowing for radiative corrections.

INTRODUCTION

The investigation of the asymptotic behavior of the elas-
tic hadron form factors in the framework of quantum chro-
modynamics (QCD), which was begun in Refs. 1-11, was a
necessary step toward the extension of the region of applica-
bility of perturbative QCD and its extension to a new class of
high-energy phenomena—exclusive hard processes. A spe-
cific feature of processes of hard elastic scatteringis that the
colliding particles penetrate deeply into each other without,
however, “disintegrating” into a huge number of secondary
particles. Therefore, the study of the characteristics of such
processes gives important information about the deepest
properties of the particles, in particular, not only about
whether or not the constituents are points but also about
their number. As the most striking example we can mention
the quark counting rules,'>"? which played an important
part in establishing the quark picture of hadron structure.
They directly relate the exponent of the power-law decrease
of the hadron form factors to the number of valence quarks
of the hadrons.

One of the main computational methods in QCD is per-
turbation theory, i.e., expansion with respect to the QCD
coupling constant."*'* Since this expansion is justified only
in the region of large momentum transfers (or small dis-
tances), the cornerstone of all applications of perturbative
QCD to real processes, either inclusive or exclusive, is fac-
torization of the contributions of small and large distances.
Several approaches to factorization of the contributions, dif-
fering somewhat in their technical aspects, are currently
known. '*22 The fundamentals of the factorization technique
that we have developed are presented in the review of Ref. 23
for the example of the simplest characteristics of the pro-
cesses of e* e~ annihilation into hadrons and deep inelastic
scattering. This technique is also effective for the analysis of
hard exclusive processes. In particular, its use has made it
possible to obtain a complete proof of the factorization
theorem for the asymptotic behavior of the simplest process
of hard elastic scattering: em — e, i.e., for the electromagnet-
ic form factor of the pion in the spacelike region of momen-
tum transfers. The use of the methods of perturbative QCD
for more complicated problems (behavior of the form fac-
tors in the timelike region, decays of hadrons, elastic ha-
dron-hadron scattering, etc.'®**?°) is based on a number of
assumptions that have not been proved in the framework of
perturbative QCD itself and may not follow from it. There-
fore, in this review our aim will be to present the formalism
of the perturbative QCD approach to hard exclusive pro-
cesses for the example of the most fully studied problem of
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the asymptotic behavior of the electromagnetic pion form
factor.

It must be emphasized here that for elastic form factors
even the assertion that their asymptotic behavior at large
momentum transfers is determined by the small-distance dy-
namics is not at all obvious. In field theory there are models
in which this is not the case. A heuristic discussion (in the
language of the parton model) of the connection between the
various mechanisms that govern the behavior of the form
factors of bound states in the region of large momentum
transfers is given in Sec. 1, which is introductory in nature.
In it, we discuss the formulation of the problem of the form
factors of bound states in quantum field theory. The proof of
the theorem on factorization of the contributions of small
and large distances for the asymptotic behavior of the pion
form factor in QCD is given in Sec. 2. Section 3 is devoted to
study of the radiative corrections to the asymptotic behavior
of the pion form factor, without allowance for which the
predictions of perturbative QCD do not have the necessary
rigor. Necessary results on the analysis of the asymptotic
behavior of hard processes are briefly presented in the Ap-
pendix.

1. FORM FACTORS OF BOUND STATES

Asymptotic behavior of elastic form factorsin the parton
model

As we said in the Introduction, the asymptotic behavior
of the form factor F(Q?) of a composite particle is deter-
mined by the number # of its pointlike constituents (valence
quark—partons)—the greater the number of constituents,
the more rapid the decrease of F(Q?) with increasing Q*
According to the quark counting rules,'*"* the connection
between the asymptotic behavior of F(Q*) and n has the
form

F(QY) ~ (UQY", QF = oo =

(where Q> = — ¢°, and ¢ is the momentum transfer).

Hard rescattering

The quark counting rules were initially obtained * from
general principles based on dimensional analysis. A definite
dynamical mechanism—hard rescattering of the quarks—
that ensures fulfillment of the quark counting rules in the
limit Q% — oo was found later." In the picture of hard rescat-
tering,'? it is assumed that one of the valence quarks first
takes up the large momentum transfer and then, through
hard rescattering (Fig. 1), this momentum transfer is dis-
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FIG. 1. Picture of hard scattering for the form factors of the pion (a) and
proton (b).

tributed among all the valence quarks. It is assumed that in
the infinite-momentum frame all the valence quarks in the
initial and final states carry finite fractions of the momenta
of the corresponding hadrons. Asa consequence, all the mo-
menta that flow along the lines of the parton subprocess have
“virtuality” of order Q°. In such an interpretation, the expo-
nentn — 1in Eq. (1) is simply the minimal number of gluon
exchanges.

The Feynman mechanism

To explain the power-law behavior of the form factors
Feynman had earlier proposed a different mechanism,2 in
which the main contribution to the asymptotic behavior of
the form factor is made by a configuration in which a valence
quark that absorbs a large momentum transfer carries the
entire momentum of the hadron. The remaining quarks are
assumed to be soft and can be associated with the hadron of
either the initial or the final state (Fig. 2). In this case, as we
see, the small-distance dynamics plays no part at all.

Connection between the mechanisms

Itis obvious that the Feynman mechanism works only if
the amplitude of the probability for finding the hadron in a
state in which just one quark carries all its momentum is
sufficiently large. The two pictures preclude each other, and
therefore either the Feynman mechanism or the hard-rescat-
tering picture is dominant. We shall attempt to give an intu-
itive picture of the connection between these two mecha-
nisms.?’

We assume that the contribution of the diagram in Fig.
1 can be expressed in the form suggested by the parton mod-
el:

@)~ \

T Ay k) V@ (L —2) (1 —y)
(kL — EL1)?) dr dy &%, d%, (2)

where @, @ * are certain wave functions that describe the
separation from the hadron of one of the valence quarks with
momentumk = (xP,k, ) (k"= (yP’,k{)),and V(tk—k"?
describes the interaction between the separated quark and
the remainder of the hadron (Fig. 3). We also assume that
the wave functions decrease rapidly with increasing trans-
verse momentum k|, i.e., that we can replace (k, — k 1)by
a certain mean value M* =2(k?}). If we take V(¢) ~t—%,
then

FIG. 2. Feynman mechanism for the pion
form factor.
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K=xP+ Ky
FIG. 3. Parton representation for the hard-scattering expression.
FAQY) ~ \ dx dyg* () ¢ (z)

XIQ‘}' (1—.3‘”) (1*9’)*:]"3]_“ (3)

It follows that M can be ignored only when the integral
1

S T i)“ @ (z) (4)

converges at the upper limit. Otherwise the behavior of the
form factor in (3) is determined as Q%= o by the region
1 —x~M /@ and the result depends on the form of the
function @ (x). It follows from the quark-counting expres-
sion (1) that for theories with a dimensionless coupling con-
stant [which was assumed in the derivation of (1) in Ref.
12] the relation & = # — 1 holds. Therefore, the contribu-
tion of the hard subprocess is dominant in the asymptotic
region if ¢(x) behaves in the limit x— 1 as (1 — x)# with
B>a—1,ie,B>n—2, Otherwise, when f<a — 1, the

behavior of F, (Q?) at large 0* is determined by the form of
the wave function ¢(x) as x— 1, and as a result

F (Q%) ~ (Q¥P-L (5)

In the old (non-QCD) parton model®® it was assumed
that ¥(¢) decreases very rapidly as f— oo yie,thata~ w.In
this case the Feynman mechanism is always dominant, but
then fulfillment of the law (1) is also possible. For this, £
must satisfy the condition f=rn — 1, i.e., the hadron wave
functions must behave in the limit x—1 in the manner
@ (X) ~const, @y (x) ~ (1 — x), ete. If the wave functions
@(x) decrease faster as x— 1, then ultimately, in the limit Q3
— o0, the hard-scattering mechanism is dominant. However,
at moderately large 0* the main contribution may well be
due to the Feynman mechanism if the contribution of the
hard-scattering diagrams is numerically small for any rea-
son. In other words, if ¥(¢) is asum of a rapidly (say, expon-
entially) decreasing soft contribution V(1) ~A exp(at)
and a hard contribution that behaves as a power as HET:
V, (t) ~B(at)' ", with B<A4, then in a fairly large region of
(* values the contribution due to ¥, (¢) may be dominant,
and only at very large O? will the asymptotic contribution
due to ¥, (1) be dominant.

Form factors of bound states in quantum field theory

The foregoing arguments are qualitative and must, of
course, be supported by a more serious field-theoretical anal-
ysis. Usually, the BetheSalpeter formalism is taken as the
basis for describing composite particles in quantum field the-
ory.?* In this formalism a particle with momentum P consist-
ing of a particle ¢, and an antiparticle ¥, is described by the
Bethe—Salpeter wave function
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which depends not only on the relative distance x but also on
the relative time x,, of the constituents. In the quasipotential
approach,” which is a three-dimensional formalism, one
that uses the value of the Bethe—Salpeter function on some
hypersurface, for example, on x, = 0 (Ref. 29), on the null
plane x, + x; =0 (Ref. 30), or on the surface (xP) = 0
(Ref. 31) (covariant generalization of the condition x,
=0).

The dynamical variables (form factors, scattering am-
plitudes) of the composite particles can be expressed in
terms of the Bethe—Salpeter functions® or quasipotential
functions.** The form factors of constituent particles have
been considered by a number of authors, who used, in partic-
ular, the ladder approximation for the Bethe—Salpeter equa-
tion® and the idea of conformal invariance®®; some results
were obtained in the framework of three-dimensional forma-
lisms.*® In Refs. 37 and 38 the first attempts were made to
use renormalization-group methods and operator expan-
sions to investigate the asymptotic behavior of form factors.
In our paper of Ref. 39 the pion form factor was investigated
in the ladder approximation of a quark model with scalar
gluons by a method based on analysis of the asymptotic be-
haviors of Feynman diagrams in the ¢ representation.

Further generalization of the methods used in Ref. 39
served as the basis of our approach’”* to the factorization of
the contributions of small and large distances for the asymp-
totic behavior of the pion form factor in QCD. Other ap-
proaches (Refs. 2, 3-6, 9-11, 20, and 25) have also been
proposed for the investigation of the asymptotic behavior of
the hadron form factors in QCD. They have been based on
operator expansions (Refs. 2, 3,6,9,20,and 25), the Bethe—
Salpeter formalism,* the quasipotential formalism in “light-
front™ variables,'" and the formulation, intimately related to
it, of perturbation theory on the light cone.>'

Factorization and form factors of bound states in
perturbation theory

Bound states are absent in any finite order of perturba-
tion theory. Therefore, it is necessary to consider the total
amplitudes obtained by summing over all perturbation or-
ders. The investigation of the electromagnetic form factor of
the pion, treated as a bound state of a quark and an antiquark
in QCD, is therefore based on analysis of the total amplitude
T(P, P') that describes the process ¢ggy—4¢'q' (Pand P’ are
the total momenta of the initial and final states). Of course,
it is necessary to take a combination of the quark fields C(g,
7) that has a nonzero projection onto the pion state |P ):

01C @ 9 | PY=%p +0- (7)

FIG. 4. Pole structure of the five-point function.
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In this case the auxiliary amplitude 7’5 will have two poles
(cf. Ref. 32) corresponding to pion bound states (Fig. 4):

s (%)

ApeFa la) XTJ
(PE—m2) (P2 —m3)

TP, P ..)=1

where ¢ =-P’ — P, and F_(q) is the pion form factor:
(Pl|Ju(0)lp>::(Pu+P;L)Fﬂ: {q)- (9

We assume further that we have succeeded in showing
that in any finite order of perturbation theory the amplitude
T'is given by an expression in which the contributions of the
small and large distances factorize (Fig. 5a):

TP, P)=1p@E®fp{l+ 01} (10)

where the functions fp, f%. describe the interaction at large
distances in the initial and final states, respectively, and the
function E describes the interaction at small distances. If the
asymptotic behavior of the total amplitude is the sum of the
asymptotic behaviors of all the diagrams (in the framework
of perturbation theory we cannot assume otherwise}, the
expression (10) will also hold for the total amplitude. In this
case, the functions f, f* are given by Green’s functions of
the form

fp = (0 1OCs (g, 9 | 0V, (11)

where ¢ is some operator constructed from the quark and
gluon fields. Obviously, the functions f, /* must also have
poles corresponding to the pion states (Fig. 5b):

fp:i@?‘;’i@w 10| Py. (12)
Comparing now the expressions (8) and (10), (12), wecon-
clude that

Fa(g)=(P'|010) ® E® (0@ P){1+0(W/¢}

(Fig. 5¢). In other words, if the factorization (10) has been
established for the auxiliary amplitude 7 in each order of
perturbation theory, then it is also valid for the form factor
of the bound state (pion), and the particular form of the
amplitude 7, i.e., the projections y», ¥ has no influence on
the final result—it is sufficient for these projections to be
zero. This means that we can choose any combination of the
quark, g and g, and gluon, 4,,, fields that appears to us con-
venient, provided, of course, that {0|C(g,g, 4) |P ) #0. This

T-DwQr .
O-PTET ).

FIG. 5. Connection between the factorized representations for the five-point
function and the bound-state form factor: a) factorized representation for the
five-point function; b) pole structure of the block that describes the contribution
of large distances; c) factorized representation for the bound-state form factor.

(13)
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circumstance is very important in QCD, since the simplest
combination g(p,)g(P — p,) [or, in the coordinate repre-
sentation, ¢(x)g(y)] is not gauge invariant and therefore
cannot, strictly speaking, be regarded as colorless. As a re-
sult of this, its properties (particularly in the infrared re-
gion) may be quite different from the properties of the color-
less state that the pion undoubtedly is. To obtain a
gauge-invariant combination, we can take as C(g,q,4), for
example,

C=yq@)vsE(r, 33 4)q ), (14)
where E‘ (x, y; A) is the P exponential

1
E (@, y; d)="Poxp (ig(an—ym | ae, (aty (1—1).
0

(15)

However, the simplest solution is to take the ficlds q and g at
the same point,

C (g 9) =q () ys ¢ (2) = fy (2)y
i.e., to investigate the three-point Green’s function

To= \O175 @ I*0) 5 @) | 0)

ol

X exp (iPx — iP'y) d*x dly (16)

in the region of large momentum transfers ¢ = — Q%

2.FACTORIZATION OF THE CONTRIBUTIONS OF SMALL
AND LARGE DISTANCES

Alpharepresentation for the three-point function

Our approach to hard processes in QCD is based on
analysis of the asymptotic behavior of the diagrams of per-
turbation theory in the @ representation*®* as generalized
to the case of gauge theories in Ref. 43. The reviews of Refs.
17 and 23 are devoted to an exposition of this analysis. De-
tails of the analysis in the o representation that are needed
for what follows can be found in the Appendix.

The three-point function 75 (P, P') depends on three
momentum invariants: P, P'*,and ¢° = (P’ — P)%. Inthe
representation it can be written in the form (see Refs. 17 and
23)

g2y2-1 1 ,
T (P, P')= !“Z“ [h( ?_”z_ '\l 1] Aol — =) G P, P

Iy
chagrams

o cen ol (o) sy Ag () s e Ag (o)
' “p{_‘o D T TP 5

—i 2 (mg,——ig)au} 5 (17
a

where z is the number of loops of the corresponding Feyn-
mandiagram, the pre-exponential factor G(a, P, P') is some
polynomial in P and P’, and A(a), A4, (a),
A, (@), and D(a) are positive functions of the parameters o
uniquely associated with the structure of the considered dia-
gram.
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General structure of the contributions for the three-point
function

In accordance with the general prescription,?* to study
the asymptotic behavior of the amplitude it is necessary to
find the regions of the a space in which the factor
A(a)/D(a) multiplying the large momentum invariant 0?
(the only one in the given case) vanishes. The small-distance
regime (SDR) ensures this in four cases (Fig. 6):

1) the entire diagram can be contracted to a point (Fig.
6a);

2) one can contract to a point a certain subgraph that
contains the vertices 0 and x (Fig. 6b);

3) the same but for the vertices 0 and y (Fig. 6¢);

4) one can contract to a point a subgraph containing
only the vertex 0 (Figs. 6d and 6e).

It is only in the fourth case that the reduced diagram
contains components describing an interaction at large dis-
tances in both the initial and the final states and capable,
therefore, of giving poles (P — m?2)~'and (P — m?) ~!
after summation over all orders. The coefficient functions of
the configurations of Figs. 6a—6c can be calculated at zero
values of the invariants P* and/or P'? (see Ref. 23) and,
naturally, do not contain any poles of the type 1/(P? — m2)
with respect to the variables.

“Double contraction”

We note that the fourth case has two variants (Figs. 6d
and 6e). The configuration of Fig. 6 means that the two
graphs, V; and ¥, simultaneously give a leading pole, say
(J + 1) to the Mellin transform of the form factor
®(J). Itis really necessary to consider this configuration in
some simple scalar theories.® In theories with spinor quarks,
this configuration does not in reality work (this will be dem-
onstrated later), since if the subgraph ¥, has the pole
(J + 1) "', then the subgraph ¥, can generatea pole only at

" J = —2 or to the left, while at J = — 1 its contribution is

regular.

Hierarchy of contributions
Estimates of the contributions of the SDR subgraphs
can be obtained from the expression (A.7). Since T,=(P,

+ P/ )F, it is convenient to consider the contraction
I'=P,T" Then

F = 2T/0* (18)

and the expression (A.7) will give an estimate directly for T,
and for the contribution to F we have

FPs 0t 2h (19)

Thus, subgraphs with four external quark lines give the
leading SDR contribution F "% « 1/Q%

The configuration of Fig. 6c, in which the lower quark
is in the infrared regime (& — 0 ), gives with allowance for
the expression (18) the contribution

FI® on Q72 Zh 5 /@8, (20)

since the subgraph §' has at least two external quark lines.
The combined SDR-IR regime in the case when the
infrared subgraph S has only gluon external lines makes the
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same contribution as the SDR regime for the configuration
without S. This follows from the estimate of (A.9), whichin
our case gives

2=t~ t;
FPRER oG ¥ B . (21)

Softconltributions

In reality all the leading SDR-IR contributions cancel
after summation over all diagrams of a given order because
the soft long-wave gluons “feel” only the total color charge
of the system, and their interaction with the colorless sys-
tems is suppressed. The presence of the leading contribu-
tions FSPR IR~ 1/Q? in the individual diagrams merely re-
flects the fact that the investigated colorless system consists
of objects with color charge—an individual diagram “knows
nothing” about the fact that the complete system is colorless.

Technically, the summation over all possible sets of soft
gluons can be done by the method described in Ref. 23. Since
all the external lines in the considered case are colorless, the
colored lines of the corresponding diagrams form closed
loops. Therefore, as a result of summation we obtain a P-
exponential taken around a closed contour. We must then
bear in mind that

Pexp iz § 4, (9 dw) =1 +0 ).

The unity corresponds to a configuration without soft ex-
hanges, i.e., to the “pure” SDR case, and the contribution
O(G) means that the total contribution of all the configura-
tions that contain soft exhanges is suppressed in a power-law
manner by virtue of (21), since the field G, has twist 1.

It should be noted that in problems of form-factor type
the SDR contributions are also somewhat special, namely,
there are doubly logarithmic contributions in all contribu-
tions of the individual diagrams. To illustrate this, we con-
sider the behavior of the quark form factor in QCD.

Quark form factor in the single-loop approximation

We consider the single-loop contribution to the Dirac
quark form factor f(Q?) (Fig. 7). We introduce the Mellin
transform for f(Q*):
j(Q)Z—;Z—ini- | ra—gy @y o (22)

P
Of interest to us here is only the ultraviolet-finite part of

the contribution, the Mellin transform of which has the
representation
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FIG. 6. Structure of the contributions corresponding to the
small-distance regime for the three-point function.

jeo

o )=~ O | e (5) T (1= 5)
x (1= 3) e {1 St S s
—m} e+ )} 2

where D(a) = @, + @, + @, m, is the mass of the quark,
and m, is the (fictitious) mass of the gluon.

We first investigate the behavior of this contribution in
the Sudakov regime: — p} ~ — p3 >m. Note that forsucha
choice of the kinematics the integrals over a; have the neces-
sary infrared cutoff, and, therefore, the gluon mass m, can
be kept equal to zero. However, in the given case the limits
(*— = and m, —0 do not commute, and from the method-
ological point of view it is helpful to investigate both cases
m, #0and m, = 0.

The considered diagram has four leading SDR sub-
graphs:

V= {01}, Vo = {03}, Va = {o1, 02},
V.= {0y, 0, 03}

Integrating over the small A (1 = «, + a, + a3 ), and then
over the small B, (8 ,=¢a /A) and thesmall 8 ,(f =« ,
/A), we obtain the maximal singularity J ~, corresponding
to the doubly logarithmic contribution ~g*In*(Q*/P?).
Note that the doubly logarithmic contribution is due to inte-
gration over theregionA» 8 A ~B A,i.e 4 >a ~a , The
main contribution is made by the region in which
Q% a,/A~1, ie., the region @, ~a, ~c/Q, a;~c*/P,
where c<1. In the momentum representation this corre-
sponds to integration over the region P* <k < Q>

For massless gluons there is also an infrared regime, a;
— o0, which also gives a pole J~'. In this case the main
contribution is made by the region a; ~Q” /P or, in the mo-
mentum representation, k 3 ~7* /Q”. In this case the singu-
larity J ~* can also be obtained by integration over the region
iy iy I i oy

17

FIG. 7. Single-loop contribution to the
quark form factor.
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Thus, in the Sudakov regime there are two types of dou-
bly logarithmic contribution. Those of the first type, due to
integration over small «, are present both when m, 70 and
when m, = 0, while those of the second type, which arise as
a result of integration over the region @, — « (infrared re-
gime), are present only when m, =0. As a result, for
m, = 0 the doubly logarthmic contribution is twice as large
as for m, #0:

HO) lngmo = —r 1n () 1n (2. (24)

For m, 70 the contribution obtained from the region &z, -0,
a, -0, 4 > 1/p* depends logarithmically on the gluon mass:

2 3
f(02)|mg;eu= g"i%n_ﬂ In2 (_Q—p)

a

() n(Z%),

8

le., it is singular as m, - 0. This infinity signals, as it were,
the fact that for m, = 0 it is necessary to take into account
the “infrared” poleJ ~ ' which arises as a result of integration
over the region @~ Q?/p”. For m, #0, however, there is a
cutoff factor exp( — iamg ), and this leads to exponential
suppression of the infrared contribution if Q mi/pts 1.
Thus, the expression (25) is valid only for 9> p} pi /m?. It
follows from this that passage to the limit m, —0in (25) is
impossible, i.e., in this case the limits 0°— « and m, —0do
not commute.

For the form factor on the mass shell p7 = p; = m? the
coefficients of p} and p} in the exponential of the expression
(23) in the limit @, — o are equal to @, and a, and cancel
against the term m;, (@, + a, ). Asaresult, the integral (23)
isinfrared-divergent if m, = 0.In this kinematics it is neces-
sary to introduce a nonzero gluon mass for infrared regular-
ization of the form factor. For m, #0 the limit p>- m? in
(25) is smooth, and (25) for p* = m] gives the expression
for the single-loop contribution to f(Q? p>= m;), the
quark form factor on the mass shell.

For colorless systems (or, and this is the same thing, for
amplitudes with colorless external lines) the leading in-
frared contributions cancel after summation over all dia-
grams of a given order. In the case m, = 0 this is equivalent
to cancellation of the leading infrared poles with respect to J,
and in the case m, #0 to cancellation of the logarithmic
singularities ln(mﬁ ). Therefore, we shall now make a more
detailed investigation of the SDR contributions.

Structure of the SDR contributions to the quark form factor

In the theory with m, #0 there are no infrared poles
with respect to J, and the behavior of the quark form factor
at ¢*> p*/m}, is due to the small-a regime. A typical configu-
ration that gives a leading contribution is shown in Fig. 8.
The subgraph » corresponding to integration over the small
a has two spinor external lines and an arbitrary number of
vector lines. The vector lines can be divided into three types:

a) lines corresponding to the initial quark (4 lines):

b) lines corresponding to the final quark (B lines);

¢) vacuum lines (C lines).

As in the analysis of the form factors of deep inelastic
scattering in QCD,* it is sensible to consider directly the
sum of all configurations obtained from the same primitive
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FIG. 8. Structure of the contributions for the quark form factor: a) general form;
b) primitive configuration.

Py

configuration (Fig. 8b). The contribution of the primitive
configuration can be expressed in the form

£ Qo § dEasE (P19 E)10) (26)
£a0 & E)CO [ @) P,

However, in our problem there is a new possibility, namely,
the added gluon lines may be connected not only to internal
but also to external lines of the original subgraph v, (Fig. 9).
In particular, in Fig. 9b the insertion into the external spinor
line corresponds to the substitution

¥ g ) EESTE — )y, @)y (o), N

and the operator 1(z) replaces the operator (&) in the ma-
trix element (0|...|P), the operator 4 % (z) is added to the
matrix element (P’|...|0), and the factor 5 (§ —z)y,isadd-
ed to the coefficient function & (&, £°,...).

Modification of the coefficient function of the primitive
subgraph v, by an external gluon field

The summation over the insertions into the internal
lines of the subgraph v, can be done by means of the method
explained in Ref. 23 (see also the Appendix), i.e., by means
of the representation of the propagators S (x, y; 4) and D°
(x, y; 4) as products of the P exponentials E(x, z,; 4) and
E(z,,p; A), which absorb the “4 dependence” (i.e., the con-
tribution of the fields with zero twist), and of the propaga-
tors
¢ (x,y; &) and D¢ (x,y; ) in the gluon field .o/ taken
in the Fock-Schwinger gauge (x* — z¢)4 £ (x) =0 (Refs.
44 and 45; see also Refs. 46-49), in which the twist of the
field .o/, is equal to unity: & = &/ (G). We recall that the
addition of an external line corresponding to a field with
nonzero twist leads to a power-law suppression of the contri-
bution of the SDR subgraph that then arises [see (19)].
Thus, allowance for the insertions into the internal lines re-
duces to a modification of the corresponding propagators by
the factors E(x, z,; 4) and E{z,, y; 4). Combining them by
means of the method of Ref. 23, we find that the total effect
of the gluon insertions into the internal lines of the primitive
subgraph v, reduces to the substitution

YEVEE, DvE —~$E)EE, 2 4)
X & & EVE (3, B (0. (28)
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FIG. 9. Structure of the gluen insertions into the external lines.

Allowance for gluon insertions into external lines

The summation over the gluon insertions into an exter-
nal quark line of the subgraph v, obviously leads to replace-
ment of the operator ¥(£)(#(£')) by the operator ¥ (&,
AV ( &', A), which describes the quark fields in the external
gluon field 4, i.e., its replacement by the solution of the
Dirac equation in the external gluon field:

—igd, | ¥ (& 4)=0. (29)

/

i'yu-( &
The problem now is to find for the function ¥ (&, 4) a
representation that correctly (for the problem under consi-
deration} reflects its dependence on the fields 4,, with non-

zero twist. By analogy with the propagator, we can represent
W&, A) in the form

W (g, A) = E & zo) ¥ (5, A; 2). (30)

The function W (&, .o; z,) will then satisfy Eq. (28), in
which we now have not 4, but the gluon field .« taken in the
Fock—Schwinger gauge (x'—z)d, =0. Since
& = &/ (G), we can, ignoring contributions O(G), replace
¥ (£, & z,) by the original operator W (£). In other words,
allowance for the insertions into the external quark line has
been reduced to addition of the P exponential E(£, z,).

We also point out that the gluon lines added to the
primitive subgraph v, are divided into three types, depend-
ing on the block, 4, B, or C (Fig. 8a), from which they eman-
ate. In accordance with this, the operators of the gluon fields
occur in the bracket (0|...|P }, orin (P’|...|0}, orin {0]...|0}.
This means that the summation over the gluon insertions
must be made successively, say, first over the 4 insertions for
fixed B and C insertions, then over the B insertions for fixed
C insertions, and only then over the C insertions.

The primitive subgraphs for the intermediate stages
have not only quark but also gluon external lines, into which
insertions must also be made (see Fig. 9¢). The gluon field
operator 4, (£) in the external gluon field B obviously ac-
quires the factor E(£, B; z, ). (To distinguish the gluon fields
according to their type, we shall, when necessary, denote
them by the symbols 4, B, or C, respectively.) Here it is also
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important to emphasize that 4 and B insertions cannot be
made into all external lines but only into “opposite” ones,
i.e., lines that enter an opposite block.

In other words, the summaiion over the 4 insertions
into the primitive single-loop subgraph (Fig. 9a) gives the
factor E(z,, &) for the field /(£ ") but in no way affects the
field ¢ (£). Therefore, the result of summation over all the 4
insertions (into both the external and the internal lines)
leads with allowance for (28) in the given case to the substi-
tution

TEY €y Er B E >V E) Eu s 8 E (20 & A) DB
(31)

Optimization of the choice of the P exponential

We shall now consider what choice of the parameter z,
most adequately reflects the structure of the investigated
amplitude, in particular, its behavior in the momentum rep-
resentation. The factors E(x, z,) and E(z,,y) [ whose prod-
uct is equal to E(x, y; 4) apart from O(G) terms], which
occur in the expression for the propagator . (x, y; A), mean
that the field 4 acts on the quark in its motion from z, to x.
Similarly, the factor E(x, z,; A) in the expression (30) for
W (x,A) means that the field 4 acts on the quark in its motion
from z, to x. In the example considered above, the summa-
tion over the A insertions corresponded to allowance for the
effects associated with the motion of the final quark in the
field 4,, of the gluons emitted by the initial quark. It is natu-
ral to expect that the final quark will move from the point £
to infinity in the direction specified by the momentum P’,
and therefore as the contour (x, z,) it is most natural to take
the line z, = £ + P s. This choice of the contour corre-
sponds to the P exponential

Ep: (&, oo)=Pexp (igh} \ dsd, E+sPye-e)| o (32)

1]

which is identical to the operator of the gauge transforma-
tion to the axial gauge P; 4" =0, which, like the Fock—
Schwinger gauge,**** belongs to the class of physical gauges
in which thefield 4 has twist 1,i.e, 4" = A(G) (Ref. 77).
Therefore, in all the expressions given above the P exponen-
tials E(x, z;; A) can be understood as P exponentials Ep p.
(x,A4).

The choice of the P exponential in the form (32) for the
A insertions is in reality uniquely dictated by the analysis in
the momentum representation. Let us consider the configu-
ration shown in Fig. 9b. To it there corresponds addition of
thefactory “(P' — k)/(P'* —m} — 2(P'k) + k *)totheco-
efficient function of the primitive subgraph v,. It should here
benoted that in accordance with the prescription formulated
in Ref. 23 we must, in the construction of the coefficient
function, set all the small momentum invariants (the masses
m;, the “virtualities” of the external lines P LP72 k3 ete)
equal to zero, since allowance for them is equivalent to in-
cluding in the coefficient function contributions correspond-
ing to higher twists. In our example it is also necessary to
discard the term & in the numerator of the additional factor,
since the momentum k of the gluon does not have in this
approximation components proportional to P
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o -

i"]... 6“1 cee B, A ...JP):PlLll cen Py \ @ (@) da
0
(33)
ie, k, ~aP, and the combination
LYWL 0] Ay . P, (34)

which corresponds to the configuration of Fig. 9b, is a quan-
tity of order O(F?). Thus, the additional factor is propot-
tional to the quark propagator in the eikonal approximation:

(P A (k) (35)

gA, (k) y*S (P — k)~ gm-

The same will be true for the following 4 insertions into
an external quark line, and the summation of the eikonal
series gives precisely the P exponential (32).

We can also arrive at this result in a simpler way. We
note that the configuration shown in Fig. 9b “works” only
when the gluon external line introduces into the coefficient
function the factor P, (it is this that corresponds to the fact
that the field 4, has zero twist), which in conjunction with
P, gives an O(Q%) contribution that compensates the de-
nominator of the additional propagator. Thus, eveything re-
duces to the result that P/ (0]..4"..|P)~(PP’). But if we
impose on 4, the axial gauge P A" =0, the configuration
of Fig. 9b will not contribute. This means that in the given
case all the necessary information about the contribution of
the fields with zero twist is contained in the operator of the
gauge transformation to the gauge P, 4% =0, i.e., in the P
exponential (32).

Structure of the final result

Thus, the summation over the 4 insertions has led to a
modification of the matrix element (0|¢(£)|P) that de-
scribes the quark of the initial state. It has been transformed
into (0|E,. (&, A)¢(£)|P). Similarly, the summation over
the B insertions [with allowance for the fact that the opera-
tor of the gauge transformation which “kills” the contribu-
tion of the configuration of Fig. 9d will in this case be the P
exponential E, (£, B)] transforms (P’'[¢(£')|0) into
(PIPENE 7 (£, BY[O).

The situation with regard to the C insertions is some-
what more complicated, since in this case gluons must be
inserted in both the left and the right external lines. For the
left external lines it is necessary to take E ,, and for the right
E,.,but what should we take for the insertions into the inter-
nal lines? The answer is very simple: For the Cinsertions the
propagators of the internal lines must be taken in the form

oz, gy C)=Ep(x. C)F"(z. y; ¢) Ep(y, ©)
— Ep(z, )8 (x—y) Ept (y, C) (36)

for the quarks and similarly for the gluons. As a result, after
all the necessary commutations, the C insertions give the
factor £ 7 ' (0, C)E,. (0, C), where 0 is the coordinate of the
photon vertex. Thus, the C insertions give the P exponential
calculated for a contour “traced” by the quark: from infinity
along P, to the point 0, and from the point 0 along P . to
infinity. It is true that we must here be a bit more precise.
The gluons must not be too soft, since the contribution of the
infrared regime is taken into account separately. Therefore,
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in the a representation the values of the parameters ¢ asso-
ciated with the additional gluon lines must be bounded
above: @, < 1/4 2, where A is the energy boundary that sepa-
rates the soft gluons from those that are not soft. In the lan-
guage of P exponentials, such a bound corresponds to a cut-
off of the contour length, i.e., replacement of the upper limit
of integration over s in (32) by some finite value s,;.

We emphasize that this cutoff applies to the objects
(0|Ep. (£, B)Y(£)|P) and (O]E 71(0, CYE (0, C) |0},
which describe the contribution of large distances and there-
fore have the usual (for such objects) ultraviolet lower
bound on the parameters a (of the type a > | /1%, where p is
the boundary between the small and large but not infrared-
large distances). The infrared cutoff @, < 1/4? correspond-
ing to it applies already to the coefficient function # ( £yl
As we have already noted, in the momentum representation
the coefficient functions E(P,P "k,..) contain the loga-
rithms In(Q* /&%) and In(Q* /P?), which are singular ( — o)
in the limit 7, ¥* 0. The bound a,, < 1/u? ensures smooth-
ness of the limit P?, k* -0 and transforms In(Q?/P?) into
In(Q* 7p%).

Structure of the factorization at the single-loop level

We illustrate what we have said by the example of the
single-loop diagram (see Fig. 7). Its contribution in the case
m, #01is [see (25)]

£ e (_0 ¢ p
—Cx i {111 (_—T) a2ln( e ) In ( s )}

g

We represent In(Q?/( —p*)) in the form of the sum
In(Q?*/u*) + In(2/( — p*)). Then

3 B2
)—Hn ( — ) .
(37)
The first contribution, In*(Q?/u?), obviously corre-
sponds to the regime in which all & are small (Fig. 10a). The

second contribution corresponds to the C insertions in the
order a,:

Reggzv 0 IE];l (0. C) [*I-E:ME Epl 0, C)l _pgguzlo)

¢ )In(—L) (38)

sz == pﬁ

3
—t—E Con(

Finally, the third contribution is the sum of the matrix ele-
ments

FIG. 10. Types of contributions for the single-loop diagram.
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2 dovy dotg
>~ —rm “F o
16n2 @y (g 2g)
aa>1/n2
atag>1/p2

o ; Lol

1 — 2 ) ex (1 2 A)

wif ot ) oo (1P

X [1—-exp(i(w1pz) e ):| ~ 32; Crlntpt,

(39)

which have a doubly logarithmic dependence on the ultra-
violet cutoff parameter g. Note that only the presence of the
second term in the square brackets ensures finiteness of the
integral in the infrared region.

Factorization for the asymptotic behavior of the pion form
factorin QCD

The structure of the SDR contributions for the three-
point amplitude T4 (P, P') (17) is completely analogous to
the structure of the contributions for the quark form factor.
The main difference is that the primitive configuration cor-
responds to subgraphs with four quark external lines (Fig.
11). We write its contribution in the form

T (P, P)=\ dsEdwna® diy (die-#v (0], (1)

X $c () vsve¥a (E) [0

X €%hen @ ¥ n, 1) | dhae® O @ vsvato (1) 75 (10},
(40)

where 4, B, C, D are the color indices of the quarks. The
gluon A4, B, and C insertions must again be made in both the
internal and the external lines of the primitive subgraph v,,.
Since on the transition to the gauge P, 4,, =0 (or, respec-
tively, P/ A, = 0) the contributions with insertions into the
external lines of the subgraph v, acquire a power-law sup-
pression O(1/Q?), it follows that, as in the case of the quark
form factor, their summation gives P exponentials of the
form (32). Therefore, the technique of summation over the
gluon insertions presented above is fully valid, and our re-
sults can be directly generalized to this case. Of course, it
must be borne in mind that the antiquark lines run in the
opposite direction.

FIG. 11. Structure of the contributions for the pion form factor: a) primitive
configuration; b) soft gluon exchanges.
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The summation over the C gluons obviously gives a P
exponential around a contour “traced” by a quark-anti-
quark pair. Since this contour is closed, the contributions of
the fields with zero twist in it cancel, and this P exponential
can be replaced by unity.

The summation over the B gluons adds two P exponen-
tials (one for 1, the other for ¥) to the first matrix element,
and it acquires the form

{ dezetP= 0175 (2) (9 ®
t X B (€ A)avsva (Ee () B)Y 1610 (a1y
Similarly, the summation over the 4 gluons gives
{ diye=17v I0F () E7* O, B))
Xc Vs¥a (Ep € B)$E o s @10, (42)

In order to “decouple” the summation over the color indices
4, B, C, D, it is necessary to use the analog of the Fierz
identity for the group SU(3) .:

6406 = - 8308 +2 D\ (198 (z,)%- (43)

Cancellation of the doubly logarithmic contributions

Since the currents j5 are colorless, only the singlet pro-
jections will be nonzero. As a result, we obtain in (41) and
(42) colorless bilocal operators of the form

V@ Bt € A)E, (M, A)vsval (- (44)
We now note that the product
Eqt (B A) B, (n; 4) E(n, & 4)

is a P exponential calculated for a closed contour
(7—£&- w—7), and therefore, apart from terms O(G), it
can be replaced by unity. For the same reason, the operator
(44) can be replaced by the bilocal operator

Qs (B M=V E) EE u A) ysva (n)- (45)

The operators (45) can be expanded in Taylor series with
respect to gauge-invariant local operators:

(‘95’1 (E' n): Z NI Aul AMN‘—pVﬁVchuI D!LN‘J:’a
(46)

where A, = £, — 7,,. The matrix elements of these opera-
tors have a singly logarithmic dependence on the ultraviolet
cutoff parameter, and this means that all the doubly loga-
rithmic contributions to 7 #(P, P') cancel. This cancellation
again occurs because the initial and final states are colorless.
If the currents j; were colored, the octet projections to the
Fierz identity (43) would make a nonvanishing contribu-
tion, and instead of the operators (44) we would have opera-
tors of the form

V(€ ER (& A)TE, (5 A) ysva (1), (47)

which cannot be represented in the form (45) by any amount
of effort. We can rewrite (47) as
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FOEE m 4)v5vamb ) Fy (p A)pe (1+0(E),  (48)

but in no way can we get rid of the P exponential E, (7; 4)
around the contour that goes to infinity.

Of course, the bilocal operator in (48) can be expanded
in a series with respect to local operators, as in (46), but the
matrix elements of the operators 0% (7)(E, (7, 4))* will
have a doubly logarithmic dependence on the parameter 75
In this case complete cancellation of the double logarithms
does not occur. For example, at the single-loop level the dou-
bly logarithmic contributions having the color factor C,. of
the fundamental representation cancel, but doubly logarith-
mic contributions proportional to the octet factor C,( = N,
) remain.

Factorized representation for the form factor

Thus, for the asymptotic behavior of the auxiliary am-
plitude we have obtained a factorized representation of the
form (10), in which the contributions of the small and large
distances are separated. In accordance with the discussionin
Sec. 1, this means that for the asymptotic behavior of the
form factor there is also a factorization in the form (13);

Fi (09 = § d'tdinds’ duy’ (P'|Regl¥ Oy, (', 1) 0)
X ReglF (€.5 & &, n, 0)) O|Regl¥Oqy €, v)|P)
X {140 (1/g?). (49)

The coefficient function & _; in the momentum repre-
sentation corresponds to the quark ¥*¢g—¢'g’ amplitude on
the mass shell k} =m. =0, and therefore, formally, it is
gauge-invariant. The operators &, and ¥, are also gauge
invariant. If the procedures Reg,”, and Reg/, do not des-
troy the gauge invariance, then in (49) the regularized ex-
pressions for the matrix elements and for the coefficient
function will also be gauge-invariant. This can be achieved
by defining the operation Reg/ as a dimensional renormal-
ization of composite operators.

Parton picture for the asymptotic behavior of the pion form
factorinQCD

Asin the case of inclusive processes, the expressions for
the asymptotic behavior of the form factor simplify appre-
ciably and acquire a transparent interpretation if they are
rewritten in a parton form in which the reduced matrix ele-
ments of the local operators are identified with the moments
of the parton functions, which in the given case have the
meaning of hadron wave functions (and not of distribution
functions that occur in the expressions for the cross sections
of inclusive hard processes).

Parton wave functions

The bilocal gauge-invariant operators ¢ (&, %) can be
expanded in Taylor series with respect to local operators,

p B Sy
(01050 &, )| Py=e 2 2 WAI‘I wa s Ayg

N0 (50)

X (OldvsaDe, ... Do ulP),

with 12 two_-'sided, B# :_D’# - *l_)h“, or a single-sided deriva-
tiveD, =d, —igd,:
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0]Osc. E M)IPY

1 aee ol -
“f\"l_Aul AMN(Oldvs?mDuL DuNuIP), (51)

DA 8

N=0

where A = &£ — 5. Determining the reduced matrix elements
of their traceless parts by

©f@ys {vaDs, .. Dy }ulP)|u

_ A (=Y
s T

Qi AP F oy o x Bl (52)

(015 {¥eDa, -+ Dy JulPYlya= 4n (49 {PoPey ... Py},

(53)
we can introduce gauge-invariant parton wave functions
(Refs. 1-3) ®(£):

1
S q)(g)gndré:q)ﬂ 1."{“(2—1-)71 (54)
~4
and @(x):
1

\ 9 (2)2" de =gp.
0

(55)

Between ®(£; %) and @(&; u?) there exists the obvious rela-
tion

ult uz)=%¢-(-1—2+5:u2)- (56)

The vanishing of the even moments in (52) and (54) is a
consequence of the G-parity properties of the operators
(52). The vanishing leads to symmetry of the wave function,
Q(£) =P(—£) and ¢(x) = @(1 — x), and expresses the
fact that the » and d quarks of the pion are on the same
footing. The fulfillment of the spectral property @(x) =0
for x¢[0, 1] (orforx <0, x < 1) for the wave function @(x)
was proved in Ref. 50.

The wave function @ (x; ) has an obvious parton in-
terpretation, namely, it describes the amplitude for the prob-
ability of finding the pion 7 with momentum Pin a state for
which the # quark in the infinite-momentum frame carries
momentum xP = ((1 + &) /2)P and the d quark carries mo-
mentum XP = ((1 — £)/2)P. In fact, ¢ (x; g?) is a quasipo-
tential wave function on the light front, ¢ (x, k;, ) (Ref. 30),
integrated over the transverse momentum k, to, roughly
speaking, 4 (Refs. 5 and 10):

¢ (@ p3) = \d%. 0 (@, k1) 8 (3 < po). (57)

The logarithmic divergences can be removed from the inte-
gral (57) by any other method, for example, by dimensional
regularization, d°k, —d*~** k,, with subsequent subtrac-
tion of the poles with respect to £. The choice of such a meth-
od corresponds to the choice of the form of the procedure
Reg,” for the operators.

The parton wave function satisfies the specific normali-

zation condition'*-?
1

1Py \| ©E, p?) dE=(0|Tvyy,u|P) =iP,fn. (58)
-1
The matrix element of the axial current is known from the
decay m—puv, and by virtue of the conservation of the axial
current in the chiral limit (m, = 0) the condition (58) is
satisfied for all p*.
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Parton picture

Using for the operators (51) their expression in terms
of the wave function (53), (55) and substituting everything
in the factorized representation (40), we obtain for the
asymptotic behavior of the pion form factor the expression

FR(QZ)*(\d \dycp (; 1% ¢* (4 p?)
0

o (B, P, yP’', yP% ud). (59)
which has a simple parton interpretation in terms of the am-
plitude of the hard subprocess ggy* —g'q’ (Fig. 12).

In the lowest approximation the amplitude .# is

@ ¢

Moz, s Qz):_gw%@ffa (60)
where Cp = 4/3 and N, = 3 are color factors. For the form
factor F, (Q?) we now obtain'

1
o nCroes (@%) | {1 q (ry W2
FP (@)=l | { 881 g, (61)
[l

It is natural to take the parameter &* proportional to @ but
the coefficient of proportionality can be reliably determined
only by calculating the next correction in a,.

The wave functions @(x, p*) are determined by the
large-distance dynamics, and therefore their explicit form is
not in general known. Perturbative QCD predicts only the
law of their variation with increasing y°.

Evolution of the pion wave functionin the leading logarithmic
approximation

The dependence of the wave function @(x; ¢*) on the
parameter u? is determined by the anomalous dimensions of
the operators (52) and (53). A characteristic feature of our
problem is the presence of mixing between the fundamental

operators O, .., (X) and their total derivatives
(c?/c?X)"'O o
(1 7o+ B le) 5 ) O1BD"pI P)

= Z Z, 016" (pDMp) | Py, (62)

PES]
We note that the matrix elements of the derivatives do not
contain new dynamical information,
r)

. 2 2
n
! <0’ X, " 0Xay Ou,..ony

:PC“'I . POL}; (0‘0u1...;ﬁNlp)’

(63)

and therefore the expression (62) means that when the ren-
ormalizations are made there is mixing of the @, with differ-
ent n:

)wn Z ZnnPh- (64)

k=0

(- +B&) 5

FIG. 12. Parton representation for the asymptotic behavior of the pion form
factor.

52 Sov. J. Part. Nucl. 20 (1), Jan.-Feb. 1989

Matrix of anomalous dimensions

A direct calculation of the diagrams shown in Fig. 13
gives for the matrix of anomalous dimensions the result

g* 20,0 .
B = vz { bt T ) | (65)
Y n+1
Z('"‘):C, gs _ < _1_ ) i | . 1
nk F 8n? { 4 (4'2 i ) 8.2 ( n—k a1l )
o

Om—8um}-  (66)

The symbols §,, and 8,, have the meaning

8o =1 (r=k), 8, =0 (n k) (67)

Bon=1MmZ=k), 0,=0 (n<h). (68)

In the Feynman gauge the term Z {3’ corresponds to the con-
tribution of the diagram of Fig. 13b, i.e., is due to the exten-
sion of the derivatives in the local operators.

Diagonalization of the matrix of anomalous dimensions

By a suitable choice of the operator basis one can make
the matrix of anomalous dimensions diagonal. The diagona-
lization procedure is greatly simplified by noting that the
matrices Z ) and Z {}’ commute. As a consequence, it is
sufficient to find a basis in which the simpler matrix Z {}’ is
diagonal; the more cumbersome matrix Z 3’ will automati-
cally be diagonal in the same basis.

Since Z ()’ is a triangular matrix, its eigenvalues are

given by the dlagonal elements

am—g, 8 (—1-[..#)
=CFgm P TN (69}
Therefore, it is necessary to find vectors &,

o0

'I{n, — S dnmama (70)

m=

that satisfy the equation

(w4 B @77 ) B WO (71)

Using the explicit form of 4 ‘", we obtain an equation for
d

nmt
o

2 dni — @nm (72)
@+ (2 (1) (n+2) 7

I=m

the form of which depends only on the structure of the coeffi-
cient of 8, in (65). Subtracting from (72) the equation for
d, .., weobtain a recursion relation, from which it follows
that

_  (mtnt2)l
Gom =~ V" T T e & (73)

where ' is an arbitrary normalization constant that it is
convenient to take equal to 4. In this case the multiplicatively
renormalized combination has the form

a h ¢

FIG. 13. Single-loop contributions to the evolution kernel for the pion wave
function.
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mn

k= 2

m=0

{mt-nt2)l (—4)™
2l (m+ 1) (n—m)l Pm* (74)

With allowance for the definition of the coefficients g,, (53)
this means that there is a multiplicative renormalization of
the matrix elements of the operators

1]

K = 5

R L
m=0

(@™ @yn D™, o}
=y r OVCY @DI0Y) .y Yus  (75)

where C}?(£) are Gegenbauer polynomials [see Ref. 51,
Eq. (10.9.20) ], and

(m4-n+2)(—)1m
2nt (m+1)! (n—m)!

D =B —D, g =3 +8=D + D,
& (D19 .4)* = omkD*,

It is interesting to note (as was emphasized in our pa-

pers of Refs. 8 and 27) that the tensors K. u, are confor-

mal in the approximation of free fields. The connection
between multiplicative invariance of the operators at the sin-
gle-loop level and their conformal properties was then inves-
tigated in Refs. 52-54.

Expansion of the wave function with respect to
multiplicatively renormalized combinations

In accordance with (75), the matrix elements of the
operators K are related to @ (&) by

By
1
PPy, - P} | & W) CE O R
-1
= 0Ky |PY=K, (@) {P,P, ... P}

The polynomials C;*(£) are orthogonal on the interval

(—1, 1) with weight
(1 — £%); taking into account their normalization, we obtain

ax

OEpy=(1-8 2 K, (13

n=0U

n+32 3/2

—— E
(1) (n4-2) ™ (b) (76)

The coefficients K, (@) are multiplicatively renormal-
ized with a change of ¢ Taking into account the explicit
form of the QCD £ function in the single-loop approxima-

tion,'*'* we find
Ky (1) = (i)™ Ky 3, (17)
where
2 o1
=G (1= g+ 2 1)
B=1l— 2Ny (78)

Asymptotic wave function

Since all the coefficients ¥, apart from ¥, are positive,
the contributions of the higher harmonics in (76) are
damped with increasing N, and in the asymptotic limit z?
— o the wave function ®(&, u*) takes the very simple
form”'®

D™ (5 Hi—»oo):?:i”fn(l-“’éz)- (¥
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Here we have used the fact that the constant X 0» Which
is determined by the matrix element of the axial current, is
equal to f, .

The limiting form of the wave function, ®(£;
w) =3f,(1— £)/4,isanalogous to the limiting form f(x,
o) ~8(x) (Ref. 15) for parton distribution functions.
However, it is well known that for the momentum transfers
currently attained the functions f(x, @%) differ appreciably
from their limiting form and, if they do tend to it with in-
creasing %, they do so very slowly. Similarly, the wave func-
tion @ (&, @) in the region of moderately large 0 may in
principle differ appreciably from 3 (1 — £?) £, and, more-
over, may have a quite different law of behavior in the region
&~ 1, which is particularly important for the integral (61).

Each term of the sum (76) behaves when £&2~1 as
1 — &2 since

n432
TEENTESAS

m]’ll_—_EEJi((TI

—®)
+3)VI=F) ~(t—5),  (80)

where J, is the Bessel function, and J, (x) ~x as x—0. But if
the coefficients do not decrease sufficiently rapidly as n — oo,
the infinite sum of the higher harmonics may radically
change the behavior of ®(£) for £~ 1. Indeed, if K, ~n"
then in the region n>1/y1 — £ we find by means of the
well-known asymptotic relation®!

cosxr

Iy (I)WTE— (81)
that

Z eV T2, ((n+3) VT-B) ~ (=82,

b (82)
where Ny = A /1 — 2, with A> 1. As a result,

DE) =a(l —E) - b1 —F)o, (83)

from which it follows that the first term, which is given by
the sum over n < N, is dominant only when & < — 2. The
behavior of the coefficients K, (Q?) at large Q? can be ex-
pressed in terms of the behavior of K, (Q 2) if we use the fact
that at large n

Yo =4CgInn — 0 (1) (84)

[see (77)]. It follows that™*’

%((2) = o (QF) — %F (lnln—%;—lnln—o\lj), (83)
and, thus, for sufficiently large O the value of a(Q%) be-
comes less than the “critical” value @_;,, = — 2, as a conse-

quence of which the wave function ® (£, 0%) behaves when
E~lasl— £

Asymptotic contribution to the form factor

Substituting the expressions (75) and (76) for ®(&; u?)
in the expression for the form factor (61) and setting . = Q,
we find that

[

£ (@)= 8, (09) = & (v (P, (86)
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where ¥ (%) is the result of integration over &:

n_ 3 = 2043 [ InQ3AT \vn/B
Yei=gr & Kn(oé)mw)(nu)(1nogmz )™

n=2; k.yaas

(87)

We recall that the Gegenbauer moments K, (Q32) can
be expressed in terms of the ordinary @, by means of the
expression (79).

Itis interesting to note that in the framework of 2 model
with scalar gluons we obtained® for the asymptotic behavior
of the pion form factor, using the method of direct summa-
tion in the ladder approximation, an expression with a struc-
ture analogous to (80). Namely, in Ref. 39 we obtained

For (@) =5 0 (&) (&) 7%, (88)
where
jec
QN _ 4 [ ey,
() == ) () FEm (89)
B(y= 3 et e b8, (90)
n={

and v(v+ 1) = — g3/, g5 =g°/167. Going over from
the variable of integration 7 in (89) to the variable v and
calculating the integral over v by taking the residues at the
pointsv = n + k + 1=N, weobtain for g (Q ?/u”) the result

& i
cp( ft): )=NEG (=¥ (ﬁ%(%) NFOH(NTD)
v
* 2 E'(T(I_Ti?t’v——w (91)
0
Since ¥, = — (g/87) (1 + 1/(n+ 1) (n +2)) is the

anomalous dimension of the operator ¢ysy,d"¢ in this mod-
el,* the structure of the expression (91) is identical to the
structure of the QCD expression;, moreover, in this case too
the multiplicatively renormalized operators are expressed in
terms of the same Gegenbauer polynomials C ¥2,
Returning to (87), we note that in the limit Q°— o the
function y(Q®) tends to 3/2; this value obviously corre-
sponds to the substitution in (61) of the asymptotic form
(£) (79) for the pion wave function. In other words, in the
“rigorous” *— oo asymptotics the pion form factor can be
expressed in terms of the constant £, and the QCD running
coupling constant a, (@ 2) (Refs. 7, 9, and 10):
2 4

P (Q) g =Lt DD 92)
Taking for a, (Q?) its value a, ~0.3, which is typical for
momentum transfers Q% =1-5 GeV* (for Agep =100
MeV), we find from (92) that Q2F, (Q?2) ~0.15 GeV2 This
is two and more times less than the experimentally observed
value. This fact can be interpreted as an indication that the
true low-energy wave function differs from the asymptotic
function, or that at the currently achieved and rather small
momentum transfers Q > 5 5 GeV the asymptotic analysis is
not yet valid.

Evolution kernel for the pion wave function

Using the connection between @, and the wave func-
tion @(x, *), we can obtain an evolution equation directly
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for @(x, 1*) (Refs. 5 and 10):
i
(nar +BO) 5 )o@ mr= Vi ol w)dy.
b
(93)

The evolution kernel V(x, y; g) is related to the matrix Z,,
by

Vi(z, g g) 2" dz= 2) Znn () ¥* (94)
k=0

Oy —

or, explicitly
—G+ioco

1

N
Ve y =g | dna (D Za@9t) |

—0—jeo k=0
(95)

where the symbol AC means that the result of the summa-
tion over k£ must be analytically continued to the complex
plane of n. For example, for the contribution Z ¢}’ (65) the
sum over k in (95) is

2 9 {— g+l
%{_yn_l_ I ¥ },

(n4+1)(n4+2) 11—y (96)
and the integration over n gives

Ve (z, )= 8‘?; {—ﬁ(x—y)

+[%e(x<y)+-§le(£<_)]}

— i {20 <p @z y—=B), . O

The operation { }, is defined as follows™:

1
V@ =V @ y—8E—y\Veyde (98)
0
For the kernels “with plus” we have
1
\ {V (@, 9} dz=0. (99)
0
Since the integral (99) for the evolution kernel of the pion
wave function is Z,, = ¥,, i.e., is equal to the anomalous
dimension of the axial current, which vanishes because the
current is conserved, the evolution kernel of the pion wave
function has “plus” form in all orders of perturbation theo-
ry.
For the contribution Z §} the calculation in accordance
with (95) gives

reo & % G o —_
VO = — e {2080 4y o3 ),

(100)

The use of evolution kernels considerably simplifies the
problem of diagonalizing the matrix Z,, and this problem
obviously reduces to finding the eigenfunctions of the kernel
V(x, y; ). But this problem can be solved trivially.>*° It is
sufficient to note that the kernel ¥(x, y) = V2 (x,y) + V@
(x, ) (like, in fact, each of its components ¥V and V)
becomes symmetric with respect to the substitution x<sy
after multiplication by yy. It immediately follows that the
eigenfunctions @, (x) of the kernel ¥V, (x, y) must be or-
thogonal with weight x(1 — x). Now in the class of polyno-
mials the Gegenbauer polynomials C¥2(x — %) have pre-
cisely this property.
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“Double-contraction” regime

From the very beginning of our analysis we systemati-
cally ignored the possibility of “double contraction” (see
Fig. 6e) and promised to justify later such a course.

The question of the presence or absence of contribu-
tions due to double contraction (when in the SDR regime a
leading pole is given simultaneously by two subgraphs ¥
and Vg with neither contained in the other) is not at all
academic, and an answer to it is required. In simple scalar
models of the type @ (), @ {4, it is particularly acute—the
presence of these contributions has the consequence that the
analysis of the form factor of the “pion,” i.e., the two-parti-
cle bound state, in these simple models is in fact more com-
plicated than in QCD.

To illustrate this thesis, we consider a very simple sin-
gle-loop “two-sided” diagram (Fig. 14a) in the ¢ %, model
(this model, which is renormalizable, is closer to QCD than
the super-renormalizable @ },, model).

The Mellin transform of the contribution of this dia-
gram has the a representation

o 3

Lo egt (61 xt} (gt yag)”
ﬂﬁ(ﬁ’y’J)"?ﬁﬁfg [[ de = D@7
[1E |

exp (—mz E ai) ,
i

where D(a) =a; + ... + @5. In this case the SDR sub-
graphsare V, ={o,,0, 1, V, = {0,,0,}, Vs ={0o,,..., 05 }.
Integrating first over theregion A <l/p*(A=a, + ... + as),
next over the region 8, -+ B, <1(B; = @, /1), and then over
the region £, + 5, < 1, we obtain at the point J = — 2 a pole
of third order, and this corresponds to the contribution
Q ~*In* (Q*/u?) in the single-loop diagram!

To understand the origin of the “extra” logarithm, we
write down the intermediate result obtained after only the
integration over A <1/u* and B, -+ B ,<1 has been per-
formed:

(101)

£

J+2 o
Ele, y; J) o~ £ U103 \ dx (x4 y (1 — )"
0

=GP (T FoE
3

H dB; (ﬁl+xﬁ2)J6(1_ﬁ1_ﬁﬂ_ﬁ5)!

i=1

4

S

(102)

D —

where x = 3,/ (5, + 3,). Denoting 3, + xf3, by z, we can
represent E in the form

i :

xP yp! xP yr’
v d

FIG. 14. Structure of contributions in the “double-contraction™ regime.
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1
, 11742 4 ,
Bla g )= (qx) " 7o § 457427 (2, 9 By (2. w2 ),
0

(103)

where E, (z, y; J) is the Mellin transform of the tree diagram
(Fig. 14b),

EO (21 !/; J) gﬂ

TVt (104)

and ¥ (x, z) is the single-loop evolution kernel for the wave
function,
1
V=g I 88— @+Bi)

0 i=1,2,5
6('1—31_62_[55)

< z 1—z
= {2 E<a+i5 8G<9)

x

(105)

[cf. (97)].

Thus, the appearance of the third pole at J= — 2 is
explained by the fact that the product V(x, z)E,(z, y) be-
haves at small z as 1/z. We now note that convolution of the
kernel V(x, z) with the original wave function ®, (x, u2)
gives precisely the correction to ®, due to the evolution:

1
‘Mam:®@wﬂHnﬁﬂhV@@®@¢3

dr=®d,+AD.  (106)

Thus, if we write down the contribution of the configuration
with the SDR subgraph of lowest order (Fig. 14b) in the
parton form

1 1

FE (@) =\ @5 dz { O Ez, y; 09 dy

(107)

and take the evolving wave functions (106), then as a result
of the high singularity of the amplitude E(z, y; 0*) ~ 1/(2*
y@*) at small z the correction to ®, due to the evolution will
give a logarithmic divergence. In a more accurate approach
an additional logarithm appears instead of the divergence. In
QCD the contribution of the diagram of single-gluon ex-
change (Fig. 14c) is proportional to 1/(zpQ*), and the evo-
lution kernel F(x, z) behaves at small z like z, and therefore
no singularities at all arise in the integral over z; thus, in a
diagram like that of Fig. 14a the double-contraction regime
is impossible, and the diagram gives only a single logarithm.

Let us trace the reason for this difference in the behav-
ior of the contributions E; (z, ). The denominators of the
propagators in QCD give the same result 1/(z*yQ*) as in the
@ * model. However, in the numerator of the spinor propaga-
tor in the QCD diagram (Fig. 14b) there is the factor
(P' — zP), and ofits two terms only the second, proportional
to z, gives a factor O((Q%), while the contribution of the first
has a suppression O(P */(*) compared with it. As a result,
FE® <1/ (z2v0?).

One can show that also in an arbitrary order of pertur-
bation theory the leading contribution of the subgraph ¥V,
(or ¥, ) does not have 1/z* singularities as z— 0. This can be
shown by simple dimensional arguments. Indeed, the mo-
mentum P occurs in the amplitude T and the propagator §
(Fig. 14d) only in the form of the product zP, and therefore
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aP’' b (zEA’) ap'- zP)
T ooy, PY S (PP’)

(108)

Asaresult, TST ~ 1/zasz—0, since the vertex function I' (g,
PPy =T(P' —P, (1 —z)P', P’ — zP) has not more than
logarithmic singularities as P3/Q*—0.

Thus, for the leading contribution to the asymptotic
behavior of the pion form factor corresponding to the axial
projection, i.e., to operators of the form ¥ysy, ¢, the “dou-
ble-contraction™ regime can be ignored.

“Double-contraction” regime for nonleading contributions

The weakening of the singularity of the tree diagram
(Fig. 14¢) as z—0 due to the contribution of the numerator
of the quark propagator was based essentially on the fact
that the ~ P’ terms of the numerator that do not weaken the
singularity were “killed” by the projecting factor ¢ P'. For
pseudoscalar projection such suppression will not occur:
E,, g Cr/x*yQ*N,. To settle whether or not there is con-
vergence of the integrals with respect to x, it is necessary to
use some information about the behavior of the pseudoscalar
wave function @ (x):

O1dEv:EE wDHuln)|P)
1
= \ dzgp () exp [1 (PE a+1(Pn) (1—2)1 {1+ O (E—n)")}
0
(109)
[ef. (51), (55)] as x—0.

In Refs. 56 and 57 it is asserted that when the renormal-
ization parameter u® of the composite operators (which is
taken equal to the external momentum transfer Q%) tends to
infinity the wave function @, (x) becomes a constant, and,
therefore, the integral over x diverges linearly at small x.

With allowance for the unavoidable cutoff at small x at
Xonin < {k2)/Q? due to the nonzero mean transverse mo-
mentum {k ) of the quarks, this divergence is transformed
into an additional linear power of Q% /(k?), and as a result
FI"(@") behaves in the limit 0*— « notas 1/Q* but as 1/
Q7 i.e., like the axial contribution F2*(Q>), which in our
analysis is assumed to be the leading contribution. Since this
change in the power-law behavior is associated with the inte-
gration over the region of very small fractions x < (k2 )/Q7
(i.e., over “virtualities” &%~ (k?)), where perturbations
theory is unreliable, doubts may arise (see Ref. 58) concern-
ing the validity of the factorized representation for the
asymptotic behavior of the pion form factor in QCD. How-
ever, these doubts are based on two hurried conclusions. If
they were correct, we should observe the behavior E(F? (Q?
) ~ 1/ already in the single-loop two-sided diagram (Fig.
14a). This can be shown by means of the arguments that
follow below.**

The asymptotic wave function ™ (x) must satisfy the
equation

1

{ v e

0
[where F(x, y) is the evolution kernel], which reflects the
fact that its form does not change in the process of evolution.
Therefore, if the integral

o=\ dzEy (z, y; 09 0™ (@)

0

2 (y) dy = 79" (2) (110)

(111)
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diverges linearly at small x, so will the integral

Iy = [ By, s Vv, 2y, (112)
0

which occurs as a coefficient of In @ in the single-loop con-

tribution to the coefficient function:

1

E,(z, z 09— j Eq(z, 1)V (y, 5)dy 1o Q2+
0

(113)

In other words, if for the asymptotic wave function
FPP (0% ~1/Q7, then also E{" ~1/0° On the other
hand, it follows categorically from dimensional analysis that
EP o 1/Q*, ie., the linear divergence of the integral over x
discussed above is not in fact manifested at all for E {7,
However, this is only an apparent paradox. The point is that
the right-hand side of the expression (113) actually has the
matrix form

E(PP) (E(PP) RV APP) 4 E(PT) ® V(TP)) In Qg+

., (114)
where T denotes the tensor Fierz projection. Therefore, the
factthat E {™ @ V (P — 1/ @2 does not in principle contra-
dict the relation E (PP ~1/0Q* Tt is merely necessary for the
1/@Q” contributions to E{P & V™ and Ef e V™ to
cancel. And since the relation E {7 ~1/0* follows from
dimensional analysis, the contributions are in reality simply
bound to cancel.

Similarly, it is sensible to consider the sum of the pseu-
doscalar and tensor contributionsto F,, (Q?), and not each of
them separately. It was shown in Refs. 56 and 57 that ifin the
diagram of single-gluon exchange (Fig. 14c) the external
lines are associated with free quarks, then for the sum there
is indeed a cancellation of the contributions most singular
with respect to x and y, so that the resulting contribution of
the operators of twist 3 behaves as 1/Q" A similar result can
also be obtained in the framework of our approach.

In the Feynman gauge, by virtue of the property
7%0,.7. =0, the tensor (T) projection for the diagram
(Fig. 14b) is nonzero only for the quark fields of the initial
state, and for the final state it is necessary to take the P pro-
jection. For the remaining diagrams only the interference TP
term “works.” Using the definition of the tensor wave func-
tion

O d @ E € 0; A) ps0,1 (0) | P)
1

=Pt —P.E) | or (1) 65 {14 0 (@), (115)
0
we find that in the Feynman gauge
1 1
2
ESP (09 = 5% _\ dz ( ayor (2) e W) (75— =) -
(116)

i.e., in the limit x—0 the coefficient function E7* (x, y) be-
haves as 1/x°.

The connection between the functions @, (x) and
@p(x) can be found (see Refs. 59-61) by differentiating
(116) with respect to £ and using the equation of motion y*
(d, —igd, )d(£) = 0 (the quarks are assumed to be mass-
less). After simple manipulations we obtain
1
G () =2 \ {FP(

X

+ (4Gg). (117)
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where the term §Gg corresponds to the contribution of the
wave function associated with the operator that arises when
(115) is differentiated and contains the gluon field Guy -

It is readily seen that if at small x the function @p(x)
behaves as a4+ O(x), then @r(x)=ax(l —x)
+ O(x*) + (¢Gg), and in the purely two-quark sector the
singularity ¢, (x)/x” in the PP contribution cancels with the
singularity ¢+ (x)/x* in the TP contribution, in accordance
with the results of Refs. 56 and 57.

3.RADIATIVE CORRECTIONS TO THE ASYMPTOTIC
BEHAVIOR OF THE PION FORMFACTOR IN QCD

The main result obtained in Sec. 2 is that for sufficiently
large momentum transfers g = P' — P the amplitude T(P,
P’) corresponding to the pion form factor factorizes in all
orders and for all logarithms of perturbation theory:

i 1
(P, P)= \ dx \ dy ™ (i, 1y Lg) ¢ (e, 1, g,
(1] 0

E(Qp?, Q¥uk, x, y, a)/G2, (118)

where Q° = — ¢ 1, is the parameter of the R operation, ¢
is the wave function that describes the transition of the pion
to the gg system, and E /Q* is the amplitude of the parton
subprocess ggy* —¢'g’. The parameter 1/ is the boundary
between “small” and “large” distances or, equivalently, u is
the renormalization parameter for the vertices (¢y. . D"
1), which correspond to the composite operators.

Theproduct ¢ * ® E ® ¢ doesnot depend on the particu-
lar choice of the parameters p and u . However, this is en-
sured only by the summation over all orders. If a restriction
is made to the first few terms of the series in @, the resulting
expressions will depend on g and . In addition, one can
make the calculations in different renormalization schemes
and use different prescriptions (schemes) for separating the
contributions of small and large distances, and the truncated
series will also depend on the chosen schemes.

In the problem considered here we shall see that these
considerations are far from being merely of academic inter-
est, and it is worth looking into the matter in more detail.

In the lowest approximation the amplitude £ has the
form

__ 2m9, (ug) Cp

D (119)

u 7oy

E( oo b o)

where Cr = 4/3 and N, = 3 are the usual color factors. For
the form factor this gives
1 1
fat) (02) = 2nCros (UR) \ @z, u, pp)de ¢ gF (y, b, #ln)d

2N, x ; y
0

u.

(120)

In this approximation £ does not depend on @ and g, and it
depends on g, only through &, . A logarithmic dependence
on O, u, and pg [in the form In(Q* /u*) and In(Q* /u %) |
appears only in the following order in a. Thus, the logarith-
mic contributions tend to compensate the dependence of
F on yand . For a poor choice of u and . the lowest
approximation of F_ (@, u, i) will differ strongly from the
“true” value of ¥, (Q) (the sum ofall orders of perturbation
theory), and the corrections due to the higher perturbation
orders will be large.

One is naturally led to ask whether g and g, can be
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chosen in such a way as to make these corrections as small as
possible. For example, if we take g =y, = 0, then E no
longer contains the logarithms In(Q?/u®) and In(Q? /i3 ),
which for @>u, e (or Q<€p, g ) lead to a growth of the
coefficients of the series with respect to a,. The logarithms
In(Q’ /ug*) indicate, as it were, that the “virtuality” of the
particles in the subprocess is proportional to Q% — (k?) ~a?
(P, and therefore F, () must be expanded with respect to
a, (@*). Similarly, since the parameter 4 in the argument of
the wave function ¢ (x, #*) means that the pion structure is
probed at distances 1/u, the logarithms In(Q? /4?) indicate
that 12 must also be taken of order Q If, however, the ratio a2
=(k*)/q" is small (or large) compared with unity, then the
coefficients in the expansion of F_(Q) in a series with re-
spect to a, (Q) will contain terms of the type In a? and the
choice u = p, = aQ will be preferable. In particular, if the
quark and antiquark in the pion have approximately equal
momenta [ie., if @(x) ~8(x — 1)1, then the gluon momen-
tum in this case is g/2, and a series expansion with respect to
a, (Q/2) is most natural. Although ¢ is not very different
from unity, at the experimentally attained momenturm trans-
fers (Q=2 GeV) the difference between a = 1 and ¢ = 1is
very important.

The wave functions @ (x, u?) describe the dynamics of
the large-distance interaction, and therefore their explicit
form is not in general known. Quantum chromodynamics
predicts only their variation with increasing u*. In particu-
lar, as u® - o0 we have™!%?

¢ (z, p*) = 6fx (1 — x), (121)

where f, = 133 MeV is the 7 —uv decay constant. The ap-
pearance of the factor f, is associated with the normaliza-
tion condition

:
\ @ ptdr =/
0

(122)

However, for u*> S 1 GeV the form of ¢ (x, u*) may dif-
fer strongly from @ (x, « ). For weakly interacting particles
@(x) ~6(x — 1), and the interaction obviously broadens the
wave function. The width of the wave function ¢ (x, M ?) for
Mo 1/R 0 ~200-500 MeV (i.e., the width of the “soft”
wave function) can be estimated as

' ~ (Ent/mg), (123)
where E,, is the parameter that characterizes the interac-
tion strength, and m, is the mass of the constituents. Thus,
for hadrons constructed from heavy quarks, for example, for
the J /¢ and Y particles, the wave function is rather narrow,
since E;, ~M %500 MeV and m, $1 GeV. The two-pion
relation (123) gives I' > 1 for any reasonable choice of m i
ie., the pion wave function must be broad. Note that the
amplitude (119) is singular at x, y = 0. Therefore for suffi-
ciently broad wave functions the main contribution to the
integral will be made by the region x, y<1, in which the
“virtualities” of the gluon (xpQ?) and the quark (xQ?) (see
Fig. 14c¢) are much less than the virtuality of the probing
photon. In such a situation the choice u?, 3 ~xyQ? or xQ%is
clearly preferable to the choice u* = u% = Q% In order to
determine precisely which choice makes the series with re-
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spect to @, converge most rapidly, it is necessary to calculate
E(x, y) in at least the single-loop approximation.

A correction of order a, to the leading logarithmic ap-
proximation is also obtained when allowance is made for the
two-loop contribution to the evolution kernel for the pion
wave function. Allowance for such a contribution is all the
more necessary because only in this case will the total O(«,)
correction be independent of the renormalization and fac-
torization schemes.®? In addition, calculation of the two-
loop contribution to the kernel F(x, y) gives the answer to
the interesting question of whether in the higher orders the
connection between the multiplicatively renormalized and
the conformal operators found at the single-loop level sur-
vives or is destroyed by the radiative corrections.

Prescription for constructing the coefficient function

As a rule, the contributions of the many-loop diagrams
contain renormaliztion-group, (a,InQ?/u; )", and mass,
(e, InQ?/p*)" and (e, 1n’Q* /p*)", logarithms. The former
arise as a result of the procedure for eliminating the ultravio-
let divergences, while the latter appear as a result of the cal-
culation of certain convergent (in the ultraviolet region) in-
tegrals. Here and in what follows all masses are assumed to
be equal to zero, and p* is the parameter that ensures the
infrared regularization, for example, the virtuality of the ex-
ternal particles.

The factorization procedure presented in Sec. 2 is essen-
tially as follows. First we prove the cancellation of all the
doubly logarithmic contributions (e In*Q* /p™) ~. For the re-
maining singly logarithmic contributions («,In@*/p*)™ we
make the decomposition In Q% /p* = In@Q* /u* + Inu*/p*into
the contributions due to *“‘small” and, respectively, “large”
distances. We then prove that the logarithms In Q2/u’and
Inu?/p? are collected together into separate factors, i.¢., that

TO.p)=oad;+al (4t @ VyIn (Q*p?)) + ...
oas ((h — @) ity ® Vi In (Q*p?)) 4. . ]
@I+ a, (VyIn (Wp®) + a) 4 - . .]
= E (Q*/p*) @ T (u/p*),

= lad,

(124)

where ¥, is the single-loop evolution kernel. The expression
(124) takes into account the fact that the factor ' (u%/P?)
(which is usually associated with the matrix elements of cer-
tain local operators) in the single-loop approximation also
contains in general the nonlogarithmic term ¢ a,. There-
fore, to find the coefficient of o in the expansion of E with
respect to a,, it is necessary in accordance with (124) to
calculate the contributions of the single-loop diagrams both
for the ggy* — ¢'g’ subprocess and for the matrix elements of
the corresponding operators. Note that if the infrared cutoff
is ensured by ascribing to the external particles a nonvanish-
ing virtuality, neither ¢, nor @, will be gauge-invariant ex-
pressions, and only their difference e, = ¢, — a, will be in-
dependent of the choice of the gauge (see Ref. 62). In QCD
the most convenient infrared cutoff is based on dimensional
regularization,

dik gi+2eg 3 e
| TRz ) time™E) (u3)%, (125)
with subsequent subtraction of the poles with respect to £
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which formally correspond to In(z/p*)|,2 _ o 1. The choice
(125) corresponds to the MS scheme,” in which the spe-
cially introduced factor 47 exp( — ¥ ) leads to canceliation
of the contributions containing In(47) and Euler’s constant
¥z. The virtualities of the external particles, and also all the
masses, are in this case taken equal to zero (p* = m’>=0).
Therefore, the initial (unregularized) amplitude is gauge-
invariant. Since dimensional regularization does not destroy
gauge invariance, the regularized quantities are now also
gauge invariant.

When dimensional regularization is used,® the connec-
tion between the transition amplitude T(Q% p% g, £) and the
coefficient function E in the single-loop approximation is
given by®

Tole)+ (5 +€) + .-

Vi

=(1+2+...) @ B E+E@E+.. )

o1+ 4 ). (126)

In the case when E (&) has a nontrivial dependence one, E,
() +eE§ + ..., the simple relation E, (0) = C no longer
holds and we have the more complicated relation

EO)=C—V,@ Ei—E, @V, (127)

In the considered problem the contribution of the simplest
diagram (Fig. 14c) is proportional to 1 — g, since

oo, = —2 (1 — &) 7y (128)
Thus, E, (¢) = E, (1 — &), and therefore
EEM=CH+Vi®E,+E, @V, (129)

Using the explicit form of £, (119) and ¥, (97), (100), we
find that to obtain E, it is necessary to add to the sum of the
finite parts C the expression

AEW = ﬁgcfﬂ (4-+1nz+ Iny) B0, (130)

The result of calculations for the single-loop coefficient
function

A direct calculation of the coefficient function was
made originally in the Feynman gauge independently by two
groups,®*® between the results of which there was a dis-
agreement. Later and also independently made calculations
in the isotropic gauge n,,4,, =0 (n* =0) (Refs. 64 and 66)
confirmed the correctness of the result obtained in Ref. 65.

The particular computational scheme chosen in Ref. 65
corresponds to dimensional regularization of both the mass
singularities and the ultraviolet divergences. Such a possibil-
ity is ensured by the fact that these two types of singularity
do not arise in the considered problem simultaneously for
the same integral, except for the trivial contributions corre-
sponding to insertions into external lines. The dimensional

regularization of the ultraviolet-divergent integrals,
& — di-ek, (131)

was accompanied by ‘t Hooft renormalization,* i.e., by sub-
traction of the poles with respect to € from the divergent
subgraphs.
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The results of the calculations for the individual dia-
grams are given in Ref. 65. The total contribution of all the
diagrams is

ED (2, 1 2 O, 1. pg)
=-"——fész“{ 5 [Cr
1)

e (3
—z( v 2 ) (0 e —3)
|

( 2+ 1na) (L (V ry)~1)——L(1)

(S0 l)_sp(x)-F—lnEln%_%)

+ (0 — ) oy (B2 @@

+23¢ylnz+(r+y—2xy)lnx) +{.’L‘-<—ry}j|} ,

Sp (z)—Inzlny)

(132)
where
g=1—2z y=1—y; (133)
By =418, N—§ (134)
L (a) = In (a@%/p?). LD (a) = In (aQ*/u}), (135)
and the Spence function Sp(a) is defined by
Sp (a) = — < L n(1—a2). (136)

0

Note that despite the presence in (132) of terms containing
(y — x)? in the denominator, E'(x, ) does not have singu-
larities on x = y.

Structure of the single-loop correction to the coefficient
function

To obtain a clearer idea of the value and structure of the
calculated corrections, we represent F,_ (Q) in the form

Fa(Q) = F Q. s ) {1+ 222 B(Q, . ) + 0 ()} ,

(137)
where the zeroth approximation F ‘2 is given by (120), and

B=[—. 1ln—()—]—— (1—2 ) m%+c. (138)

The factor in the square brackets corresponds to contri-
butions whose allowance leads to replacement of the argu-
ment u® in the wave function @(x, 4?) by a quantity propor-
tional to Q% wp’—a?Q? while the term containing
In(Q*/u% ) leads to replacement of g(ug )} by the effective
coupling comstant g(a,Q). In principle, there are no
grounds for taking @, and a, equal to unity.

The values of the coefficients 4 and C depend on the
particular form of the wave functions ¢(x) and @(p). To
analyze this dependence, we chose the simplest parametriza-
tion

2421

cpr (‘l)"'fﬂ 1"-_'(

o (139)

2 (1—ua).
The numerical factor in (139) ensures the normalization
(122). The valuesof 4 and C for different rare given in Table
I

Ifa, =a, =1, 1e, for u = uy = O, the correction is
determined by the coefficient C. It can be seen that even for
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TABLE 1. Values of the coefficients 4 and C in the expression (138) for
the functions ¢, (x) specified by the parametrization (139), and the val-
ues of Bin (137) for u? = JxpQ@? and different @, (x).

r A c B(nr=Vxyon
1 0 7.3 3.04
0.5 1.2 13.4 2.32
0.2 5.0 54.4 0.39
0.1 1.5 204 —0.63
0.05 24.8 803 —8.53
0.01 131 2104 —55.2

r= 1, i.e., for a fairly narrow wave function, 8 = C = 7.25,
and this gives a 70% correction for &, ~0.3. As was pointed
out in the introductory subsection, for narrow wave func-
tions the choice p? = u% = Q%/4 — 0?/2 seems more rea-
sonable. For such a choice B = 4.1-5.7, i.e., the correction is
noticeably reduced. Strictly speaking, the choice
p*=pu% = Q?/2 — Q*/4 must be optimal in the “physical”
or MOM scheme, in which g(uy ) corresponds to a vertex
at which the incoming momenta have virtuality z%. In the
MS scheme that we use the meaning of the parameter u , is
less transparent. However, it is known that if the effective
coupling constant g, (12} corresponding to the i-th scheme is
expressed in the form

g W 1 | by In (o (u/AD)
G~ by lu (12, Az){ T Ay SR

(140)

then the results obtained in the different schemes differ only
by a substitution A; = »; A;, where x;; is a numerical coeffi-
cient.%® In particular, Aphys depends weakly on the vertex
chosen to determine §(k): Ay =2A ;5.* In other words,
the choice p* = u% = Q*/2 — Q*/4 in the physical scheme
corresponds to the choice u” = uy = Q%8 — Q02/16 in the
MS scheme. For such a choice B = 1.0-2.6 for r = 1.

With decreasing r, i.e., for even broader wave functions,
the coefficient C and, therefore, the value of the correction
for g = pr = Q increase as O(1/r?). Simultaneously, but
somewhat more slowly [as O(1/7)] the coefficient A also

increases. Forsmall x and y, £ "' (x, y; @, ) can be represented
in the form

EN (2, y; a) = EO (z, 1)

{troo [op (e 2F 1 )

ue
+4Cpn 2y (E_:)Z) —ECFIH%—:—l%CF In (zy)

—(11_%1\3)1n(“‘s§2)

—2(Cr— ) @)+ 9]}

(141)

where f{x,y) is regular for x = y = 0 and does not depend
on i, ftg , and Q. For small 7 the main contribution to 4 and
Cis made by the terms written out explicitly in (141), which
for x = y = 0 are more singular than E ‘% (x,y). The appear-
ance of the factors In(x) in In(y) in (141) is undoubtedly
due to the presence of the invariants xQ  and xpQ 2.
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Minimization of the single-loop corrections

The mass and renormalization-group logarithms have
different natures, and we shall therefore consider them sepa-
rately. The corrections to the gluon propagator have the sim-
plest structure. They depend only on xpQ >,

In Abelian theory (for example, in QED) the behavior
of g(p 5 ) is completely determined by the corrections to the
propagator of the vector particles and, therefore, the most
expedient choice for iy in this case will be u; = xpQ? (in
the physical scheme). The mean value of u% for such a
choice can be estimated by requiring that the correction due
to the contribution In(xyQ* /u%) for uk = (ug) vanish.
This gives

{LR) = (o) () @4, (142)
where
(xy =-exp ((In )
1 1
zexp{[_\ -q—:(rﬂlllrdr] [\ -;Li.r\ er—l}. (143)
0 o
For the functions (139) for small » we have

{x) = exp( — 1/r). In particular, {x) = 5x 10 for r=0.1.
In QCD the behavior of the effective constant g(u )
also depends on the value of the corrections to the quark—
gluon vertex and to the quark propagator. If we take all the
terms In(Q%a/u% ) that arise in the diagrams when the diver-
gent integrals are calculated, then, as a simple calculation
shows, vanishing of their contribution at small » requires
that we take
1 [34¥4N.f}

T 41—2N; (144)

Hk = (uk) = Q@ exp {
For N, = 6 the coefficient in the exponential is very close to
— 3/2r. In other words, these corrections are minimal for

uk = (0)¥2 Q2= ) (20 (z) (y) O%,

i.e., when u% is equal to the geometric mean of the mean
virtualities of the quark and gluon.

The renormalization-group logarithms make a contri-
bution to C that increases at small r only as 1/r. Much more
important at small r are the contributions associated with
the mass logarithms. The main contribution, equal to

E9 (x, y) %—4{;{[”—) % (]n2 {xy)+-21n (xy) In (3—2) ) .
: (145)

is made in the Feynman gauge by the diagrams shown in
Figs. 15a and 15b. There are also contributions with a simi-
lar structure in the “nonplanar” diagrams of Figs. 15¢c-15f.
But these contributions have a color factor Cp — N, /2 that
is N2 =9 times smaller than the contribution of the dia-
grams of Figs. 15a and 15b in accordance with the rules of
the 1/N, expansion.

It is readily noted that the contribution (145) vanishes
for u® = \xpQ?>. Tt is also easy to calculate the mean value of

the parameter p* at small r:
(p,ﬂ):QZexp(M%). (146)

In particular, for the value r = 0.5, which ensures for @*
F_(Q%) a value close to the experimental one (about 0.3
GeV?), we have (¢*) = Q* /20, and at the existing momen-
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FIG. 15. The diagrams that make the main contribution to the single-loop cor-
rection to the coefficient function.

]
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tum transfers O* & 4 GeV? this is much less than the value p®
~ 1 GeV? at which one can hope for validity of perturbative
QCD calculations.

Two-loop evolution kernel

One further contribution to the O(a?) correction to F,
() is due to the two-loop evolution of the pion wave func-
tion, i.e., the O(&?) contribution to the kernel ¥(x, y) or to
the matrix of anomalous dimensions Z,, (g). The standard
method of calculating the anomalous dimensions of compos-
ite operators is based on the expansion of the quantities
(nD)" in accordance with the binomial theorem, and this
makes it possible to find the dependence of an operator quan-
tity on the quark and gluon fields:

. . N-l
dysn (nD)Y u = dygnut¥) N Cx T dyn AU IN =1 -m),

m=10
(147)
where p© = (nd) @, A=n,A°r,g.

The further calculation is made in the standard man-
ner.'>'® The single-loop calculation is simplified if one goes
over to the isotropic axial gauge (nd) = 0, for which only
the first contribution remains in (147). The first calcula-
tions®®” of the two-loop contribution to ¥(x, y) were in fact
made in such a gauge. However, because of the more compli-
cated structure of the gluon propagator,

1 Ry k\,nu
Du\;(k):_kT ( __:LJ.A'\:“"‘"_-_'(T_H)—) ¥

(148)
the calculations in this gauge are much more cumbersome.
In addition, the gauge-fixing isotropic vector n,, leads to the
appearance of additional divergences, both of ultraviolet and
infrared type.®*®® The latter must cancel each other after
summation of all diagrams of a given order, while the former
are actually subtracted “by hand” (see, for example, Ref.
70), since no consistent method of working with them has
yet been developed. This is due, in particular, to the fact that
the additional ultraviolet divergences can be eliminated only
by means of counterterms whose structure has no analogs in
the original Lagrangian. Therefore complete confidence in
the reliability of the results (at the given stage) can be en-
sured only for calculations in covariant gauges, in which the
structure of the divergences is well understood. The two-
loop contribution to the evolution kernel ¥(x, y) was calcu-
lated in a covariant (Feynman) gauge in Ref. 71. The result
confirmed the correctness of the calculations of Refs. 66 and
67. One of the most nontrivial contributions to F(x, y), pro-
portional to C %, was calculated independently in the Feyn-
man gauge in Ref. 72. The identity of the results of all these
calculations is a sufficient guarantee of the correctness of the
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result for ¥ (x, y), which has the form

Vi a={Vow, g+ (22) [ 2275 (2

29
+ RV g (2, )
1 —
3 CeN Vsl 9 |}, (149)
V=g Cel (e <y) F+ (x> 2, y—>p); (150)

Fote =< 522 2 (2]

9 ¥
+ oz =1, y—y); (151)
Vola, N=0(<y[FF+5 2+ ()
—2Flnyln§i|

+CG(x, )+ (x—z, y—y);
(152)

Vel ) =0e<y[—FF+E—(5F—2)m(L)

AN N e _EY L & N
—(F f)]u(y)hl(i H) ‘ (F+2;’)m (y)
—2171115;111}]
—§1n1(1+1nz—2ma~c;(x,y)+(x—»:?-,y—»z‘);
¥
(153)
14
e ple=V (2, p)—8le—p) | Vi pds (154)

1

where F = f(x, y) = x/p[1 — 1/(x — )], F = F(%,7), and
the “plus™ operator is defined by the expression (154). The
function G(x, y) is given by

G(x, =8>y [2(F—F)Li, (1)
+(F*ﬁ)1n2y-—2Flnxlny]

+2F Li, () 18 (z>y) — 0 (<< )]

—2F Liy(2) [0 (z>1)—08 (x>y], (155)
and Li, (x) is the Spence function
Liy(2)= — | @ 22020 (156)

0

Structure of the two-loop evolution operator

For the following applications it is also necessary to
know the explicit form of the solutions of the evolution equa-
tion (93). In the lowest approximation this problem reduces
to finding the eigenfunctions of the kernel F(x, y; g), which,
as we have seen, are the Gegenbauer polynomials
xXC ¥?(x — x). The single-loop evolution kernel ¥, [see
(97) and (100) ] becomes a symmetric function of its argu-
ments after multiplication by yp: ¥, (x, y)yy = Vo (p, x)xx.
Therefore, the eigenfunctions g, /yy of the equation

1

\ Vole: ) e ) dy = Rnton ()
0

(157)
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must be orthogonal to each other on the interval (0, 1) with
weight yy, i.e., they are proportional to Gegenbauer polyno-
mials.

However, at the two-loop level the combination yj ¥ (x,
») contains terms that violate the x<»y symmetry. In ¥; and
Vy [see (151) and (152)] such terms are (11/3)FIn(x/y)
and — (2/3)FIn(x/y), respectively. Taken together, with
allowance for the group factors, these terms are proportional
to the first coefficient B, in the Gell-Mann-Low S function:
r (32) (3 Ne—2 ¥, ) FIn L=Cofyln (Z) ..

(158)
The appearance of nonsymmetric terms at the two-loop level
was already expected (see Ref. 73) before actual calcula-
tions were made. The motivation was based on the connec-
tion between the eigenfunctions of the kernel V(x, ), i.e.,
between the multiplicatively renormalized operators and the
conformal operators. Since the conformal invariance is vio-
lated by the renormalization procedure (the coupling con-
stants, for example), there are no grounds for expecting op-
erators that are conformally invariant for the free fields to be
multiplicatively renormalized at the two-loop level.

We now establish why the 8 function arises in the final
answer. Two different classes of diagram contribute to the
function

x z x i 1 z

bl i e 28 a0 s =2
in ¥y and ¥y, and also to the term (2/3)F ln(x/y) in V.
The coeflicient 3 of the structure 8(x <y) (x/y) In(x/y) is
formed by the diagrams of Figs 15a-15e. Allowance for
these diagrams actually leads to renormalization of the
charge at the vertices of the single-loop diagram (see Fig.
13a). At the same time, the diagrams of Figs. 15a and 15b
introduce a contribution proportional to the anomalous di-
mension of the gluon line; the diagrams of Figs. 15d and 15¢
contribute to the renormalization of the vertex; the diagram
of Fig. 15a renormalizes the quark line that emanates from
the vertex. Accordingly, the diagrams of Figs. 16g-16j form
the coefficient B, of the structure ((x/y(y — x))In(x/y).
This class of diagrams is responsible for the renormalization

u K a1

FIG. 16. The diagrams that make the two-loop correction to the evolution ker-
nel.
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of the charge at the vertex of the single-loop diagram of Fig.
13b.

However, in the complete answer in yy¥V(x, y) there
are also contributions [for example, proportional to In?
(x/y)] that violate the x<>y symmetry more fundamentally.
Note that in the functions ¥, and ¥y, all the contributions
except those proportional to Fli(x/y) are x<y symmetric
after multiplication by yy.

Solution of the evolution equation for the pion wave function
in the two-loop approximation

If the two-loop kernel had the symmetry property ¥, (x,
¥)y¥ = V5 (p, x)xX, the solutions of the evolution equation
(93) would have the form

O (z, p) =K, (4 exp { | va @) T} 22CY* (@),

=

uj
(159)
where 7, (g) = —a,.y” —a,¥? is the diagonal element

of the matrix Z,, (g) of anomalous dimensions. This situa-
tion corresponds to the fact that in the basis of Gegenbauer
polynomials the matrix of anomalous dimensions

1 1

\ dz \ dy % (z—2)

0 0

XV {(z, y) yyCi” ()

G o A2kt
TR (A 2)

(160)

is diagonal: G,;, = diag(y,).

In the case when G {3’ contains nondiagonal terms the
solutions of the evolution equation must differ from ®¢? by
contributions of order «,. We shall therefore seek solutions
for this general case in the form

Oy =1 + al?) @ VP, (161}

where W= W(x, y) and ® denotes convolution.
The problem is now to find W(x, ). Substituting (161)
in the evolution equation, we obtain an equation for W:

bW + [vg, WI— pion =, (162)

where ¥ 7P’ is the part of the kernel ¥, that does not com-

mute with ¥, and, as a consequence of this, is responsible for
the nondiagonal contributions to G, .
Formally, the solution of Eq. (162) is given by the
expression
W— E e-lbetont @ VNP g avet i,
[}

(163)

However, for applications this representation is not very
convenient. It is more effective to use the matrix representa-
tion for W in the Gegenbauer basis ¢, = x¥C ¥*(x — X):

W@ p,=2 — Ghh (164)
V- —b
If the wave function @ (x, *) on ,uz = (s to be determined
directly from its form on u*> = Q3}, it is also expedient to
modify somewhat the scheme for solving the evolution equa-
tion, namely, to assume that the operator W depends on Q%
W W((Q*) with the boundary condition #(Q2) = 0.

In this case Eq. (162) is modified and takes the form
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a ~ v ~ hl
@ —or W =248 [0, 7 v, w4y},

(165)

The formal solution of this equation is obtained in ex-
actly the same way as (163):

T [ s (QF) \ 1V /by s (QF) | = Volbo
W=W—(255) ®W® (oxo) .
(166)

Asaresult, we obtain an expression for the correction in
the form of the series

('.I. +%TQ:)I$}) ®1pn=¢‘n+ Eg;?f_gfl E dﬁ (Oz)wh’

120
(167}
where
(VEND)) i .
RO =gy (168)
& 4(2k-13 2
O = G nary O @GP O, (169)
and 7" are the eigenvalues of the kernel {¥,} , :
n+1 1 5
) _ _ 2 .
Wl (1443 S -Frparr) a0
j=
{VD}'I-@\Fn: _'Vg’l” 23 (171)

and finally S, (Q") is the factor that determines that Q?
dependence of the operator W:

" 2) | (Botvh) ~vit) g
Si’in (O‘) =1- ( ;: Egg; ) E '

(172)

Note that the only nonzero elements of the matrix ( ¥ }P),,
are those for which k and # have the same parity and k> n.
The first condition is a manifestation of the “geometrical”
symmetry of the evolution kernel, while the second follows
from the triangular nature of the renormalization matrix.

We now use the fact that ¥, and ¥ have only nondia-
gonal contributions to G, that are induced by renormaliza-
tion of the coupling constant,

2(NVCeVy+ CpCaVy)

=bF In—-+up(z, y) + (@~ y—>1), (173)

where u, makes only a diagonal contribution to G,,. The
matrix elements for the nondiagonal contribution £ In(x/y)
can be calculated analytically. For this it must be borne in
mind that Fln(x/y) can be represented as the derivative of
the kernel ¥ (x, y):

AL ~ -
Ve, =F (=) 0@e<u)+le—2, y>7, (174)

which becomes x<»y symmetric if it is multiplied by (y7) ! *°
The eigenfunctions of the kernel ¥ (x, y) have the form

W= (I 55, s

In other words, the combination Fln(x/y) is propor-
tional to the generator of a shift of the upper index of the
Gegenbauer polynomials C) (x — X). Differentiating the
eigenvalue equation

Vo ® i = — iPyl® (176)
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with respect to § at 6 = 0, we obtain the equation

I} @Y, = _'('Pn + VD) ® P'\['Jn + 'V.nlpn-

(177
We expand the derivative ¢, in a series in ¢/,,:
Yo =2 oy iy (178)
E>n
the coefficients of which are
_ 2 (n+1) (n12) (2k-+3)
= = D FEF D F—m ki Fnt3) (179)

The expression (179) follows from the general expres-
sion for the Gegenbauer polynomials

5]
v I'(h) T(t4+v—MT(ntv—r)
Cn(2) = T()T(v—h) E ‘l:fI‘(n—T)

x(n—21:+?u) Cn,.gT(.'r), (180)

which can be obtained by combining the expansion expres-
sions for C';; (x) with respect to x* and for x* with respect to
C1 given in the Appendix to the paper of Ref. 74. Thus, the
coefficients d  (@2) (168) have the form

1
don = {By (Vi) —

?x)—bc
(181)

The matrix elements (G }°),, were found by numeri-
cal integration. The diagonal elements (G.),,, which are
equal to the two-loop anomalous dimensions, are given, for
example, in Ref. 70.

The pion wave function, with allowance for its evolu-
tion in the two-loop approximation, is given as a result by the
expression

H)) anR + CF(G(ND)).”!}

Q."‘
@@ @)= 2 by (@) exp { \va e () T}

5
Qi

@+ 2 L0 (@)

(182)

Numerical results for evolution of the pion wave function
(Ref.71)

Using Eqgs. (181) and (182), we can calculate the QCD
evolution with Q? of any wave functions defined at a certain
Q2. The general properties of the evolution are most conve-

gonal part are approximately an order of magnitude smaller
than the corrections from the diagonal part accumulated in
the exponential factor, i.e., the kernel is “quasidiagonal” in
the Gegenbauer basis (the corrections for # = 0, i.e., for the
asymptotic function, are also very small and are considered
below).

2. The corrections of the higher harmonics to ¢, are
determined mainly by the first term & ¢/, , , in the sum
over k in (182). The subsequent coeflicients decrease rapid-
ly with increasing k.

3. The contribution of the two-loop corrections in-
creases with increasing index #. For n = 6 they already give
a 6% correction at x = 0.5 and Q% = 125 GeV? (Here and
below, Q5 = 1GeV?, Agep = 0.1 GeV.)

Thus, for the choice ¢(x, @3) = 6x xf,, which corre-
sponds to the asymptotic wave function, corrections arise
only because of the nondiagonal terms:

s 3 Al (e — z)}

k=2

@ (2, Q%) =Gazfn {1+ (183)

The calculations show that the corrections are less than
0.5% up to @* = 6x 10° GeV?2,

Another well-known example of a low-energy pion
wave function was proposed by Chernyak and Zhitnitskii®®:

9°Z (z, QF) = 30zaf, (1 — bxx). (184)

In this case the relative contribution of the two-loop correc-
tions is about 2% for @* = 125 GeV™. Using the data of Ta-
bleII, we can calculate the corrections to any wave functions
which for Q3 = 1 GeV? can be represented by a sum of Ge-
genbauer polynomials ¢, with n<8.

Contribution of the two-loop evolution to the o, corrections
to the asymptotic behavior of the pion form factor

To analyze the part played by the O(a?) corrections to
F_(Q%) due to the two-loop evolution of the pion wave func-
tion, a numerical estimate of the form factor was obtained
for wave functions ¢, (x) equal, for Q% =1 GeV? to ¢,
(x).” The results of the calculations are given in Table III,
in which T, (#) corresponds to the O(a?) correction due
solely to the single-loop coefficient function, T, corresponds
to the correction associated with the two-loop-evolution and
A(n) characterizes the contribution of the lowest diagram:

! OFE () =58 fra, (%) A (n)
niently formulated for the “partial” wave functions #, that e
occur in the expansion (192) with weight b, (Q3). ’ 0 )iy P bt -
1. For n > 2 the corrections that derive from the nondia- { + [Ty (m)+ T, () } - ( )
TABLE II. The coefficients d ;, (181) calculated for @ =1 GeV?, Ayep = 0.1 GeV, & = 125 GeV?,
"
0 2 4 6 )
k
2 —0 277
4 0,012 —0.89
i 0.032 —0.26 —1
8 0.027 —0.087 —0.4 —1
10 0.021 —0 03 —0.187 —0.47 —0.96
12 0.012 —0.007 —0.09% —0.25 —-0.5
14 0.016 —0.002 —0.05 —0.15 —0.29
16 0.01 0.006 —0.025 —0.09 —-0.18
18 0.009 0.007 —0.008 —0.05 —0.12
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TABLE IIL. Values of the coefficients in Eq. (185) for ¢ = 33 GeV? and o, (%) = 0.14.

n 0

8

A (n) 0.25 0.124 0.08 0.073
Ty (n) 7.22 19.3 28.1 7.0
Ty () —0.16 — (.4 —-0.7 —2.8
Ta/Tq 0.02 0 02 0.025 003

0.062
43.9
11.6

0.035

It can be seen from Table III that allowance for the
evolution corrections has little influence on the total result.

CONCLUSIONS

In this review, we have presented the fundamentals of
the perturbative appreach to hard exclusive hadron pro-
cesses in QCD for the example of the analysis of the asymp-
totic behavior of the electromagnetic pion form factor. In
principle, the perturbative approach can also be applied to
the investigation of more complicated problems—to calcu-
late the asymptotic behavior of nucleon form factors, the
amplitudes of large-angle hadron scattering, the cross sec-
tions for the production of isolated hadrons, etc. (see, for
example, Refs. 9, 10, 24, and 25). For the practical use of the
results for the interpretation and analysis of existing experi-
mental data the problem of determining the limits of the
asymptotic region is the most important. As we have seen,
the answer to the question of the momentum transfers from
which the asymptotic expressions of perturbative QCD are
valid depends on the form of the wave function—for narrow
functions the asymptotic regime commences earlier than for
broad functions. However, the explicit form of the wave
function cannot be calculated in the framework of purely
perturbative QCD without using information about the non-
perturbative aspects of QCD dynamics. One of the most
promising ways of solving this problem appears to be the
QCD sum-rule method.”™ In its framework a number of re-
sults have already been obtained on the behavior of the ha-
dron wave functions and of the form factors in the region of
small and moderate momentum transfers. However, in this
field there is still much to be done before one can say that we
have a complete QCD picture of the behavior of the hadron
form factors at all momentum transfers.
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APPENDIX. ANALYSIS OF ASYMPTOTIC BEHAVIOR OF
HARD PROCESSES

A detailed exposition of the fundamentals of our ap-
proach to the analysis of hard processes in QCD is given in
Ref. 23. Here we give a brief list of the conclusions from Ref.
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23 that are helpful for understanding the proof of the factori-
zation theorem in Sec. 2.

The approach developed in Refs. 23 and 40-43 is based
on the o representation of Feynman diagrams (see, for ex-
ample, Ref. 75), which arises if the denominator of the pro-
pagator of each line o is expressed in the form
1 o ,
Ty =i '\ dotg exp {og (kE —m2+is)} (A1)

{]
and integrated over the virtual momenta k. As a result, for
the contribution of each diagram we obtain the expression
v ony )= { ity 1 (o
o

- =il 43
(4m) -

T(p1, ..
X G (es; py, mg)

exp {0 pry oo PD @ =i D) 2 my—ie)},  (A2)
a

where d is the number of space—time dimensions, p ,...,p, are
the momenta corresponding to the external lines of the dia-
gram, Il(c.c.) is the product of coupling constants, z is the
number of loops of the diagram, and D, @, G are functions
that are uniquely determined by the structure of the dia-
gram. In particular, D(«) is a definite sum of products of &
parameters, and Q(«, {p}) has the structure

Q (@, {PN=") @jy + -~ Fjpuq (Phyt o PR

i

(A.3)

where {pk;} is a certain set of external momenta, and
Y, = {er} is the corresponding set of internal lines (for
more details, see Refs. 23 and 75).

In a situation in which some of the momentum invar-
iants (p;p, ) = w, @ * are much greater than the remainder
(PP, ) =v,,p, the exponential factor in (A.2) can be
represented in the form

. A, ©) |, Ay (@)
"‘p{‘[oa D T T h@

-— 2 Cg (mg—is)]} s
’ (A.4)

The representation (A.2), (A.4) is very convenient for anal-
ysis of the limit - . In particular, it follows from (A.2)
that the region in which 4 (&, @) > p makes in the limit Q?
— oo an exponentially small contribution O (exp ( — Q%)).
Therefore, all the contributions that have a power-law be-
havior with respect to 0” are due to integration over regions
within which 4(a)/D(a) vanishes at a certain point.

There exist three main possibilities for making the func-
tion 4 (a, {w})/D(a) vanish:.

1) The small-distance regime (SDR) (or the regime of
small &), when the & parameters @, ;.. vanish simulta-
neously for a certain set of lines {¢}. In this case 4(a)—0
faster than D(a) —0.
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2) The infrared regime (IR) (or the regime ¢ — oo ),
when the & parameters &, @, areinfinite for a certain set
{}. In this case D(a) — « faster than 4 (@) .

3) The pinch regime, when 4 (a, {w}) vanishes for non-
vanishing finite & because 4 is the difference of two positive
quantities. For the three-point function T(g*= — @, P
p3) this regime is impossible.

Different combinations of the basic regimes are also al-
lowed.

The simultaneous vanishing of a set of « parameters
{0, -, can be conveniently described by means of the
substitution

]

TR Zey=10) B (A.5)
j=1
and the simultaneous tending of {a,, ..., } to infinity by
means of the substitution

2 §H=N 1

g * (A.6)
J I

In the momentum representation the small-distance re-
gime corresponds to integration over the region k~Q, the
infrared regime to integration over the region k~p%/
Q, and the pinch regime to integration over the region kK~ p.
Therefore, QCD perturbation theory can be applied only
when the infrared and pinch regimes, and also the combined
regimes, either do not contribute at all or have contributions
which can be ignored in comparison with the SDR contribu-
tion.

In the case when the pinch regime does not work, a
general analysis of the configurations responsible for a par-
ticular contribution can be made without recourse to explicit
analysis of the structure of the function 4 () /D(a) inthe a
representation. Instead of this it is sufficient to use the rule
formulated below, which can be readily understood on the
basis of the well-known analogy™ between Feynman dia-
grams and electrical circuits. In this analogy the parameters
@, are interpreted as the resistances of the corresponding
lines o Since in accordance with (A.2) and (A.4) theampli-
tude T ceases to depend on Q0 for 4 /D = 0, “it is necessary
to find subgraphs ¥ and S whose contraction to a point
(e, =0) and/or whose elimination from the diagram
(@, = o) rids the amplitude of the dependence on Q2.7
To each such configuration there corresponds a certain pow-
er-law contribution O(Q V). By means of the rules
kspr ~ @ and k,, ~p°/Q, we can obtain the following esti-
mates of N:

N,

‘]-tl‘lm o ()'i " T (A7)

TI\R \/-',‘J' _';: (AS)
4 E ‘;i_}: f;

-[-\I.nl( I\R _— i > (Ag)

where 7, (1, ) is the twist of the /-th ( j-th) external line of the
subgraph V (5) corresponding to integration over for the
region {a}—-0({a}— = ). _

For the quark fields ¢, ' and the gluon field G, wehave
1 = 1, whereas for the vector potential 4, the twist is zero.
Therefore, in QCD it is in general necessary to sum over the
external gluon lines of the subgraphs ¥ and S. Physically,
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this corresponds to the fact that the hard (parton) subpro-
cess takes place not in a vacuum but in the gluon field of the
hadrons. With respect to this subprocess this field can obvi-
ously be regarded as an external field.

If we write the quark propagator in the external gluon
field 4, in the form

Fotie ut B oo DS G = e R (1. (A.10)
where E is the P exponential
Bitem d ebie & 5 (5]
vl Y inas (A.11)

taken along the straight contour z = p + 1(x — »), then the
dependence on the field 4, (which has zero twist) is sepa-
rated into the E factor, since the function R depends, as is
readily seen (see Refs. 17, 23, and 43), only on the gluon
field G, and its covariant derivatives. Taking into account
similarly the gluon insertions into the gluon lines and the
lines of the fictitious Fadeev—Popov particles, one can show
that for the contribution of any hard sub-block there is al-
ways a factorization of the A,, dependence into correspond-
ing E factors,'™*"*" the role of which ultimately reduces to
replacement of the ordinary derivatives d,, in the local oper-
ators ofthe,fo_rm {E...E}ﬂ ...¥) by the covariant derivatives D,
=d, —igd,.

For analysis of the contributions logarithm with respect
to ¢, itis very convenient to write the amplitude in the form
of the Mellin integral

£
i i e J“ .y
Vo= (_:-T) b, (A12)

IS

1
Fore pfy o —-
7 dai

In this form the asymptotic behavior of the amplitude
T(Q", p*) is determined by the extreme right-hand singular-
ity of the function ®( J) in the complex J plane. In particu-
lar, if ®(J)~(J—J,) ", then T(Q*)~ (@) (In(Q*/
p7))" '.The power-law corrections to the leading contribu-
tion are due to the singularities of the function ®({ J) at
J=J,—1,J,—2,J,— 3, and further to the left.

In the language of the Mellin representation the expres-
sion (A.7) means, for example, that the integration over the
region A (V) —~0 makes a pole contribution to ®( J) at the
point

d ol B, (A.13)

Multiple poles (J—J,) ", leading to logarithmic
contributions, arise in the cases when the pole ( J —J,) '
can be obtained in several independent ways.

Actual examples of the use of the e representation are
given in the main text.
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