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Предлагается всесторонний обзор последних технологических достижений,
касающихся критической точки фазового перехода киральной симметрии, с осо-
бым акцентом на эффективные полевые теории в квантовой хромодинамике.
Описываются тонкости этих ключевых точек с использованием теоретических
инструментов для изучения связанных явлений.

This paper provides a comprehensive review of the latest technological
advancements regarding the critical point of the chiral symmetry phase transition,
with a particular focus on effective field theories in quantum chromodynamics. It
delves into the intricacies of these key points, utilizing theoretical tools to study the
associated phenomena.
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ВВЕДЕНИЕ

В современных научных исследованиях квантовая хромодинами-
ка (КХД) играет ключевую роль как фундаментальная теория, раскры-
вающая внутреннюю структуру и взаимодействия адронов. КХД предо-
ставляет основу для понимания сильных взаимодействий между кварка-
ми и глюонами, предлагая важные теоретические положения для изуче-
ния высокоэнергетической физики, космологии и ядерной физики [1–6].

В контексте сложности КХД выделяется явление кирального фазово-
го перехода — уникальной перспективы для понимания поведения веще-
ства в экстремальных условиях. Киральный фазовый переход относится
к фундаментальному изменению свойств кварковых взаимодействий при
конечных температурных условиях [7–12]. Это явление предлагает цен-
ные идеи для ранней эволюции Вселенной и формирования кварк-глюон-
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ной плазмы, которая, как считается, существовала в течение нескольких
микросекунд после Большого взрыва.

При нулевой температуре лагранжиан КХД соблюдает киральную
симметрию, что означает, что преобразовательные свойства левых и пра-
вых кварков идентичны. Однако конечные температурные среды могут
нарушить эту симметрию, приводя к спонтанному нарушению киральной
симметрии. Это нарушение проявляется на макроскопическом уровне
в виде конденсации кварков, что раскрывает наличие кирального кон-
денсата в вакууме. При увеличении температуры системы существенное
влияние тепловой среды вызывает изменения в структуре вакуума. При
критической температуре, известной как температура фазового перехода
киральной фазы (Tc), система КХД проходит фазовый переход. Выше
этой критической температуры киральная симметрия восстанавливается
и кварковые конденсаты уменьшаются до нуля. Возникновение кирально-
го фазового перехода тесно связано с переходом от адронного вещества
к кварк-глюонной плазме, где отличительные свойства кварков и глюонов
становятся менее очевидными, напоминая ранние условия во Вселенной
в течение нескольких микросекунд после Большого взрыва [13, 14].
Экспериментальные исследования кирального фазового перехода стал-
киваются с существенными трудностями из-за необходимости проведе-
ния экспериментов в экстремальных условиях. Однако эксперименты по
столкновению тяжелых ионов, которые проводятся на Большом адронном
коллайдере и релятивистском коллайдере тяжелых ионов, предоставля-
ют ценные возможности для изучения кирального фазового перехода.
Исследователи пытаются раскрыть характеристики кирального фазового
перехода, анализируя спектры частиц, коллективный поток и другие на-
блюдаемые величины. Эти исследования способствуют более глубокому
пониманию фундаментальных свойств вещества и эволюции Вселенной,
а также поведения вещества в условиях экстремальных энергий.

Данная работа посвящена изучению кирального фазового перехода
и его близости к критической точке в эффективных теориях КХД. Сосре-
доточимся на теоретическом каркасе, ключевых концепциях и соответ-
ствующем экспериментальном прогрессе с учетом эффективных теорий
КХД вблизи критической точки кирального фазового перехода.

Рассмотрим эффективные теории КХД вблизи критической точки
кирального фазового перехода. Для КХД с Nf ароматами безмассовых
кварков его классический лагранжиан обладает значительными симмет-
риями:

G = SUL(Nf )× SUR(Nf )× UA(1)× UB(1)× SUc(3). (1)

С учетом динамического нарушения и восстановления симметрий,
в предположении, что сектор UB(1) × SUc(3) остается непрерывным,
гипотеза может быть нарушена в высокоденситетных цветных сверхпро-
водниках.
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Введем порядковый параметр для киральной симметрии, который
является матрицей Nf × Nf и преобразуется как синглет под UB(1) ×
× SUc(3):

Φij ∼ 1
2
qj(1− γ5)q

i = qjRq
i
L, (2)

где i и j — индексы аромата. Поведение этого порядкового параметра
при преобразованиях SUL(Nf )× SUR(Nf )× UA(1) задается

Φij → eiαVL ΦeiαV
†
R . (3)

Здесь VL(VR) — элемент SUL(Nf ) (SUR(Nf )), а α — угол поворо-
та UA(1). Левые и правые кварки преобразуются при том же изменении:

qL → e−iα/2VLqL, qR → eiα/2VRqR. (4)

Если киральная симметрия динамически нарушена, то тепловое сред-
нее Φ отлично от нуля.

Разложение Φ представляется в виде

Φ =

N2
f−1∑
a=0

Φa λa

√
2
. (5)

1. ФУНКЦИОНАЛ ЛАНДАУ В КХД

Вдохновившись обсуждениями универсальности, используем поле
порядкового параметра Φ для построения функционала Ландау
Seff =

∫
ddxLeff , где Leff обладает теми же симметриями, что и

квантово-хромодинамический лагранжиан. Вблизи критической точки
можно разложить Φ, и его форма дана следующим образом:

Leff =
1
2
tr (Φ†Φ) +

a

2
tr (Φ†Φ) +

b1
4!
(tr (Φ†Φ))2+

+
b2
4!
(tr (Φ†Φ))2 − c

2
(detΦ + detΦ†)− 1

2
tr (h(Φ + Φ†)). (6)

Здесь tr и det действуют на индексы аромата. Первые четыре чле-
на с правой стороны уравнения (6) обладают симметрией SUL(Nf ) ×
× SUR(Nf ) × UA(1). Пятый член включает детерминантную структу-
ру, действующую как оператор, сохраняющий симметрию SUL(Nf ) ×
× SUR(Nf ), но нарушающий симметрию UA(1); этот член обеспечивает
аксиальную аномалию в КХД. Последний член в уравнении (6) возника-
ет из кварковых масс, где h ∝ diag (mu,md,ms, ...), и он явно нарушает
симметрии SUL(Nf )× SUR(Nf ) и UA(1).

Если система проявляет фазовый переход второго порядка, то поле Φ
вблизи критической точки проявит мягкие моды с расходящимися кор-
реляционными длинами. Моды с конечными корреляционными длинами
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будут интегрированы в путь в интеграле, что повлияет на коэффициенты
a, b1, b2, c и h. Существование мягких мод, таких как векторные мезоны,
с лоренцевским векторным характером является сложным вопросом.

2. АНОМАЛЬНАЯ БЕЗМАССОВАЯ КХД
С АКСИАЛЬНОЙ АНОМАЛИЕЙ

Когда кварки считаются безмассовыми, изучение аномальной безмас-
совой КХД с аксиальной аномалией включает в себя рассмотрение влия-
ния аксиальных аномалий в КХД. Это может привести к интересным
явлениям, связанным с нарушением киральной симметрии — важным
аспектом понимания поведения кварков в вакууме КХД.

2.1. Безмассовая КХД без аксиальной аномалии. Для система-
тического изучения фазовой структуры Leff сначала рассмотрим случай,
когда в уравнении (6) c = 0 и h = 0. В этом сценарии Leff обладает
симметрией SUL(Nf )× SUR(Nf )× UA(1).

Для больших значений Φ, если (b1 + b2)/(Nf ) > 0, Leff не имеет
нижней границы. При таких условиях изменение знака a в теории сред-
него поля приводит к фазовому переходу второго порядка. Устанавливая
c = h = 0 в уравнении (6) и переписывая его с S0(= Φ0), мы можем
продемонстрировать вышеуказанный вывод, сравнив его с уравнением

Leff =
1
2
aσ2 +

1
4
bσ2 − hσ2. (7)

Однако с учетом тепловых флуктуаций Φ могут происходить мно-
жественные фазовые переходы. Чтобы проиллюстрировать это, исполь-
зуем константы связи g1, g2 = b1, b2Sd/(2π)2 для выражения β-функций
следующего порядка:

β1 = −εg1 +
(N 2

f + 4)

3
g21 +

4Nf

3
g1g2 + g22, (8)

β2 = −εg2 + 2g1g2 +
2Nf

3
g22. (9)

Это результаты однопетлевого эффективного действия, и вычисления
выполняются в точке фазового перехода, где a = 0, с четырехточечны-
ми вершинами, пропорциональными b1, b2. Для различного количества
ароматов уравнения (8) и (9) показывают различные потоки ренормали-
зации.

• Для Nf = 1. В этом случае уравнение (8) (с c = h = 0) экви-
валентно обсуждению критических показателей симметричной модели
Φ4 с O(N)-симметрией и одной четной константой связи b ≡ b1 + b2
и симметрией O(2). Легко видеть, что фиксированная точка g∗ = 3ε/5
инфракрасно стабильна. Это указывает на то, что фазовый переход
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Таблица 1. Критические показатели модели Φ4 с симметрией O(N)

Пока-
затель МФ

Разложение
по ε (до O(ε))

Разложение по ε
(N = 4,

ресуммировано)

МК
(N = 4, d = 3)

α 0 −(N − 4)/(2(N + 8))ε −0,211(24) −0,247(6)

β 1/2 1/2− 3/(2(N + 8))ε 0,382(4) 0,388(1)

γ 1 1+ (N + 2)/(2(N + 8))ε 1,447(16) 1,471(4)

δ 3 3+ ε 4,792(19) 4,789(5)

ν 1/2 1/2+ (N + 2)/(4(N + 8))ε 0,737(8) 0,749(2)

η 0 0 0,0360(40) 0,0365(10)

ω — +ε 0,795(30) 0,765

является переходом второго порядка, с критическими показателями, при-
веденными для N = 2 в табл. 1.

• Для Nf � 2. В этом сценарии b1 и b2 являются независимыми
константами связи и уравнение (6) (с c = h = 0) имеет симметрию
SUL(Nf ) × SUR(Nf ) × UA(1). Существуют два решения с β1 = β2 = 0:
g∗ = (0, 0) и g∗ = (3ε)/(N 2

f + 4).
МФ и МК представляют собой теорию среднего поля и методы

Монте-Карло.
Когда существуют несколько безразмерных констант связи

b = (b1, ... , bn), нужно рассматривать поток ренормализации на много-
мерной критической гиперповерхности, определенной как a = 0. Этот
поток удовлетворяет

db(s)

ds
= β(b(s), ε). (10)

Предполагая, что мы находим решение фиксированной точки, удов-
летворяющее β = 0, изучим его устойчивость. Линеаризуем β около
фиксированной точки:

db(s)

ds
∼ Ω · b(s), Ωll′ =

(
∂βl

∂bl′

) ∣∣∣
b=b

∗ . (11)

Здесь Ω — это n × n матрица устойчивости, которая может быть
несимметричной. Рассмотрим специальный случай с n независимыми
собственными векторами Bl и соответствующими собственными значе-
ниями ωl. Его можно диагонализовать как PΩP−1 = diag (ω1, · · · ,ωn),
что приводит к

Bl = (P · b(s))l = esωl . (12)

Таким образом, в инфракрасном пределе при s → −∞ фикси-
рованная точка b

∗
устойчива (неустойчива) вдоль направления, где

Re (ωl) > 0 (Re (ωl) < 0). Собственные значения ωl матрицы устойчи-
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Рис. 1. Поток ренормализационной группы модели симметрии для SUL(Nf ) ×
× SUR(Nf )× UA(1)

вости Ωll′ = (∂βl/∂gl′) определяют, является ли фиксированная точка
инфракрасно устойчивой. Проведя простые алгебраические вычисления,
получаем

(ω1,ω2) =

⎧⎪⎪⎨⎪⎪⎩
(−ε,−ε) для g ∗ = (0, 0),(
ε,−N 2

f − 2

N 2
f + 4

ε

)
для g ∗ =

(
3

N 2
f + 4

ε, 0

)
.

(13)

Для случая Nf = 2 всегда существует отрицательное собственное
значение, что указывает на отсутствие инфракрасно устойчивой фик-
сированной точки на критической гиперповерхности. Это означает, что
фазовый переход является переходом первого порядка, индуцированным
флуктуациями, как обсуждалось в матрице устойчивости. Поток ренор-
мализации на двумерной критической поверхности показан на рис. 1.
Независимо от начальной точки потока константы связи будут направ-
ляться в неограниченные области (b2 < 0 или b1 + b2/Nf < 0).

2.2. Безмассовая КХД с аксиальной аномалией. Рассмотрим слу-
чай, когда c �= 0 и h = 0. В этом сценарии Leff обладает киральной
симметрией SUL(Nf ) × SUR(Nf ). Поскольку симметрия UA(1) всегда
нарушается аксиальной аномалией независимо от температуры, этот слу-
чай ближе к реальным условиям.

В табл. 2 сведены критические порядки для безмассовых кварков при
h = 0. Количество ароматов (Nf ) играет ключевую роль, и мы исследуем
физику для различных сценариев Nf .

1) Случай Nf = 1. При использовании разложения, данного в урав-
нении (5), для случая с одним ароматом S0 + iP 0 = 0. Имеем

−c/2 det (Φ + Φ†) = −cσ. (14)

У этого члена та же форма, что и у члена массы кварка (или внешнего
магнитного поля) в уравнении (6), но он существенно нарушает кираль-
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Таблица 2. Критические показатели для фазового перехода с киральностью
с аксиальной аномалией и без нее (безмассовая КХД, h = 0)

Nf
Без аксиальной аномалии

(c = 0, h = 0)
С аксиальной аномалией

(c �= 0, h = 0)

1 Второго порядка [O(2)]∗ Нет фазового перехода
2 Первого порядка Второго порядка [O(2)]∗

3 Первого порядка Первого порядка∗∗

4 Первого порядка Первого порядка

∗Квадратные скобки указывают на симметрию, соответствующую
фазовым переходам второго порядка.

∗∗Этот фазовый переход первого порядка вызван кубическим чле-
ном, происходящим от аксиальной аномалии.

ную симметрию. Таким образом, фазовый переход второго порядка при
c = 0 превращается в непрерывный переход при c �= 0.

2) Случай Nf = 2. Используя разложение для двух ароматов,

Φ =
√
2 (σ + iη + δ · τ + iπ · τ), (15)

где τ представляет матрицы Паули, получаем

Leff = −2/c(σ2 + π2) + c/2(η2 + δ2). (16)

Объединяя этот член с квадратичным членом в уравнении (6), получаем
((a − c)/2)(σ2 + π2) + ((a + c)/2)(η2 + δ2). При положительном знаке c
согласно спектру частиц при нулевой температуре σ и π становятся
практически безмассовыми в критической точке (a − c ≈ 0), в то время
как η и δ по-прежнему обладают массой. В этой точке мы получаем
модель φ4 с симметрией O(4):

Leff =
1
2
(∇φ)2 +

(a− c)

2
φ2 +

(b1 + b2/2)
4!

(φ2)2, (17)

где φ = (φ0,φ1,φ2,φ3) = (σ,π).
3) Случай Nf = 3. Определительный член дает кубический член

−c/2 det (Φ + Φ†) = −c/(3
√
3 ) + σ3. (18)

Даже на уровне среднего поля переход все еще остается первого порядка.
4) Случай Nf � 4. Определительный член дает кварковые члены (для

Nf = 4) и члены более высокого порядка (для Nf > 4). Для первого
случая эти члены теоретически важны для критического поведения, но
они не стабилизируют фиксированные точки в пространстве (b1, b2, c).
Для второго случая эти члены не имеют значения для критического
поведения, и результаты, полученные для случая c = 0 из п. 2.1, приме-
няются. Поэтому ожидается флуктуационный переход первого порядка
для всех Nf > 4 [15].
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3. ЭФФЕКТЫ МАССЫ ЛЕГКИХ КВАРКОВ

До сих пор наша дискуссия была основана на предположении о нуле-
вой массе кварков. Чтобы приблизиться к реальному миру, в этой статье
рассматривается случай, когда массы кварков u, d и s ненулевые, что
соответствует c �= 0 и h �= 0.

При конечной температуре фазовый переход в плоскости (mud,ms),
где мы предполагаем изоспиновую симметрию mud ≡ mu = md, соответ-
ствует четырем различным предельным случаям:

(mud,ms) =

⎧⎪⎪⎨⎪⎪⎩
(∞,∞) для Nf = 0,
(∞, 0) для Nf = 1,
(0,∞) для Nf = 2,
(0, 0) для Nf = 3.

(19)

Когда внешнее поле относительно слабое, переход первого порядка
не происходит. На рис. 2 [16] схематично изображена КХД на плоско-
сти (mud,ms). Области фазового перехода первого порядка разделены
непрерывной областью перехода. Границы, разделяющие эти области,
принадлежат к универсальному классу, аналогичному симметрии Z(2)
модели Изинга.

Предположим, что ms относительно велико в окрестности этой точки.
Тогда можем выразить функционал Ландау, используя только легкие
моды (σ,π) при mud → 0. Следовательно, в пределе mud → 0 симметрия

Рис. 2. Схематическое изображение КХД на плоскости (mud,ms)
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O(4) релевантна и может быть выражена как

Leff =
1
2
(∂�φ)2 +

a(ms,T )
2

�φ 2 +
b(ms,T )

4!
(�φ 2)2 +

c

6!
(�φ 2)3 − hφ0. (20)

Здесь h ∝ mud. Три точки фаз соответствуют a = b = 0 и c > 0. Три
линии фазового перехода второго порядка пересекаются в своих соответ-
ствующих точках фазы и продолжаются в крылья для положительных
и отрицательных mud. Минимизируя свободную энергию по параметру
порядка φ и учитывая масштабные зависимости a, b, c, h при a → 0,
b → 0, c > 0, получаем ведущую степенную форму крыльев фазовой
поверхности:

±h =
8c
3

( a

5c

)5/4
=

8c
3

(
− 3b
10c

)5/2

(a � 0, b � 0). (21)

С использованием результата уравнения (17), где ±h = c/3(a/5c)5/4 =
8c/3((−3b)/10c)5/2 для a � 0, b � 0, ведущее поведение этого крыла
в окрестности трехфазной точки задается mud ∼ (mtri

s −ms)
5/2.

Таблица 3. Вторичные фазовые переходы КХД для различного числа аро-
матов при Nf = 3

Nf
Параметр

0 2 2+ 1 3

mud ∞ 0 ∼ 5МэВ 0
ms ∞ ∞ ∼ 100МэВ 0
Порядок Первый Второй Первый

или переход
Первый

Симметрия Z(3) O(4) SUL(3)× SUR(3) SUL(3)× SUR(3)
TC (решетка) ∼ 270 МэВ ∼ 170 МэВ — ∼ 150 МэВ

Положение физической массы кварков в плоскости (mud,ms) все
еще неопределенно. Она может находиться в области фазового перехода
первого порядка (полный круг) или в области непрерывного перехода
(полный квадрат) (табл. 3). Вычисление КХД с динамическими масса-
ми кварков предоставляет некоторые доказательства того, что реаль-
ные ситуации находятся в области непрерывного перехода. Дальнейшее
подтверждение этого доказательства требует более малых масс кварков
и больших объемов решетки, что является одной из самых важных
проблем в решеточной КХД [17].

4. ЭФФЕКТЫ КОНЕЧНОГО ХИМИЧЕСКОГО ПОТЕНЦИАЛА

Фраза «КХД при конечном химическом потенциале» относится к тео-
рии, описывающей сильное взаимодействие между кварками и глюонами,
при условиях, когда существует ненулевой барионный химический по-
тенциал. В контексте высокоэнергетической ядерной физики это часто
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происходит в исследованиях свойств кварк-глюонной плазмы и фазовой
диаграммы ядерного вещества. В КХД химический потенциал связан
с числом кварков в системе. При конечном химическом потенциале
исследуется поведение материи КХД под влиянием изменяющихся ба-
рионных плотностей. Это особенно важно для понимания фаз ядерного
вещества при высоких температурах и/или плотностях.

Введение кваркового химического потенциала μ обогащает фазовую
диаграмму КХД. Мы рассматриваем фазовую диаграмму в трехмер-
ном пространстве (T ,μ,mud) с относительно большой массой странного
кварка ms. Когда mud мал, функционал Ландау системы имеет форму,
аналогичную модели с симметрией O(4) в уравнении (20):

Leff =
1
2
(∂φ)2 +

a(μ,T )
2

φ2 +
b(μ,T )

4!
(φ2)2 +

c

6!
(φ2)3 − hφ0. (22)

Здесь h ∝ mud, а c предполагается положительным. Из-за двух па-
раметров μ и T , управляющих a и b, трехкритическая точка может
появиться в начале, где a = b = h = 0. Фактически положение этой
трехкритической точки впервые было вычислено в модели Намбу–Йона-
Лазинио [12, 13, 18, 19], и последующие исследования распространились
на более общие модели.

ЗАКЛЮЧЕНИЕ

Технологические достижения стимулировали наше понимание крити-
ческой точки фазового перехода киральной фазы в эффективных теори-
ях КХД. На пересечении теоретических инноваций и вычислительных
возможностей были обсуждены потенциальные будущие направления.
Особое внимание уделено роли развивающихся технологий в дальнейшем
раскрытии загадок сильной динамики.
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